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Abstract
We propose to allocate the cost of a minimum cost spanning tree by defining a 
claims problem and using claims rules, then providing easy and intuitive ways to 
distribute this cost. Depending on the starting point that we consider, we define two 
models. On the one hand, the benefit-sharing model considers individuals’ costs to 
the source as the starting point, and then the benefit of building the efficient tree is 
shared by the agents. On the other hand, the costs-sharing model starts from the 
individuals’ minimum connection costs (the cheapest connection they can use), 
and the additional cost, if any, is then allocated. As we prove, both approaches pro‑
vide the same family of allocations for every minimum cost spanning tree problem. 
These models can be understood as a central planner who decides the best way to 
connect the agents (the efficient tree) and also establishes the amount each agent has 
to pay. In so doing, the central planner takes into account the maximum and mini‑
mum amount they should pay and some equity criteria given by a particular (claims) 
rule. We analyze some properties of this family of cost allocations, specially focus‑
ing in coalitional stability (core selection), a central concern in the literature on cost 
allocation.
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1 Introduction

Consider a group of individuals who want to be connected to a water supply, or a 
telephone or cable TV network. These individuals are located at different places, 
and they have some (different) fixed costs of linking with any other individual or 
linking to the source. The purpose of the group is to be connected to the source 
at the cheapest possible way (the minimum cost spanning tree). The allocation of 
this cost among the individuals in the network, once the optimal spanning tree is 
obtained, is an issue deeply studied in the literature, where different solutions have 
been proposed: Bird rule (Bird 1976), Kar (Kar 2002), Folk (Feltkamp et al. 1994; 
Bergantiños and Vidal‑Puga 2007), Cycle-complete (Trudeau 2012), or the Serial 
cost sharing rule (Moulin and Shenker 1992).

The present paper aims to define new methods of sharing the cost of the optimal 
network by associating a claims problem to each minimum cost spanning tree situa‑
tion and then using claims rules to allocate the total cost.

Claims problems are characterized by an endowment (to be distributed among the 
agents) and a claim from each agent (the maximum amount to be allocated to this 
agent). We propose two different approaches: the benefit-sharing and costs-sharing 
models. In the first model the endowment is the benefit obtained from cooperation 
when the minimum cost spanning tree is built and agents’ claims are the difference 
between their cheapest cost of connecting to the source and their cheapest connec‑
tion cost. The alternative model establishes that individuals initially pay the cost of 
their cheapest connection. Then, the endowment is the additional cost that must be 
satisfied to cover the cost of the efficient tree, being the claims defined as in the pre‑
vious model. Although both models provide different points of view, we will show 
that no matter which view you choose, since both approaches provide the same fam‑
ily of allocations for sharing the minimum cost of the network.

Even though both mcst and claims problems involve a population of n agents, 
their dimensionalities are very different. In a minimum cost spanning tree problem, 
there is a source � , and the problem is defined by the costs for connecting every 
individual to the source; thus a minimum cost spanning tree problem is determined 
by (n + 1)n∕2 numbers. In a claims problem, there is an endowment and a claim for 
each agent; thus a claims problem is determined by n + 1 numbers. Therefore, trans‑
lating a minimum cost spanning tree problem into a claims problem involves some 
“loss of information” and there are many ways to proceed.

On the other hand, this translation benefits from the simplicity and tradition of 
claims rules (equal gains, equal losses, proportional gains/losses, etc.), that might 
be found in the rich literature which originated with the seminal paper by (O’Neill 
1982).

In real‑world situations, when there is a conflict of interest in carrying out a joint 
project, the simplicity of the solution is important for the agents to reach an agree‑
ment. In this sense, our proposal has the appeal of an easy and intuitivemechanism 
to convince the agents involved in the joint project about the equity of the solution.

Our proposal provides a bridge between the literature on claims problems and 
that on sharing the cost in network problems. As far as we know, only Driessen 
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(1994) links both problems, although he analyzes the other way: transforms a claims 
problem in a minimum cost spanning tree problem.

The paper is organized as follows. In the next section we present both the mini‑
mum cost spanning tree problem and the claims problem. Section 3 introduces the 
two mentioned approaches to associate a claims problem with a minimum cost span‑
ning tree situation and we prove that both models provide the same family of allo‑
cations. In Sect.  4 we discuss some properties of the allocations provided by our 
model. Section 5 analyzes the coalitional stability of the proposed allocations. Some 
final comments in Sect. 6 conclude the paper.

2  Preliminaries

2.1  Minimum cost spanning tree problem

A minimum cost spanning tree (hereafter mcst) problem involves a finite set of 
agents, N = {1, 2,… , n}, who need to be connected to a source �. We denote by N� 
the set of agents and the source and the elements in N� are called nodes. There is an 
undirected complete graph connecting the nodes in N�. Any pair of nodes, i, j ∈ N� , 
i ≠ j, are connected by an edge eij = (i, j) and cij ∈ ℝ+ represents the cost of direct 
link, the arc eij , between any pair of nodes i, j ∈ N�. We denote by � = [cij] the sym‑
metric cost matrix, where cii = 0 , for all i ∈ N� . The mcst problem is represented 
by the pair (N�,�) , and the goal is to connect all the agents to the source (directly 
or through other agents) in the cheapest possible way. The solution to this problem, 
widely studied, is obtained by means of a spanning tree.

A network over N� is any subset of N� × N� . A spanning tree over N� is a net‑
work p with no cycles that connects all elements of N�. We denote by P(N�) the set 
of all spanning trees over N� . We can identify any spanning tree with a predecessor 
map p ∶ N → N� so that j = p(i) is the agent (or the source) to whom i connects in 
her way towards the source. This map p defines the edges ep

i
= (i, p(i)) in the tree. In 

a spanning tree each agent is connected to the source � , either directly, or indirectly 
through other agents. Moreover, given a spanning tree p,  there is a unique path from 
any agent i to the source given by the arcs (i, p(i)), (p(i), p2(i)),… , (pt−1(i), pt(i) = �), 
for some t ∈ ℕ. The cost of building the spanning tree p is the sum of the cost of the 
arcs in this tree:

Cp =

n∑

i=1

cip(i).
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Prim (1957) provides an algorithm which solves the problem of connecting all the 
agents to the source such that the total cost of the network is minimum.1 This opti‑
mal tree may not be unique. Denote by m a spanning tree with minimum cost and by 
Cm(N�,�)

 its cost (in what follows, when there is no confusion, we simply write Cm ). 
That is, for all spanning tree p ∈ P(N�)

A game with transferable utility, TU game, is a pair (N,  v) where N is the set of 
agents and v ∶ 2N → ℝ is known as the characteristic function and it satisfies 
v(∅) = 0 . Sh(N, v) denotes the Shapley value (Shapley 1953) of (N, v). Bird (1976) 
associated a TU game (N, v−) to each mcst problem (N�,�) defining for each coali‑
tion S ⊆ N , v−(S) = Cm(S�,�)

 ; that is, the cost of the optimal spanning tree when only 
agents in S are involved. This is known as the property rights approach, because the 
agents in S assume that the rest of the players are not present, or that they cannot use 
the connections of agents outside S to lower the cost.

Through this work we will follow an alternative approach in which it is 
assumed that agents in a coalition S can connect the source through agents out‑
side this coalition. This context is known as non-property rights. In this case, the 
characteristic function is defined by v+(S) = min {v−(T) ∶ S ⊆ T} . As pointed out 
in Bogomolnaia and Moulin (2010), the core of the non-property rights coopera‑
tive game (N, v+) is included in the corresponding core of the TU game (N, v−) . 
Therefore, our approach is more demanding in terms of coalitional stability.

Once a minimum cost spanning tree m is selected, an important issue is how 
to allocate the cost Cm among the agents, that is defined by means of a sharing 
rule (or simply, a solution). In order to define a sharing rule it is important to 
decide if members of a coalition can freely connect the source through individu‑
als outside their coalition. In our non-property rights approach the non‑nega‑
tivity in the agents’ allocations is a natural requirement (see Bogomolnaia and 
Moulin (2010)). Then, a sharing rule � is a function that proposes for any mcst 
problem (N�,�) an allocation

Among the mentioned sharing rules in mcst problems, Bird, Folk and Serial solu‑
tions are non‑negative. We will compare our proposals with these solutions.

The Bird rule (Bird 1976) (B) is defined for each i ∈ N  as Bi((N�,�)) = cim(i). 
As mentioned in Bergantiños and Vidal‑Puga (2007) the idea of this rule is sim‑
ple: agents connect sequentially to the source following Prim’s algorithm and 

Cm =

n∑

i=1

cim(i) ≤ Cp =

n∑

i=1

cip(i).

�(N�,�) = (�1, �2,… , �n) ∈ ℝ
n
+
, such that

n∑

i=1

�i = Cm.

1 This algorithm has n steps, as much as the number of agents. First, we select the agent i with smallest 
cost to the source, such that ci� ≤ cj�, for all j ∈ N. In the second step, we select an agent in N⧵{i} with 
the smallest cost either to the source or to agent i,  who is already connected. We continue until all agents 
are connected, at each step connecting an agent still not connected to a connected agent or to the source.
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each agent pays the corresponding connection cost. The Serial rule (Moulin 
and Shenker 1992) (S) proposes to distribute the cost of each arc among the 
individuals that actually use it in her (unique) path joining the source. In both 
cases, if there are more than one spanning tree minimizing the total cost, then 
the solutions propose the average of the corresponding sharing in all these trees. 
Finally, the Folk rule (Feltkamp et al. 1994; Bergantiños and Vidal‑Puga 2007) 
(F) assigns to each agent i ∈ N  the amount given by the Shapley value of the 
non-property rights cooperative game, Fi((N�,�)) = Sh(N, v+).

2.2  Claims problems

Given a finite set of agents N = {1, 2,… , n}, a claims problem appears when 
some endowment should be distributed among these individuals, who demand 
more than what is available. It is formally defined by a vector (E, d) ∈ ℝ+ ×ℝ

n
+
, 

where E denotes the endowment and d is the vector of agents’ demands, such 
that the agents’ aggregate demand is greater than or equal to the endowment, ∑

i∈N di ≥ E.

A claims rule � is a function that associates with each claims problem (E, d) 
a distribution of the total endowment among the agents (efficiency), such that no 
agent is allocated neither a negative amount (non-negativity), nor more than their 
claim (claim-boundedness):

Many claims rules have been proposed in the literature (see Thomson (2019) for 
formal definitions, properties and references), among which it is worth mentioning 
the Proportional (Pr), the Constrained Equal Awards (Cea), the Constrained Equal 
Losses (Cel), or the Talmud (T). These solutions are defined as: for each claims 
problem (E, d), let R denote the sum of the agents’ claims, R =

∑
i∈N di. Then, for all 

i ∈ N , the above mentioned claims rules are defined as:

• Pri(E, d) =
E

R
di.

• Ceai(E, d) = min
{
di, �

}
 , where � is selected such that 

∑
i∈N Ceai(E, d) = E.

• Celi(E, d) = max
{
di − �, 0

}
 , where � is selected such that 

∑
i∈N Celi(E, d) = E.

• Ti(E, d) = Ceai

(
min

{
E,

1

2
C
}
,
1

2
c
)
+ Celi

(
max

{
0,E −

1

2
C
}
,
1

2
c
)
.

A way to address this kind of situations is by analyzing the part of the individu‑
als’ demand that is not satisfied. Specifically, given a claims problem (E, d),  the 
dual problem (L,  d) is defined by focusing on the losses the agents have with 
respect to their claims, where L denotes the total loss the agents incur, L = R − E. 
Given a claims rule �, its dual rule �D shares losses in the same way that � shares 
gains (Aumann and Maschler 1985):

0 ≤ �i(E, d) ≤ di∀i ∈ N,

n∑

i=1

�i(E, d) = E.

�D
i
(L, d) = di − �i(E, d), i = 1, 2,… , n.
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The Cea and Cel rules are dual of each other. A claims rule � is self-dual if �D = � . 
The Proportional and Talmud rules are self‑dual.

3  Mapping mcst problems into claims problems

As aforementioned, we aim to define a mapping M that associates mcst situations 
with claims problems under two alternative approaches.

• The benefit-sharing approach considers that each individual is initially allocated 
her maximum possible rational cost, that is, fully paying her cheapest way to 
connect to the source (rational individuals would never pay more than this cost, 
since agents’ goal is to connect the source at the minimum possible cost). Then, 
the savings obtained through cooperation are distributed among the individuals. 
Our argument is as follows:

  As individuals want to be connected to the source, they are willing to 
pay the cost of their connection to the source. In total, an amount that we denote 
by C� is contributed. But those funds are not yet used, and the network is not 
yet built. Then, as the network will be common owned, agents want their con-
nections in the optimal network to be their cheapest ones and claim to reduce 
their contribution to this minimum amount, and demand the extra cost di∗, to be 
returned. If agents agree to cooperate, then everybody can be connected with a 
total cost of Cm and a network might thus be built for this amount. The benefit of 
cooperation is E = C� − Cm. Finally, if the agents agree on how the benefit of 
cooperation is shared, the minimum cost spanning tree is built.

  Then, the pair (E, d∗) clearly defines a claims problem.
• The cost-sharing approach proposes that individuals pay initially the cost of their 

cheapest connection. The remaining cost (whenever the cheapest connections do 
not define a spanning tree) is then distributed among the individuals. Under this 
approach the argument is as follows:

  In order to provide a common network, individuals are asked for 
an initial contribution that equals their minimum connection cost. But those 
funds, Cmin , are not enough to connect all individuals to the source, and the 
network is not yet built. If the agents agree to cooperate, then everybody can 
be connected with a total cost of Cm and a network might thus be built. The 
additional cost that remains to be distributed is the differenceEo = Cm − Cmin . 
Now agents may connect to the source, and their extra contribution cannot 
be greater than the difference between their connection cost to the source and 
their minimum connection cost, that we have denoted by di∗ . Finally, if the 
agents agree on how the additional cost is distributed, the minimum cost span-
ning tree is built.

  Then, the pair (Eo, d∗) clearly defines a claims problem.

In both models the claim of each individual is determined by
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Note that the actual cost for individuals to connect to the source is c∗
i�

 , since they can 
choose to use their direct connection edge (i,�) or to use any path Pi� . We will refer 
to c∗

i�
 as the individual i’s rational connection cost to the source.

3.1  Model 1: sharing the benefit of cooperation

We consider throughout this sub‑section that the starting points are the rational con‑
nection cost to the source, c∗

i�
, the most an individual is willing to pay. If a min‑

imum cost spanning tree with cost Cm is implemented, the benefit of cooperation 
E = C� − Cm, C� =

∑
i∈N c∗

i�
, shall be returned. We assume that no individual will 

pay less than their minimum connection cost, so the claim di∗ represents the amount 
they request to be returned from their initial payment c∗

i�
. Then, we define a map M1 

associating to any mcst problem (N�,�) the claims problem M1(N�,�) = (E, d∗) , 
where E = C� − Cm and di∗ = c∗

i�
− ci∗.

Definition 1 For any claims rule � the associated‑1 sharing rule for mcst problems 
�
�

1
 is defined for any mcst problem (N�,�) and all i ∈ N by:

As previously mentioned, a claims rule fulfills non-negativity, which has a natu‑
ral interpretation in the mcst context: no individual should be allocated an amount 
greater than their rational connection cost to the source; and claim‑boundedness 
meaning that no individual should be allocated an amount below their cheapest con-
nection cost.

3.2  Model 2: sharing the extra cost

We now consider that individuals initially pay their corresponding minimum con‑
nection cost ci∗ , so the total amount paid is Cmin =

∑
i∈N ci∗ . If a minimum cost span‑

ning tree with cost Cm is implemented, there is an extra cost, Eo = Cm − Cmin , that 
must be distributed among the agents. As we assume that no individual can pay 
more than their rational connection cost to the source, the claim of individual i is 
di∗ = c∗

i�
− ci∗. Obviously, this claims problem is well defined, since the aggregated 

claim exceeds the endowment, 
∑n

i=1
di∗ ≥ Eo. Then , we define a new map M2 asso‑

ciating to any mcst problem (N�,�) the claims problem M2(N�,�) = (Eo, d∗).

Definition 2 For any claims rule � the associated‑2 sharing rule for mcst problems 
�
�

1
 is defined for any mcst problem (N�,�) and all i ∈ N by:

di∗ ≡ c∗
i�
− ci∗ for all i ∈ N, d∗ = (d1∗ , d2∗ ,… , dn∗ ), ci∗ = min

j∈N�,j≠i

{
cij
}
,

c∗
i�
= min

Pi�

{
∑

e∈Pi�

c(e)

}
Pi� ∶ path joining agentiwith the source�.

(�
�

1
)i(N�,�) = c∗

i�
− �i(M

1(N�,�)).
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In Example  1 we compute the allocations obtained by applying our models with 
different claims rules, and compare them with the ones provided by some mcst shar‑
ing rules.

Example 1 Let us consider the mcst problem defined by

Remark 1 Although the direct cost of joining agent 2 to the source is 10 units, under 
our non‑property rights approach the rational cost is 5 units through agent 1. Then, 
c∗
2�

= 5 . Analogously, the rational cost of joining agent 3 to the source � is 6 units, 
c∗
3�

= 6 . The rational cost of each arc, when different from the direct cost, appears in 
brackets in the picture.

The minimum cost spanning tree is given by function m defined as:

(�
�

2
)i(N�,�) = ci∗ + �i(M

2(N�,�)).

m(1) = � m(2) = 1 m(3) = 1; Cm = 7; C� = 15; Cmin = 4.

Table 1  Proposals obtained by applying mcst solutions and claims rules in Example 1

Bird Serial Folk �Pr

1

�Cea

1

�Cel

1

�T

1

�Pr

2

�Cea

2

�Cel

2

�T

2

�
1

4 4/3 13/6 20/11 4/3 2 2 20/11 2 4/3 2
�
2

1 7/3 13/6 23/11 7/3 2 2 23/11 2 7/3 2
�
3

2 10/3 16/6 34/11 10/3 3 3 34/11 3 10/3 3
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In order to apply claims rules, the benefit of cooperation is E = C� − Cm = 8. On 
the other hand, c∗ = (1, 1, 2), c∗ = (4, 5, 6) , so the claims are d∗ = (3, 4, 4), and 
Eo = 3. Table 1 shows the obtained results.

We observe that the solutions defined by using the usual claims rules propose 
reasonable allocations of the total cost. The Serial solution is retrieved (in this 
example) through the Cea or Cel claims rules. We also note that �1 and �2 coin‑
cide when applied to Proportional or Talmud rules. This is a direct consequence 
of duality properties in claims rules, since these rules are self‑dual, and it is for‑
mally established in the following result.

Proposition 1 For any mcst problem (N�,�) ∈ Nn and any claims rule �,

Proof Let us consider the associated claims problems

By definition of �D,

Then,

and duality is obtained.   ◻

Consequently we obtain that if a claims rule � is self dual, for any mcst problem 
(N�,�) both models propose the same distribution of the total cost.

In particular, the Proportional or Talmud rules provide the same allocation with 
both models.

Therefore, the two models propose the same family of cost allocations. Then, 
hereinafter we will only analyze the model defined by M1.

�
�

1
(N�,�) = �

�D

2
(N�,�).

(E, d∗) = M
1(N�,�), (Eo, d∗) = M

2(N�,�).

�i(E, d∗) = di∗ − �D
i

(
∑

i∈N

di∗ − E, d∗

)
= di∗ − �D

i
(Eo, d∗).

(�
�

1
)i(N�,�) = c∗

ii
− �i(E, d∗) = c∗

ii
−
(
di∗ − �D

i
(Eo, d∗)

)

= ci∗ + �D
i
(Eo, d∗) = (�

�D

2
)i(N�,�)

�
�

1
(N�,�) = �

�

2
(N�,�).
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4  Properties

Bergantiños and Vidal‑Puga (2007) provide a very exhaustive normative study 
on the solutions of mcst problems. They present a list of properties that a solution 
should satisfy and compare, among others, the Bird and Folk solutions in terms of 
the properties that satisfy.2

In this section we analyze if some of these properties are fulfilled by the solutions 
we have defined through claims rules. The property of coalitional stability (core 
selection) is analyzed in the next section. We first briefly introduce the properties.

IndIvIdual RatIonalIty: A sharing rule � for mcst problems satisfies Individual 
Rationality if for each problem (N�,�), and all i ∈ N, �i(N�,�)i ≤ c∗

i�
.

ContInuIty: A solution � for mcst problems satisfies Continuity if � is continuous 
function of the cost matrix �.

PosItIvIty: A solution � for mcst problems satisfies Positivity if for each problem 
(N�,�), and all i ∈ N, then �i(N�,�) ≥ 0.

symmetRy: A solution � for mcst problems satisfies Symmetry if for each prob‑
lem (N�,�), whenever individuals i, j ∈ N are such that cik = cjk, for all k ∈ N�, then 
�i(N�,�) = �j(N�,�).

Cost monotonICIty: A solution � for mcst problems satisfies Cost Monotonicity 
if for any two problems (N�,�), (N�,�

�), such that cij < c′
ij
 for some i ∈ N , j ∈ N� 

and ckl = c�
kl

 otherwise, �i(N�,�) ≤ �i(N�,�
�).

It is clear that, for any claims rule � , our proposal fulfills these properties.

Proposition 2 For any claims rule � the solution ��

1
 satisfies Individual Rational-

ity, Continuity and Positivity. In addition, ��

1
 satisfies Symmetry if the claims rule is 

symmetric and satisfies Cost monotonicity if the claims rule is claims monotonic.3

An additional property that has been considered for solutions of mcst problems is:
PoPulatIon monotonICIty: A solution � for mcst problems satisfies Population 

Monotonicity if for each problem (N�,�), and all S ⊂ N , �i(N�,�) ≤ �i(S�,�) for 
all i ∈ S.

The following example shows that ��

1
 does not fulfill this property.

Example 2 Let us consider the mcst problem with n = 5 individuals depicted in the 
following figure (as the graph should be complete, we consider that the costs of the 
arcs not shown are all equal to 10).

3 A claims rule � is symmetric if for any claims problem (E, d),  di = dj implies �i(E, d) = �j(E, d). On 
the other hand, a claims rule is claims monotonic if an increase in an agent’s claim does not harm her. 
Most of claims rules in the literature, and all we have introduced, satisfy these properties.

2 They show that the Folk solution satisfies all properties we introduce, whereas the Bird solution fails 
to fulfill Continuity, Cost monotonicity and Population monotonicity. On the other hand, it is known that 
the Serial solution does not fulfill the crucial property of Individual rationality. Also, it can be shown that 
this solution does not fulfill Continuity, Cost monotonicity, nor Population monotonicity.
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There are several trees with minimum cost. We consider

Throughout easy computations we obtain Cm = 2 , C� = 5 , E = 3 , and the claims 
vector d∗ = (1, 1, 1, 1, 1). Therefore, for any (anonymous) claims rule �

If we consider the coalition S = {3, 4, 5} and the mcst problem (S�,�) , our model 
allocates 1

3
 to each agent in S (for any anonymous claims rule), contradicting Popula‑

tion monotonicity.

5  Coalitional stability

In a mcst problem, cooperation is necessary in order to implement the optimal tree. 
Then, coalitional stability is required to prevent that groups of individuals may have 
incentives to build their own network and then a minimum cost spanning tree would 
not be implemented. To this end, a cooperative game associated with a mcst prob‑
lem has been introduced so that, for each coalition S ⊆ N, the characteristic function 
represents the cost of connecting all individuals in this coalition to the source. For‑
mally, given the mcst problem (N�,�) and a coalition S ⊆ N, the (monotonic) cost of 
connecting this coalition to the source is (in our non‑property context):

where Cm(T) is the cost of the efficient tree of the problem (T�,�|T ). The core asso‑
ciated to a mcst problem is then defined by:

m(1) = � m(2) = 1 m(3) = 4 m(4) = 5 m(5) = �

(�
�

1
)i = c∗

i�
−

E

5
=

2

5
, i = 1, 2, 3, 4, 5

v(S) = min
{
Cm(T) ∶ S ⊆ T ⊆ N

}
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In Example 1 the characteristic function is:

Although all the allocations we obtained in this example (Table  1) belong to the 
core, this is not true in general. In Example 2, the total amount allocated to coalition 
S is 6/5, which is greater than v(S) = 1 . So, no allocation in the core can be obtained 
in this example by using (anonymous) claims rules throughout our approach.

The following result shows a necessary and sufficient condition, in terms of the 
mcst cost matrix, ensuring that the allocation provided by ��

1
 belongs to the core 

of the monotonic cooperative game, regardless of the claims rule � used in its 
definition.

Theorem 1 Given a mcst problem (N�,�) , if

for any claims rule � the allocation (��

1
)i(N�,�) = c∗

i�
− �i(E, d∗), i ∈ N, belongs 

to the core of the monotonic cooperative game associated with the mcst problem. 
Conversely, if for any claims rule �, the allocation (��

1
)(N�,�) belongs to the core, 

Condition (1) is fulfilled.

Proof First we consider S ⊆ N such that v(S) ≠
∑

i∈S c
∗
i�

 . We need to prove that, for 
any claims rule �,

We know that any claims rule � satisfies non-negativity and claim-boundedness, 
which implies that for all S ⊆ N,

Note that E −
∑

i∉S di∗ =
∑

i∈S c
∗
ii
+ ci∗ − Cm and then

co(N𝜔,�) =

{
𝛼 ∈ ℝ

n ∶
∑

i∈S

𝛼i ≤ v(S), ∀S ⊆ N,
∑

i∈N

𝛼i = v(N) = Cm

}
.

v({1}) = 4; v({2}) = v({1, 2}) = 5; v({3}) = v({1, 3}) = 6; v({2, 3}) = v({1, 2, 3}) = 7.

(1)Cm −
∑

i∉S

ci∗ ≤ v(S) for all S ⊆ N such that v(S) ≠
∑

i∈S

c∗
i𝜔

∑

i∈S

(�
�

1
)i(N�,�) ≤ v(S).

∑

i∈S

�i(E, d∗) ≥ max

{
E −

∑

i∉S

di∗ , 0

}
.

∑

i∈S

(�
�

1
)i(N�,�) =

∑

i∈S

c∗
i�
−
∑

i∈S

�i(E, d∗) ≤
∑

i∈S

c∗
i�
−max

{
E −

∑

i∉S

di∗ , 0

}

≤
∑

i∈S

c∗
i�
−

(
E −

∑

i∉S

di∗

)
= Cm −

∑

i∉S

ci∗ ≤ v(S)
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from Condition (1). Let us consider now a coalition S ⊆ N such that v(S) =
∑

i∈S c
∗
i�

 . 
As 

(
�
�

1

)
i
≤ c∗

i�
 , obviously 

∑
i∈S(�

�

1
)i(N�,�) ≤ v(S). So, for any claims rule � , ��

1
 is 

in the core of the monotonic cooperative game.
Conversely, let us suppose that for some coalition S ⊆ N , v(S) ≠

∑
i∈S c

∗
i�

 and 
Cm −

∑
i∉S ci∗ > v(S). Consider the constrained dictatorial claims rule, �CD , in 

which the first agents to receive their claims are those outside S; that is, we con‑
sider a permutation � such that �(1),�(2),… ,�(n − s) ∉ S , where s denotes the 
number of agents in S. Under our model, the claims rule provides the cost alloca‑
tion �i = c∗

i
− �CD

i
(E, d∗) , 

∑
i∈N �i = Cm. If we analyze the endowment E and the 

demands of agents not in S, we obtain two possibilities: 

(a) E ≥
∑

i∉S di∗ ; or       (b) E <
∑

i∉S di∗

In the first case, �CD
i

(E, d∗) = di∗ , so �i = ci∗ for all i ∉ S . Then,

and the allocation is not in the core.
The second case implies �CD

i
(E, d∗) = 0 , so �i = c∗

i�
 for all i ∈ S . This allocation 

only can be in the core if v(S) =
∑

i∈S c
∗
i�

 , a contradiction. So, the allocation is nei‑
ther in the core in this case.   ◻

Checking Condition (1) may require as much calculus as directly testing that the 
allocation provided is in the core. Nevertheless, it is important to emphasize that 
this condition only depends on the data of the mcst problem and once it is checked, 
it remains valid for any claims rule. In order to interpret Condition (1), it says that, 
for any coalition S, there is some chance of obtaining benefits from cooperation even 
in the case that individuals outside S pay only their minimum connection cost (the 
minimum they can pay under our approach); or, all members in S pay her rational 
connection to the source, which is at the same time their minimum connection cost.

The sufficient and necessary condition obtained to guarantee coalitional stability 
may seem quite technical. However, it is useful from an operational point of view, 
since it allows us to identify sub‑classes of mcst problems where the solution we 
propose is always a core selection, for every claims rule.

5.1  Some special classes of mcst problems

In this section we show some classes of mcst problems so that Condition (1) is 
always fulfilled and the allocation ��

1
(N�,�) belongs to the core of the monotonic 

cooperative game, for any claims rule �.

∑

i∈S

𝛼i = Cm −
∑

i∉S

ci∗ > v(S)
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5.1.1  2−mcst problems

Let us consider the so‑called 2−mcst problems (Estévez‑Fernández and Reijnierse 
2014; Subiza et al. 2016) in which the connection cost between two different indi‑
viduals (houses, villages, ...) can only take one of two possible values (low and high 
cost). Moreover, we consider problems (N�,�) such that cij = k1, i, j ∈ N , i ≠ j, 
ci� = k2, with 0 ≤ k1 ≤ k2. It is easy to check that Condition (1) is fulfilled. Our 
model proposes, for any claims rule �, the allocation

which belongs to the core (it coincides with the Folk solution).

5.1.2  Information graph games

A related scenario appears when analyzing information graph games (Kuipers 
1993). This games can be formalized in the following way.

A set of customers N are all interested in a particular piece of information. 
A subset Z of N, called the informed set, already possesses this information. 
Other customers may purchase the information from a central supplier for a 
fixed price, say 1, or they may share the information with a friendly customer, 
who already has the information.

This situation can be represented by an undirected graph and the information graph 
game in a minimum cost spanning tree problem, where the cost of an arc is 0 or 1, 
by depending if one of the agents in the arc belong to Z. In this case, set N can be 
decomposed in disjoint components, N =

�⋃r

t=1
Ut

�⋃�⋃s

t=1
Ct

�
 , such that: 

1. For each i ∈ Ut , |Ut| = 1 , ci∗ = c∗
i�
= 1.

2. For each i ∈ Ut , |Ut| > 1 , ci∗ = 0 , c∗
i�
= 1.

3. For each i ∈ Ct , ci∗ = c∗
i�
= 0.

Now, for each coalition S ⊆ N , if S intersects k components of type Ut , v(S) ≥ k and ∑
i∉S ci∗ ≥ r − k , whereas Cm = r . Therefore, condition (1) holds and, for any claims 

rule � , the solution ��

1
 is in the core of the cooperative game.

5.1.3  Linear mcst problems

Another focal class of mcst problems in which Condition (1) is always satis‑
fied is given by linear msct problems. Let us consider a group of individuals 
N = {1, 2,… , n} situated in a row that wish to connect to a source � . The cost of 
connecting one individual with the next one is 1 unit. If an individual wants to con‑
nect to the source, she must do it through all its neighbors on the way towards the 
source and pay all costs.

(�
�

1
)i(N�,�) = k2 −

n − 1

n
(k2 − k1) i = 1, 2,… , n,
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Formally, for each i, j ∈ N, i ≠ j, the connection cost is cij = |i − j|. For each 
i ∈ N, the cost to the source is ci� = i.

The minimum cost spanning tree connects each individual to the next, and the 
first one with the source, with a total cost Cm = n. It is easy to observe that Condi‑
tion (1) is fulfilled, since for all S ⊆ N , |S| = s,

5.1.4  Bipersonal mcst problems

If there are just n = 2 agents

it is not hard to prove that Condition (1) is fulfilled. Moreover, in this case, it can 
be proved that the Folk solution is obtained with our model, if we use the Talmud 
claims rule; that is,

5.2  Modifying the claims vector

Up to this point, we have fixed an estate E, the benefit of cooperation, and a vector of 
claims d∗ in order to apply our model. It is clear that other possibilities when defining 
the claim of each agent can be considered. The following result shows that the selection 
of the claims vector influences that the final allocation belongs to the core.

Proposition 3 Let us consider a mcst problem (N�,�). Let E = C� − Cm be the ben-
efit of cooperation and let c� =

(
c∗
1�
, c∗

2�
,… , c∗

n�

)
 be the vector of rational costs to 

the source. Then, there exists a claims vector d̂, such that for any claims rule � , 
𝜅𝜑(N𝜔,�) = c𝜔 − 𝜑(E, d̂) ∈ co(N𝜔,�).

Proof To show the existence of the required claims vector, for each i ∈ N, consider 
d̂i = c∗

i𝜔
− cim(i). Then, 

∑
i∈N d̂i = E, so (E, d̂) is a degenerated claims problem and 

Cm = n,
∑

i∉S

ci∗ = n − s, v(S) = max {i ∈ S} ≥ s.

�T
1
(N�,�) = F(N�,�).
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for any claims rule � , 𝜑i(E, d̂) = d̂i and agent i is allocated the amount �i = cim(i) , 
which is in the core of the cooperative game and coincides with the Bird solution if 
the minimum cost spanning tree is unique.   ◻

6  Final comments

The current paper explores a bridge between two independent problems that 
have been extensively analyzed in the literature: minimum cost spanning tree and 
claims problems. Specifically, we present new ways of allocating the cost of a 
network that are based on claims rules that share the benefit of cooperation. It is 
noteworthy that in our approach only two costs are used: the rational cost to the 
source and the cost to the cheapest edge (also the costs cim(i) are used in order to 
compute Cm , the cost of the efficient tree). The aforementioned feature (ignoring 
most of the available information) links our proposals with the so‑called reduc-
tionism approach (Bogomolnaia and Moulin 2010).

Our approach allows for easy and intuitive ways to distribute the cost of an 
optimal network among the involved agents. For instance, when using the pro‑
portional claims rule, our model proposes a proportional sharing of the benefit of 
cooperation, or a proportional distribution of the extra‑cost. Analogously, when 
using egalitarian claims rules, we propose an equal sharing of the benefit of coop‑
eration, or an equal sharing of the extra‑cost (subject that no agent pay more that 
their individual cost, nor a negative amount). Only the Bird, or Serial solutions 
are such easier methods. Nevertheless, the Bird solution can be seen as unfair and 
the Serial may propose for an agent a payment greater than its direct connection 
to the source. Let us observe the following example:

Then, Cm = 160 and the Bird proposal is B = (100, 60) (each agent pays their 
own connection); so, agent 1 does not obtain any gains from cooperation. The 
Serial solution is S = (50, 110) ; so, agent 2 pays more than connecting directly to 
the source. The Folk solution proposes an equal sharing of the cost, F = (80, 80). 
Our model proposes the following allocations, depending on the used claims 
rules:

As mentioned, a drawback of our proposal is that sometimes it fails to propose core 
allocations. A possible way to prevent coalitions leaving the group is to find the core 

�Pr
1

= (78.8, 81.2) �Cea
1

= (77.5, 77.5) �Cel
1

= �T
1
= (80, 80)
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allocation closest to our selected proposal (see Giménez‑Gómez et al. (2020)). For 
instance, if the proportional criteria is assumed, and �Pr

1
 is not in the core, then we 

can obtain the allocation x in the core minimizing the distance d(x, �Pr
1
) , although 

we lose the simplicity and intuitive idea of the solution.
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