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Abstract. In this paper we propose a theoretical model including a susceptible-infected-

recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium

framework with agents’ mobility. The latter affect both their income (and consumption) and

their probability of infecting and of being infected. Strategic complementarities among in-

dividual mobility choices drive the evolution of aggregate economic activity, while infection

externalities caused by individual mobility affect disease diffusion. Rational expectations of

forward looking agents on the dynamics of aggregate mobility and epidemic determine individ-

ual mobility decisions.

The model allows to evaluate alternative scenarios of mobility restrictions, especially policies

dependent on the state of epidemic.

We prove the existence of an equilibrium and provide a recursive construction method for

finding equilibrium(a), which also guides our numerical investigations.

We calibrate the model by using Italian experience on COVID-19 epidemic in the period Feb-

ruary 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a

substantially different dynamics of economy and epidemic with respect to a SIRD model with

constant agents’ mobility. Finally, by numerical explorations we illustrate how the model can

be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which

mitigates the epidemic peaks stressing health system, and allows for trading-off the economic

losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
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1. Introduction

We propose an integrated assessment model, denoted by ESIRD, encompassing a susceptible-

infected-recovered-dead (SIRD) model of epidemic and a dynamic macroeconomic general equi-

librium model of economy, where mobility choices of forward looking agents affect both income

(and consumption) and the spread of epidemic. A calibrated version of the model illustrates

the possibilities to use the model to design an efficient policy of state-of-epidemic-dependent

mobility restrictions.

Pandemic crisis has shown that sudden drops in individual mobility have a substantial neg-

ative consequences on aggregate income and consumption (OCDE, 2020). The decrease of

individual mobility along COVID-19 crisis has been the joint outcome of individual decisions,

caused by the diffusion of infection, and of containment measures imposed by national authori-

ties (lockdown, curfew, etc.). In turn, a reduction in individual mobility brings down individual

income (Huang et al., 2020) as well as epidemic dynamics, being higher individual mobility asso-

ciated to a higher probability of infecting and being infected (Nouvellet et al., 2020). Therefore,

entangled externalities and “general equilibrium” effects are at work; more precisely, individual

mobility decisions display i) strategic complementarities with mobility choice of other agents,

because the marginal impact on individual income of individual mobility is increasing in the

aggregate mobility (Bulow et al., 1985; Cooper & John, 1988); and, ii) negative externalities

on contagion dynamics, because of agents in their mobility choices internalize the risk of be-

ing infected but not the effect of infecting other people (Bethune & Korinek, 2020).1 So far,

within the recent dynamic micro-funded epidemiological-economic literature (see, e.g., Eichen-

baum et al., 2020a; Toxvaerd, 2020; Jones et al., 2020) no contribution has characterized in

a dynamic macroeconomic general equilibrium model the optimal mobility choices in presence

of strategic complementarities in production and negative externalities on contagion dynam-

ics, the first step in a more adequate evaluation of policies reducing individual mobility for

contrasting COVID-19 epidemic.

In the model we focus on short-term mobility. It should be meant as the daily/weekly

activities of mobility observed in labour market, i.e. commuting, movements by car, track, bus,

train, etc., generally observed in the economy. This mobility also includes movements for the

activity of consumption, both for purchasing goods and services both for leisure.

Epidemic dynamics is driven by a generalized version of the SIRD model where the average

number of contacts per person per time is endogenous, as well as the transition rate, i.e. the

flow of new infected, and depends on the mobility choices of agents.

Agents maximize an inter-temporal discrete time utility function taking into account con-

sumption and mobility costs. Their choice of mobility for working (respectively for consuming)

depends on their state (susceptible, infectious or recovered), the aggregate level of economic

activity, the current and future policies on mobility restrictions, and on their future utility,

1Another possible source of externality, the healthcare congestion, is analysed by Jones et al. (2020).
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which, in turn, depends on the probabilities of being infected in the future and on the future

dynamics of economy. In each period aggregate economic activity (consumption) depends on

the state of the epidemic and on the individual mobility choices.

We set the agent’s problem as a game with a continuum of players in a finite state space (the

four states of agents). The notion of equilibrium is basically borrowed – even if re-elaborated –

from Jovanovic & Rosenthal, 1988 (see their Definition 4.2) and shown to be equivalent to the

notion of Nash equilibrium (Proposition 4.3). We provide an existence result (Theorem 4.5),

and then propose an algorithm to identify an equilibrium (see Section 4.3 and Theorem 4.6).

The model can be seen as a discrete time, finite state, infinite horizon Mean Field Game

(MFG). The latter studies the behavior of Nash equilibria in differential games as the number

of agents becomes large. There is extensive recent research activity on MFGs starting from the

pioneering works of Lasry and Lions (Lasry & Lions, 2006a,b, 2007). In the large population

limit, one expects to obtain a game with a continuum of agents where, like in our case, the

effects on the decision of any agent from the actions of the other agents are experienced through

the statistical distribution of states. Since perturbations from the strategy of an agent do not

influence the statistical states’ distribution, the latter acts as a parameter in each agent’s control

problem. The passage to the limit is still a difficult theoretical topic and it is out of the scope

of this paper (see, e.g., Carmona & Delarue, 2018).

We calibrate the model by using Italian experience on COVID-19 epidemic in the period

February 2020 - May 2021. Numerical explorations of model under different configurations of

state-of-epidemic-dependent mobility restrictions highlight the presence of a trade-off between

economic losses and fatalities due to pandemic, i.e. of a pandemic possibilities frontier as in

Kaplan et al. (2020) and Acemoglu et al. (2020). However, we argue that policy evaluation

should take into account two additional directions, the first relate to the share of susceptible

at the end of period of evaluation, which can favor a fresh outbreak of epidemic in the future

without an efficient vaccine; and the social feasibility of prolonged mobility restrictions (Vollmer

et al., 2020).

Our paper makes four main contributes to literature. The first is to the epidemiological-

macroeconomic literature, which has recently received a burst from the COVID-19 outbreak.

Its main goal is to produce integrated assessment models, where the economic dynamics com-

plements epidemiological models. In particular, a strand of literature focuses on optimal policy

problem from a planner’s perspective without modeling individual behavior (see, e.g., Alvarez

et al., 2020; Piguillem et al., 2020; Moser & Yared, 2020; Atkeson, 2020), while another

one considers forward-looking agents and market determination of good and factor prices, as

in Eichenbaum et al. (2020a), Toxvaerd (2020), Jones et al. (2020) and Kaplan et al. (2020).

With respect to these contributions we explicitly consider agents’ (short-term) mobility. There

are several good reasons for doing this: (i) in the epidemiological literature mobility is (not

surprisingly) identified as the key variable in containing the epidemic (Nouvellet et al., 2020);
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(ii) mobility is an easily measurable variable and many datasets are actually freely available

(e.g. GSM mobility data, Google Mobility Trends, and Apple Mobility Lab); therefore, it is

ideal for bringing the model to the data; and, (iii) since mobility was/is the primary focus of

several restrictive policies imposed by governments, in the proposed framework it is particularly

natural to evaluate past and future policies on mobility restrictions. Focusing on mobility im-

plies, as already argued, taking into account non-market interactions among individual choices;

this leads to an another element of novelty in our epidemiological-macroeconomic model: the

presence of strategic complementarities in individual decisions. The latter introduces substan-

tial difficulties in the mathematical study of the model, which we start addressing proving the

existence of a Nash equilibrium.

The second contribution is on methodological side. We have discussed above that our model

belongs to the class of discounted infinite horizon, discrete time, finite state space MFG. So

far, to the best of our knowledge our model does not fall into the classes already studied in the

literature. In particular, Gomes et al. (2010), Doncel et al. (2019), Hadikhanloo & Silva (2019),

and Bonnans et al. (2021); Wiecek (2020) deal with MFG in discrete time and finite state

space. However, Hadikhanloo & Silva (2019) and Bonnans et al. (2021) consider only finite

horizon problems; Gomes et al. (2010) (and similarly Wiecek (2020)) consider infinite horizon

problems of ergodic type or with entropy penalization, where the dependence of the agents’

utility from the choices of the other agents is more regular than in our model, and this allows

them to prove existence and uniqueness of equilibrium. Finally, Doncel et al. (2019) consider

an infinite horizon MFG, but where agents’ cost does not depend on the strategies of the other

agents, which instead happens in our model for the presence of strategic complementarities.

Hence, our result of existence of an equilibrium and the verification type theorem are to be

considered a novelty.

We also contribute to the theoretical economic literature focusing on the endogenous deter-

mination of the infection rate and the reproduction rate of an epidemic (Avery et al., 2020).

Infection rate depends on a large number of aggregate factors (climate, geography, health sys-

tem, etc.), but also crucially revolves on individual choices. To endogenize infection rate has

been proposed several approaches, among which a purely epidemiological approach as Fenichel

(2013) and a behavioral approach (see Engle et al., 2020a and Bisin & Moro, 2021). Farboodi

et al. (2020), Toxvaerd (2020), and Eichenbaum et al. (2020a) are instead more in line with our

approach, developing a settings where forward-looking individuals chose their actions facing a

epidemic-economic trade-off. However, no paper directly models mobility choices of individuals

taking into account strategic complementarities and negative externalities in an infinite horizon

general equilibrium setting for explaining the dynamics of infection rate along the pandemic.

The advantage of our approach are evident in the interpretation of results, allowing for directly

correlating mobility and infection rate, and in the possibility to bring the model to data.
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The final contribution is to the literature looking at the effect of epidemics diffusion on mo-

bility (see, e.g, Meloni et al., 2011 and Nouvellet et al., 2020 for an epidemiological perspective).

In particular, Engle et al. (2020b) and Simonov et al. (2020) look at the effects of governmental

suggestions and Fox News messages respectively; while Goolsbee & Syverson (2021) and ? try

to disentangle the effects of individual decisions (auto-segregation) and governmental restrictive

policies on mobility during the COVID-19 crisis. Our model provide a perfect candidate theo-

retical framework to analyse the observed mobility behavior since it characterizes in a dynamic

general equilibrium setting individual decisions both in a policy-free regime (auto-segregation)

or, alternatively, in a regime where restrictive measures on mobility are introduced. More im-

portant, our contribution provides a theoretical framework to evaluate restrictive policies going

beyond the simple trade-off economic losses/fatalities as prospected in Kaplan et al. (2020),

Acemoglu et al. (2020), and Gollier (2020). It makes it possible, for instance, to take into

account in the evaluation other key dimensions regarding the social feasibility of policies, the

fragility of post-lockdown situations with a high risk of fresh outbreaks, and the sustainability

of health systems (see, in particular, Sections 5 and 6). It also allows to give an answer to the

provocative question posed, among others, by Cochrane (2020) on the viability of a contain-

ment policy based only on self-confinement of individuals free of any governmental restrictions

on mobility. At least for the Italian experience in 2020, our model suggests that a policy only

based on self-confinement would have resulted in a peak prevalence of nearly six million in-

fected people (see Section 6), which corresponds to a need of about four hundred thousand of

beds in hospitals. This would have been unsustainable for a country having, in February 2020,

about 190,000 beds in hospitals, most of them already occupied by patients with COVID-19

independent pathologies.

The paper is organized as follows: Section 2 presents the model, Section 3 focuses on the

agent’s optimization problem while Section 4 provides a recursive construction method for

equilibrium(a). Section 5 calibrates the model to Italian data; Section 6 uses the model to

investigate the effects of policies aiming at mitigating epidemic and their effects on economic

activity; Section 7 concludes.

2. The epidemiologic-economic dynamic model

We consider an infinite horizon discrete time world with a continuum set of agents, whose

individual actions do not modify the evolution of the global epidemic state. This is, roughly

speaking, the typical setting that is used in the Mean Field Games theory, as discussed in the

Introduction.

As in the classical SIRD framework (Chowell et al., 2016), at each time period, the disease

status k of an agent can be: susceptible (k = S); infected (k = I); recovered (k = R); and died

(k = D). We then denote the set of possible disease status by K, i.e.

K := {S, I, R,D} .
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2.1. Mobility strategies and epidemic dynamics. We want to model how the classes of

disease, i.e., the shares of population with different disease status, evolve over time following

the standard SIRD model without vital dynamics (newborns are not considered) according to

the mobility choices of the classes. We assume that, at any time t ∈ N, the agents of each

epidemic class behave in the same way. Hence, we introduce the set

(1) A =
{

Θ = (Θp,Θc) : N×K→ [0, 1]2 s.t. Θ(·, D, ·) = (0, 0)
}
,

where Θp(t, k) and Θc(t, k) represent, respectively, the mobility rate (whose maximal value is

w.l.o.g. normalized to 1) for production and for consumption chosen by the agents belonging

to the class of disease k ∈ K at time t ∈ N.

Consider the set P(K) of probability distributions on K and let µ(t) ∈ P(K) represent the

epidemic state at time t ∈ N, i.e. µ(t)({k}) represents the shares of population in disease status

k ∈ K. The evolution of the epidemic depends on the mobility rates chosen by the agents, i.e.

on Θ, as follows:

(2) µ(t+ 1) = [QΘ(t,·)(µ(t))]Tµ(t),

where [·]T denotes transposition,

QΘ(t,·)(ν) :=


1− τΘ(t,·)(ν) τΘ(t,·)(ν) 0 0

0 1− πR − πD πR πD

0 0 1 0

0 0 0 1

 , ν ∈ P(K),

where πR, πD ∈ (0, 1) are two exogenous constants such that πR + πD < 1 and

τΘ(t,·)(ν) := βPν(I)Θp(t, I)Θp(t, S) + βCν(I)Θc(t, I)Θc(t, S)

where βP , βC > 0 are given constants such that βP +βC < 1. More explicitly, using the notation

µ(t, k) := µ(t)({k}),



µ(t+ 1, S) = µ(t, S)
(
1− βPµ(t, I)Θp(t, I)Θp(t, S) + βCµ(t, I)Θc(t, I)Θc(t, S)

)
,

µ(t+ 1, I) = µ(t, S)
(
βPµ(t, I)Θp(t, I)Θp(t, S) + βCµ(t, I)Θc(t, I)Θc(t, S)

)
−µ(t, I)(1− πR − πD),

µ(t+ 1, R) = µ(t, I)πR + µ(t, R),

µ(t+ 1, D) = µ(t, I)πD + µ(t,D).

The following remark explain the interpretation of the above equations.

Remark 2.1 Denoting by s(t), i(t), respectively, the percentage of population susceptible and

infected at time t, we have s(t) = µ(t, S), i(t) = µ(t, I). Hence

∆s(t) := s(t+ 1)− s(t) = µ(t+ 1, S)− µ(t, S) = −β(t)s(t)i(t)
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where

β(t) := βPΘp(t, I)Θp(t, S) + βCΘc(t, I)Θc(t, S)

plays the role of the transmission rate of disease in the classical SIRD model. In our model it

depends on the mobility choices of the infected and susceptible agents Θp(t, I), Θp(t, S), Θc(t, I)

and Θc(t, S).

Remark 2.1 shows how our approach micro-funds the value of β(t) (the average number of

contacts sufficient for transmission of a person per unit of time), the key parameter of SIRD

model. It allows on the one hand to distinguish the probability of contracting the virus in the

workplace or by consuming and, on the other hand, it makes explicit the dependence of the

probability of infection on the movements made to participate to the two activities.

It should be noted that the dependence of β on movements is “quadratic”. This fact is quite

natural since the probability of contracting the virus increases both because of the increased

mobility of the agent i and for the increased mobility of other agents. Since in the model

agents’behaviors are only determined by individual utilities, this will generate a first channel of

strategic complementarity (with aggregate negative effects) in the mobility choices of agents.

Agents will not completely internalize the aggregate contagion effects of their mobility choices

and will have the tendency to move (and therefore spread the virus) “too much” with respect

to the optimal level.

2.2. Income and mobility. We suppose that the income of agent depends on three elements:

(i) her/his health conditions; (ii) her/his mobility choices to work; and, (iii) the general state of

the economy. More precisely, at a generic period t ∈ N, the income Y (t, k) of the representative

agent in the state k ∈ {S, I, R}, when the epidemic is in the state µ(t) and she undertakes the

production mobility choice ϑp ∈ [0, 1], is given by

(3) Y (t, k, ϑp) = Z(t) (A0(k) + A1(k)ϑp) ,

where

(4) A0(k) =

{
aSR0 if k ∈ {S,R}
aI0 if k = I

A1(k) =

{
aSR1 if k ∈ {S,R}
aI1 if k = I

and

Z(t) := φ

(
µ(t, S)Θp(t, S), µ(t, I)Θp(t, I), µ(t, R)Θp(t, R)

)
,(5)

where φ : [0, 1]3 → (0,∞) is non-decreasing in all the components and such that φ(0, 0, 0) =

ε > 0. We assume that

(6) 0 < aI0 ≤ aSR0 and 0 ≤ aI1 ≤ aSR1 ,

where the second inequalities reflect the fact that that healthy (susceptible or recovered) agents

are more productive than infected. Notice that in the agent’s income Y , the only term depend-

ing on µ and Θ is Z.
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2.3. Consumption and mobility. The price faced by the agent for the consumption good

depends on her/his (consumption-related) mobility choice ϑc and it is given by:

(7) P (t, ϑc) =
1

P0 + P1ϑc
,

where

(8) P0, P1 ≥ 0.

Abstracting from saving, at the generic time period, the consumption of the agent in the

disease state k when the epidemic is in the state µ(t) and she undertakes the production-

consumption choices ϑ = (ϑc, ϑc) is then given by

C(t, k;ϑ) =
Y (t, k, ϑp)

P (t, ϑc)
= Z(t) (A0(k) + A1(k)ϑp) (P0 + P1ϑc) .

2.4. Mobility costs . We introduce now the mobility costs of agents. We assume that moving

is costly. In particular, at a generic time period, the cost of the agent in the disease state k

when the epidemic state is µ(t) to move with intensity ϑp (respectively, ϑc) in the labour market

(respectively, in the consumption market) is

(9) γp (k, µ(t))ϑp

(
respectively, γc (k, µ(t))ϑc

)
,

where γp : K× P(K)→ (0,∞) (respectively, γc : K× P(K)→ (0,∞)). We assume that:

(10) γp(R, ν) ≤ γp(S, ν) ≤ γp(I, ν), γc(R, ν) ≤ γc(S, ν) ≤ γc(I, ν), ∀ν ∈ P(K).

2.5. Agents’ utility. The utility at time t of the agent in the disease state k ∈ K, undertaking

the actions ϑ = (ϑp, ϑc) ∈ [0, 1]2 is u(t, k, ϑ), where u : N×K× [0, 1]2 → R with u(·, D, ·) ≡ 0

and, for k ∈ {S, I, R},

(11)

u(t, k, ϑ) := ln
[
Z(t) (A0(k) + A1(k)ϑp) (P0 + P1ϑc)

]
− γp (k, µ(t))ϑp − γc (k, µ(t))ϑc −M,

where M ∈ R is the constant utility of state dead, which “normalizes the utility of nonsurvival

to zero” (Rosen, 1988, p. 2). In the expression of the utility the dependence on time only arises

through Z(t) and µ(t), hence we can write it as

u(t, k, ϑ) = U(k, Z(t), µ(t), ϑ),

where

U : K× (0,∞)× P(K)× [0, 1]2 → R,

(12) U(k, z, ν, ϑ) = ln
[
z (A0(k) + A1(k)ϑp) (P0 + P1ϑc)

]
− γp (k, ν)ϑp − γc (k, ν)ϑc −M.

Variables µ and Θ only arises in the terms Z and (γp, γc). Z depends on µ and Θ through (5),

while µ depends on µ0 and Θ through (2). Hence, we find useful to emphasize the dependence

of u on µ0 and Θ by writing uµ0,Θ.
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3. The agent’s optimization problem

To define and study the equilibria in the above setting, we first look at the optimization

problem of an agent who may possibly deviate from the behavior of the others. Fix the initial

epidemic distribution µ0 ∈ P(K) and the overall agents’ behavior Θ ∈ A. Then, let µ(t),

t ∈ N, be evolving according to (2) with initial state µ(0) = µ0. We assume, as it is natural

in the context of a continuum of agents, that the mobility choices of the agent do not modify

the evolution of µ. Hence, we consider an agent who takes for given µ0 and Θ — hence, µ(·),
since her choices do not affect the evolution of µ — and deviates from Θ maximizing her/his

expected total inter-temporal utility. Since we rely on Dynamic Programming, we let the initial

time and state vary. Hence, we assume that the agent starts at time to ∈ N in the state ko ∈ K,

where (to, ko) ∈ N×K, and that she chooses her strategies (in the closed-loop sense) in the set

(13) Aag(to) :=
{
θ = (θp, θc) : {to, to + 1, ...} ×K→ [0, 1]2 s.t. θ(·, D) = (0, 0)

}
.

The feedback strategies depend on the present time and state of the agent – the knowledge of

µ and Θ is hidden in the dependence on time of θ. Given a discount factor 1− ρ ∈ (0, 1), the

expected total inter-temporal utility is given by taking the discounted sum over time of the

instantaneous utility introduced above in (11):

(14) Jµ0,Θ(to, ko; θ) := E

[
∞∑
t=to

(1− ρ)t−touµ0,Θ(t,Kθ(t), θ(t,Kθ(t)))

]
,

where the epidemic state of the agent Kθ(t) evolves randomly as follows. First, Kθ(to) = to
and at each time t ≥ to the state at time t + 1, i.e. Kθ(t + 1), is determined by the transition

kernel introduced below when the generic variable ϑ ∈ [0, 1]2 is substituted by θ(t, S):

Pϑ(t) :=


pϑSS(t) pϑSI(t) pϑSR(t) pϑSD(t)

pϑIS(t) pϑII(t) pϑIR(t) pϑID(t)

pϑRS(t) pϑRI(t) pϑRR(t) pϑRD(t)

pϑDS(t) pϑDI(t) pϑDR(t) pϑDD(t)

 =


1− τϑag(t) τϑag(t) 0 0

0 1− πR − πD πR πD

0 0 1 0

0 0 0 1

 .

where

τϑag(t) := βPµ(t, I)Θp(t, I)ϑp + βCµ(t, I)Θc(t, I)ϑc.

τϑag(t) is obtained by τΘ(t,·) substituting Θ(t, S) with ϑ, i.e. the probability of infection of the

susceptible agent changes due her choice of deviating from Θ(t, S). Summarizing Kθ is the

controlled Markov chain whose transition kernel at each time t ≥ to is Pθ(t,Kθ(t))(t), i.e. this

matrix gives the transition probability of the state of the agent from time t to time t+ 1.2 The

agent aims at maximizing Jµ0,Θ(to, ko; θ) over θ ∈ Aag(to). Define the value function of the

agent as

V µ0,Θ(to, ko) = sup
θ∈Aag(to)

Jµ0,Θ(to, ko; θ).

2When θ = Θ, then the dynamics of µ is, as expected, the Fokker-Planck equation associated to the random

dynamics of the agent.
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It is well known, by the Dynamic Programming Principle, that the value function is a solution

(possibly not unique) to the so called Bellman equation, which is written as follows (with

unknown v):

v(to, ko) = sup
ϑ∈[0,1]2

∑
k∈K

pϑkok(to)
[
uµ0,Θ(to, ko, ϑ) + (1− ρ)v(to + 1, k)

]
.(15)

4. Equilibrium: existence and recursive construction

4.1. Definition of equilibrium. Let us give the definition of Nash equilibrium for the con-

tinuum of agents’ game.

Definition 4.1 (Nash equilibrium) Let µ0 ∈ P(K). A Nash equilibrium (for our continuum

of agents’ game) starting at µ0 is a map Θ
µ0 ∈ A such that, calling µ(·) the solution to (2)

associated to Θ
µ0

and defining

θ(t, k) := Θ
µ0

(t, k), (t, k) ∈ {to, to + 1, ...} ×K,

we have

(16) Jµ0,Θ
µ0

(to, ko) = V µ0,Θ
µ0

(to, ko).

Inspired by Jovanovic & Rosenthal, 1988 we also give the following definition that will turn

out to be equivalent to the latter one.

Definition 4.2 (Equilibrium) Let µ0 ∈ P(K) be a given initial distribution of the disease at

time t = 0. An equilibrium starting from µ0 is a couple (vµ0 ,Θ
µ0

), with vµ0 : N × K → R and

Θ
µ0 ∈ A, such that:

(i) vµ0 is bounded and satisfies for every (to, ko) ∈ N×K the dynamic programming equation

v(to, ko) = sup
ϑ∈[0,1]2

∑
k∈K

pϑkok(to)
(
uµ0,Θ

µ0

(to, ko, ϑ) + (1− ρ)v(to + 1, k)
)
.(17)

(ii) Calling µ(·) the solution to (2) with initial datum µ0 and with Θ = Θ
µ0

, for all (to, ko) ∈
N×K, the couple Θ

µ0
(to, ko) ∈ [0, 1]2 is an optimizer in the right hand side of (17).

Proposition 4.3 The two above definitions are equivalent.

Proof. (a) Let µ0 ∈ P(K), let (vµ0 ,Θ
µ0

) be an equilibrium in the sense of Definition 4.2, and

let (to, ko) ∈ N×K. Then, define

θ(t, k) := Θ
µ0

(t, k), (t, k) ∈ {to, to + 1, ...} ×K,

By standard verification arguments in optimal control, it is clear that, since vµ0 is bounded, it

coincides with the value function of the agent and the control θ ∈ Aag(to) is optimal for the

agent when the other agents follow the same feedback strategy. Hence, (16) is verified showing

that Θ
µ0

is a Nash equilibrium in the sense of Definition 4.1.

(b) Let µ0 ∈ P(K) and let Θ
µ0

be a Nash equilibrium in the sense of Definition 4.1 and

consider the couple (V µ0,Θ
µ0
,Θ

µ0
). By the dynamic programming principle, V µ0,Θ

µ0
(to, ko)

satisfies (17), so part (i) of Definition 4.2 is satisfied. Part (ii) of the same definition is satisfied

by (16). �
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4.2. Existence of equilibria. The main result of this subsection is the proof of the existence

of an equilibrium. We shall make use of the following fixed point theorem.

Theorem 4.4 (Tikhonov’s fixed point Theorem) Let V be a locally convex topological vector

space, let Q ⊆ V be a nonempty compact convex set, and let F : Q → Q be a continuous

function. Then F has a fixed point.

Theorem 4.5 An equilibrium exists for each µ0 ∈ P(K).

Proof. Fix µ0 ∈ P(K). Consider the space of sequences

V :=

{
q = (qR, qI , qS, qD) : N→ R4

}
endowed with the topology of pointwise convergence. The latter is a locally convex topological

vector space since the topology is induced by the family of seminorms

pt(q) = |q(t)|R4 , t ∈ N,

where q(t) is the t−th component of q. Then, consider

Q :=

{
q = (qR, qI , qS, qD) : N→ [0, 1]2 × [0, 1]2 × [0, 1]2 × {0}

}
⊂ V .

Q is convex and, by Tikhonov’s compactness Theorem, it is compact in V . We consider the

one-to-one correspondence M : Q → A defined by

(Mq)(t, k) ≡ qk(t), (t, k) ∈ N×K.

Let

F : Q → Q, F (q)(to, ko) := (θ̂p(to, ko; q), θ̂c(to, ko; q)), (to, ko) ∈ N×K.

where (θ̂p(to, ko; q), θ̂c(to, ko; q)) is the unique the maximizer over [0, 1]2 of

ϑ 7→
∑
k∈K

pϑkok(to)
[
uµ0,M(q)(to, ko, ϑ) + (1− ρ)V µ0,M(q)(to + 1, k)

]
.

Clearly, if q is a fixed point of F , then (V µ0,M(q),M(q)) is an equilibrium according to Def-

inition 4.2. Fix (to, ko) ∈ N × K; given a sequence (qn) ⊂ Q converging to q ∈ Q, we have,

V µ0,M(qn)(to, ko)→ V µ0,M(q)(to, ko). Consequently, by strict concavity and regularity of uµ0,M(q),

we also have the convergence

(θ̂p(to, ko; qn), θ̂c(to, ko; qn))→ (θ̂p(to, ko; q), θ̂c(to, ko; q)).

This shows that F is continuous. We conclude by Theorem 4.4. �

4.3. Recursive construction of equilibria. In this section we present a recursive algorithm

which allows to compute an equilibrium of our game. First we present the algorithm and then

we prove, in Theorem 4.6, that, under suitable conditions, it provides an equilibrium.

In the algorithm we will build a couple (v̂, Θ̂) which will be proved to be an equilibrium

in the sense of Definition 4.2. We denote also by µ̂ the associated epidemic distribution. All

the objects defined below depend on µ0 but, to lighten the notation, we do not stress this

dependence.
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At time t = 0, we start with µ̂(0) = µ0 and with an arbitrary v̂(0, ·) such that v̂(0, D) = 0.

Then, at generic time t ∈ N, having at hand the values of v̂(t, ·), µ̂(t) and (for t > 0) Θ̂(t−1, ·),
we define v̂(t+ 1, ·), µ̂(t+ 1) and Θ̂(t, ·), as follows.

1. We set v̂(t+ 1, D) = 0 and Θ̂(t,D) = 0.

2. For k ∈ {I, R}, we define, the couple

Φ(k, ν) = (Φp(k, ν),Φc(k, ν))

where3

(18)


Φp(k, ν) :=

((
1

γp(k, ν)
− A0(k)

A1(k)

)
∨ 0

)
∧ 1,

Φc(k, ν) :=

((
1

γc(k, ν)
− P0

P1

)
∨ 0

)
∧ 1,

and

Θ̂(t, k) := Φ(k, µ̂(t)).

3. Given ξ ∈ R, ν ∈ P(K), we define

ϑ̂S(ξ, ν) = (ϑ̂Sp (ξ, ν), ϑ̂Sc (ξ, ν)) =
(
(ϑ̃Sp (ξ, ν) ∧ 1) ∨ 0, (ϑ̃Sc (ξ, ν) ∧ 1) ∨ 0

)
,

where

ϑ̃Sp (ξ, ν) =
1

γp(S, ν) + (1− ρ)βP â(ν)ξ
− A0(S)

A1(S)
,

ϑ̃Sc (ξ, ν) =
1

γc(S, ν) + (1− ρ)βC b̂(ν) ξ
− P0

P1

,

where

(19) â(ν) = ν(I)Φp(I, ν), b̂(ν) = ν(I)Φ(I, ν),

and also define, for k ∈ K, ν ∈ P(K), ϑS ∈ [0, 1],

Ẑ(ϑS, ν) = φ

(
ν(S)ϑS, ν(I)Φp(I, ν), ν(R)Φp(R, ν)

)
.

4. Recalling the expression of U given in (12), we define, given wR, wI ∈ R, ξ ∈ R+, ν ∈ P(K),
W (wR, R, ν, ξ) :=

1

1− ρ

(
wR − U(R, Ẑ(ϑ̂S(ξ, ν), ν), ν,Φ(R, ν)

)
,

W (wI , wR, I, ν, ξ) :=
1

1− πR − πD

[
wI − U(I, Ẑ(ϑ̂S(ξ, ν), ν), ν,Φ(I, ν))

1− ρ
− πRW (wR, R, ν, ξ)

]
.

5. Given w = (wS, wI , wR) ∈ R3, we consider the algebraic equation in the variable ξ ∈ R+

wS = (1− ρ)W (wI , I, ν, ξ) + (1− ρ)ξ + f(S, ν, ξ),

3Hereafter, given a, b ∈ R, we denote a ∨ b = max{a, b}, a ∧ b = min{a, b}.
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where

f(S, ν, ξ) = U(S, Ẑ(ϑ̂S(ξ, ν), ν), ν, ϑ̂S(ξ, ν))(20)

− (1− ρ)
(
βP â(ν)ϑ̂Sp (ξ, ν) + βC b̂(ν)ϑ̂Sc (ξ, ν)

)
ξ.

For every ν ∈ P(K), denote the set of solutions (possibly empty) to this equation by ξ̂(w, ν).

If ξ̂(w, ν) is nonempty and a singleton, we can define

Φ̃(t, S, ν) := ϑ̂S(ξ̂(v̂(t, ·), ν), ν).

6. Assume now that ξ̂(v̂(t, ·), µ̂(t)) is nonempty and a singleton, hence ϑ̂S(ξ̂(v̂(t, ·), µ̂(t)), µ̂(t))

and Φ̃(t, S, µ̂(t)) are well defined. We set
v̂(t+ 1, R) := W (v̂(t, R), R, µ̂(t), ξ̂(v̂(t, ·), µ̂(t))),

v̂(t+ 1, I) := W (v̂(t, I), I, µ̂(t), ξ̂(v̂(t, ·), µ̂(t))),

v̂(t+ 1, S) := ξ̂(v̂(t, ·), µ̂(t)) + v̂(t+ 1, I),

and 
Θ̂(t, R) := Φ(R, µ̂(t)),

Θ̂(t, I) := Φ(I, µ̂(t)),

Θ̂(t, S) := Φ̃(t, S, µ̂(t)) = ϑ̂S(ξ̂(t, µ̂(t)), µ̂(t)).

7. Finally, we define

µ̂(t+ 1) = [QΘ̂(t,·)(µ̂(t))]T µ̂(t).

8. Then, we repeat, recursively on time, the construction above.

Theorem 4.6 Let µ0 and v̂(0, ·) with v̂(0, D) = 0 be assigned. Consider the recursive con-

struction of the objects above and assume that ξ̂(v̂(t, ·), µ̂(t)) is well defined for each t ∈ N and

that the resulting v̂ is bounded. Then the couple (v̂, Θ̂) is an equilibrium starting at µ0 in the

sense of Definition 4.2, hence of Definition 4.1.

Proof. First of all we observe that, under the above assumptions, the sequence (v̂, Θ̂) is well defined by

induction. Now we show that (i) and (ii) of Definition 4.2 hold for such sequence.

We preliminarily notice that, given (to, ko) ∈ N× {S, I,R}, the function [0, 1]2 → R, ϑ = (ϑp, ϑc) 7→ u(to, ko, ϑ)

is strictly concave in [0, 1]2, since

Dϑu(to, ko, ϑ) =

(
A1(ko)

A0(ko) +A1(ko)ϑp
− γp(ko, µ(to)),

P1

P0 + P1ϑc
− γc(ko, µ(to))

)
,

and

D2
ϑu(to, ko, ϑ) =

 −
A1(ko)2

(A0(ko) +A1(ko)ϑp)2
0

0 − P 2
1

(P0 + P1ϑc)2

 .

Now we fix to ∈ N and show that v̂(to, ·) solves the dynamic programming equation on the various occurrences

of ko ∈ K, where Θ̂(to, ·) are the maximizers of the right hand side of (17) .

(ko = D) In this case the dynamic programming equation reduces to

v(to, D) = u(to, D, (0, 0)) + (1− ρ)v(to + 1, D) = (1− ρ)v(to + 1, D).(21)

It is clear that the above constructed v̂ is always zero on D and hence satisfies the above equation.

The maximizer is the unique admissible control Θ̂(to, D) := (0, 0).
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(ko = R) In this case the dynamic programming equation reduces to

v(to, R) = sup
ϑ∈[0,1]2

(
u(to, R, ϑ) + (1− ρ)v(to + 1, R)

)
(22)

= (1− ρ)v(to + 1, R) + sup
ϑ∈[0,1]2

u(to, R, ϑ).(23)

The optimization above leads to the unique maximum point

(ϑ̂p, ϑ̂c) =
(
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,

where 
ϑ̃p =

A1(R)− γp(I, µ(to))A0(R)

γp(R,µ(to))A1(R)
=

1

γp(R,µ(to))
− A0(R)

A1(R)
,

ϑ̃c =
P1 − γc(R,µ(to))P0

γc(R,µ(to))P1
=

1

γc(R,µ(to))
− P0

P1
.

We therefore get

v(to + 1, R) =
v(to, R)− u(to, R, ϑ̂)

1− ρ
.

This is exactly the expression of the first equation in point 6 above. Hence v̂ satisfies the dynamic

programming equation (17) in this case. The maximizer is ϑ̂ above which coincides with the expression

of Θ̂ given in the fourth equation in point 6 above.

(ko = I) In this case the dynamic programming equation reduces to

v(to, I) = sup
ϑ∈[0,1]2

(
u(to, I, ϑ) + (1− ρ) ((1− πR − πD)v(to + 1, I) + πRv(t+ 1, R))

)
(24)

= (1− ρ) ((1− πR − πD)v(to + 1, I) + πRv(t+ 1, R)) + sup
ϑ∈[0,1]2

u(to, I, ϑ).(25)

The optimization above leads to the unique maximum point

(ϑ̂p, ϑ̂c) =
(
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,

where 
ϑ̃p =

A1(I)− γp(I, µ(to))A0(I)

γp(I, µ(to))A1(I)
=

1

γp(I, µ(to))
− A0(I)

A1(I)
,

ϑ̃c =
P1 − γc(I, µ(to))P0

γc(I, µ(to))P1
=

1

γc(I, µ(to))
− P0

P1
.

We therefore get

v(to + 1, I) =
1

1− πR − πD

[
v(to, I)− u(to, I, ϑ̂)

1− ρ
− πRv(t+ 1, R)

]
.

This is exactly the expression of the second equation in point 6 above. Hence v̂ satisfies the dynamic

programming equation (17) in this case. The maximizer is ϑ̂ above which coincides with the expression

of Θ̂ given in the fifth equation in point 6 above.

(ko = S) In this case the dynamic programming equation reduces to

v(to, S) = sup
ϑ∈[0,1]2

(
u(to, S, ϑ) + (1− ρ)

(
(1− τϑag(to))v(to + 1, S) + τϑag(to)v(to + 1, I)

) )
,(26)

which can be rewritten as

v(to, S) = (1− ρ)v(to + 1, I) + (1− ρ)(v(to + 1, S)− v(to + 1, I))(27)

+ sup
ϑ∈[0,1]2

(
u(to, S, ϑ)− (1− ρ)τϑag(to)(v(to + 1, S)− v(to + 1, I))

)
,(28)
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Set ξ := v(to + 1, S)− v(to + 1, I) and consider the optimization above in terms of the parameter ξ ∈ R+. The

maximization leads to the unique maximum point

(ϑ̂p(ξ), ϑ̂c(ξ)) =
(
(ϑ̃p(ξ) ∧ 1) ∨ 0, (ϑ̃c(ξ) ∧ 1) ∨ 0

)
,

where

ϑ̃p(ξ) =
1

γp(S, µ(to)) + (1− ρ)a(to)ξ
− A0(S)

A1(S)
, ϑ̃c(ξ) =

1

γc(S, µ(to)) + (1− ρ)b(to)ξ
− P0

P1
,

where

(29) a(to) = â(µ(to)) = µ(to, I)Θ̂p(to, I) = µ(to, I)Φp(I, µ(to)),

(30) b(to) = b̂(µ(to)) = µ(to, I)Θ̂c(to, I) = µ(to, I)Φc(I, µ(to)),

where Θ̂(to, I) is defined in the previous item. Recalling the definition of f given in (20), we consider the

algebraic equation in the variable ξ ∈ R

v(to, S) = (1− ρ)v(to + 1, I) + (1− ρ)ξ + f(S, µ(to), ξ).

By assumption this equation has a unique solution ξ(to) = ξ̂(to, µ(to)) the unique solution to this equation. We

get

v(to + 1, S) = ξ̂(to) + v(to + 1, I).

This is exactly the expression of the third equation in point 6 above. Hence v̂ satisfies the dynamic programming

equation (17) in this case. The maximizer is ϑ̂ above which coincides with the expression of Θ̂ given in the sixth

equation in point 6 above. �

5. Calibration of the model

In the calibration of the model we focus on the recent Italian experience for COVID-19. Italy

was unfortunately the first Western country severely hit by COVID-19; the epidemic shock was

sudden and unexpected as well as the deep impact on Italian mobility and production (see

Figure 1 below). At the same time, Italy was also the first Western country to adopt strict

restrictions in mobility in March 2020. Overall, this makes the Italian case particularly well-

adapted to calibrate/estimate the relationship between mobility, production and dynamics of

epidemic.4

The first step in the numerical calibration of the model is to specify the Z(t) in (3). In

order to take as small as possible the number of model’s parameters, we consider the following

one-parameter specification:

(31) Z(t) ≡ 1− exp (−g [Θp(t, S)µ(t, S) + Θp(t, I)µ(t, I) + Θp(t, R)µ(t, R)]) ,

where g measures the sensitivity of individual income to aggregate mobility, i.e. the comple-

mentarities between individual and aggregate mobility in determining the level of individual

income. In this respect we expect that g is greater than 0. Taking (31) into account, overall

we have to set 19 parameters, which are listed in Table 1, together with their values and in-

formation on the methods used to their setting. Below we provide more details on the method

used to set their values.

4Data and codes are available at https://people.unipi.it/davide_fiaschi/ricerca/.

https://people.unipi.it/davide_fiaschi/ricerca/


16 G. FABBRI, S. FEDERICO, D. FIASCHI, AND F. GOZZI

Parameter Meaning Value Method used to set the value

πR Daily probability of recovering

when infected

0.07143 Taken from literature on COVID-19 (Voinsky

et al., 2020)

πD Daily probability of death 0.00052 Taken from literature on COVID-19 (Flaxman

et al., 2020)

βP The impact of mobility for produc-

tion on infection

0.14606 Calculated on the base of an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as result

of prevalence rate of symptoms of COVID-19 in

infected people (Day, 2020)

βC The impact of mobility for con-

sumption on infection

0.14606 Calculated on the base of an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as result

of prevalence rate of symptoms of COVID-19 in

infected people (Day, 2020)

ρ Discount rate of utilities 0.000296 Taken from Laibson et al. (2018)

γp(S), γp(I),

and γp(R)

Cost of mobility for production

for different types of individuals in

baseline scenario

0.29795, 0.42564, and

0.29795

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

γc(S), γc(I),

and γc(R)

Cost of mobility for consumption

for different types of individuals in

baseline scenario

0.21375, 0.22840, and

0.21375

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

aSR0 and aI0 Sensibility of individual income

to aggregate mobility independent

from individual mobility

0.70229 and 0.49160 For susceptible and recovered estimated from the

relation between mobility and production in Italy

in the period February 2020 - May 2021 (see Fig-

ure 1). For infected people calibrated at 70% of

other individuals based on the prevalence of symp-

toms.

aSR1 and aI1 Sensibility of individual income to

individual mobility

0.29805 and 0.29805 Estimated from the relation between mobility and

production in Italy in the period February 2020 -

May 2021 setting mobility and production equal

to 1 in a pre-epidemic economy (see Figure 1)

P0 and P1 Sensibility of individual consump-

tion to individual mobility

0.47187 and 0.12828 Estimated from the relation between average

propensity to consume and mobility for retail and

recreation in Italy in the period February 2020 -

May 2021

g Sensibility of individual income to

aggregate mobility

7.741615 Estimated from the relation from mobility and

production in Italy in the period February 2020

- May 2021 (see Figure 1)

M Utility to be dead -1.30 Calibrated to avoid negative lifetime utility for

each survival individual

µ(0, S),

µ(0, I), and

µ(0, R)

Initial state of epidemic 1 − 1/60.000.000,

1/60.000.000, and 0

Calibrate on an economy of 60 millions of individ-

uals as Italy in 2020

Table 1. List of model’s parameters, their values and notes on how they are calcu-

lated/calibrated/estimated.

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
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5.1. Calibration of the epidemiological parameters. The calibration of the epidemiolog-

ical parameters focuses on daily dynamics as standard in epidemiology (Ferguson et al., 2020).

Several studies provide basic information on COVID-19 main epidemiological characteristics.

In particular, Voinsky et al. (2020) report that the average number of days for recovering from

COVID-19 is 14, which implies πR = 0.07142. Flaxman et al. (2020), instead, document an

overall probability to die once infected of 0.94% in Italy and an average number of days from

infection to death of 18, which implies πR = 0.00052.

Finally, for setting βP and βC we assume that they are equal, so that observed infection rate

is the product between βP (βC) and the average mobility of infected individuals once mobility of

susceptible is normalized to one in an economy without infected (see System of (2)). Day (2020)

report that the prevalence rate of symptoms of COVID-19 in infected people is about 30%, i.e.

70% of infected people are asymptomatic. Assuming that the latter maintain the same mobility,

we set average mobility of infected individual 30% less than the one of susceptible. Since the

observed infection rate can be expressed as (πD + πR)R0, then βP = βC = 0.7 (πD + πR)R0 =

0.14606 given a basic reproduction rate R0 of COVID-19 equal to 2.9 for Italy.5

5.2. Calibration of economic part. The calibration of parameters governing the relationship

between income and mobility are based on the Italian experience in the period February 15,

2020 - May 31, 2021 reported in Figure 1.

Italian economic activity as estimated by OECD Weekly Tracker of GDP growth6 appears

very correlated with mobility for workplaces as reported by Google Mobility Trend. 7 The

strong drop in mobility in the period between February 23, 2020 and March 8, 2020 (almost -

10%) well before the first introduction of mobility restrictions at national level in the week of

March 8, 2020, supports our idea of an endogenous response of individual to epidemic evolution,

which burst in Italy at the of February 2020. The severe restrictions on mobility imposed in

two steps in March 2020 leaded to a drop in mobility and economic activity of about 70% and

25% with respect to reference period respectively. The relax in restriction in May 2020 led to a

bounce back in both variables, but recover was not complete. In the autumn of 2020, as result

of the second pandemic wave, Italy again experienced new mobility restrictions, with associated

reduction in economic activity.

Normalizing economic activity and mobility to 1 in an economy with only susceptible and

taking (3) and (31) to formulate a (nonlinear) relationship between mobility and economic

activity, a nonlinear estimation procedure produces an estimate of g, aSR0 and aSR1 of 0.70229,

0.29805 and 7.74162 respectively. aI0 and aI1 are set to 0.49160 and 0.29805 to respect the

assumption that mobility of infected individual is 70% of susceptible.

As regard P0 and P1, they are set observing that, according to (3) and (9), average propensity

to consume can be expressed as a function of consumption mobility, P0, and P1. Taking as

proxy for consumption mobility the mobility for retail and recreation from Google Mobility

5https://en.wikipedia.org/wiki/Basic_reproduction_number.
6https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/.
7https://www.google.com/covid19/mobility/).

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.google.com/covid19/mobility/
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Figure 1. The relationship between weakly mobility for workplace and weakly economic activity

in the period February 15, 2020 - May 31, 2021 (Italian holiday weeks are not reported). Dashed

lines indicate weeks of new imposed mobility restrictions at national level (March 9, 202, March 22,

2020, October 8, 2020 and October 24, 2020) and of a relax in mobility restrictions (May 4, 2020,

May 18, 2020, and November 24, 2020). Source: Google Mobility Trend (https://www.google.com/

covid19/mobility/) and OECD Weekly Tracker of GDP growth (https://www.oecd.org/economy/

weekly-tracker-of-gdp-growth/)

Trend8 and the quarterly average propensity to consume from Italian national account, we

estimate P0 = 0.47187 and P1 = 0.12828. Finally, the utility of state dead M is set equal to

−1.3 to avoid that, independent of state of epidemic and economic activity, lifetime utility of

survival individuals can be negative.

Table 2. ”Dumb” SIRD versus economic SIRD (ESIRD) model with endogenous mobility. Numerical

experiments based on the parameters reported in Table 1.

Model Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µS(425) µI(425) µR(425) µD(425)

(death

rate)

Dumb SIRD 17, 784, 284 408, 678 0.87 0.79 −0.011 −0.019 0.062 0.000 0.932 0.007

ESIRD 5, 858, 062 297, 577 0.883 0.693 −0.032 −0.082 0.314 0.003 0.678 0.005

5.3. “Dumb” SIRD versus economic SIRD (ESIRD) model. Table 2 and Figure 2 high-

light the importance of considering endogenous mobility choice in the analysis. In particular,

8https://www.google.com/covid19/mobility/.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.google.com/covid19/mobility/
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the comparison between the “dumb” SIRD, where mobility of susceptible, infected and recov-

ered is maintained constant for the whole period of simulation and equal to their initial baseline

values, and the ESIRD model, where individual mobility is decided in an optimizing framework

without any imposed restriction, points out the 30% more cumulative deaths of dumb SIR as

opposed to a lower drop in mobility and production (both as peak and as cumulative impact).

After 425 days from its outbreak epidemic is substantially ended in both models, i.e. µI is

almost zero, but the optimized mobility of individual in ESIRD has led to a non negligible

mass of susceptible equal 31.4% in day 425 and substantially lower death rate (0.5% versus

0.7%).
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(a) Dynamics of epidemic, economic activity and

mobility with ”dumb” individuals
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(b) Dynamics of epidemic,economic activity and

mobility with individuals optimizing their mobility

choices.

Figure 2. Comparison between “dumb” SIRD model versus SIRD model with endogenous mobility.

Numerical experiments based on the parameters reported in Table 1.

6. Questioning the ESIRD

In this section we discuss how our framework could be used to evaluate alternative policies

of mobility restriction. The high peak prevalence reported for ESIRD in Table 2 explains why

several countries imposed strong mobility restrictions in 2020. A peak of infected of 5,858,062

individuals would correspond to a need of about 398,749 beds in hospitals, taking 6.8% the

proportion of infected individuals hospitalised (Verity et al., 2020). For example, Italy in

February 2020 had about 190,000 available beds in hospital, making “laissez faire” approach to

COVID-19 not practicable (not considering the advantage to take time in waiting for a vaccine).

In the following we therefore study some mitigation strategies as defined in (Ferguson et al.,

2020, p.3), i.e. “to use NPIs (non-pharmaceutical intervention) not to interrupt transmission
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completely, but to reduce the health impact of an epidemic” in the hope (as it is effectively

happened) of a rapid development of a vaccine. In particular, we will focus on policies that,

by increasing mobility costs (γs), reduce individual mobility and therefore the infection rate

and the peak prevalence. In this regard, Nouvellet et al. (2020) provide strong evidence that

reducing mobility is the key factor for bringing down COVID-19 transmission, while Vollmer

et al. (2020) present scenario analysis based on different mobility in Italy.

At the same time, reduction mobility hurts production, putting policy maker in front a trade-

off between economic losses and fatalities due to COVID-19, i.e. it is possible to point out a

pandemic possibilities frontier as in Kaplan et al. (2020) and Acemoglu et al. (2020). However,

we add two dimensions in the discussion, the first related to the share of remaining susceptible

at the end of the period of analysis, which could make easier a fresh outbreak of epidemic in

the future, and the second related to the social feasibility of some policies based on a long

reduction of individual mobility.

Table 3 reports the effect of different policies increasing (in the same percentage) the cost of

mobility for production and consumption with respect to the baseline model when the share

of infected individuals exceeds 3% and to maintain this increase until the share of infected

individual gets down to 0.5% or to 0.1% in the more severe scenario (mrs).

Table 3. Alternative scenarios of restriction of mobility (severity of lockdown) and exit from these

restrictions (mrs adopts a more strict threshold for relaxing the restrictions). Numerical experiments

based on the parameters reported in Table 1.

Scenario Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µS(425) µI(425) µR(425) µD(425)

(death

rate)

Baseline ESIRD 5, 858, 062 297, 577 0.883 0.693 −0.032 −0.082 0.314 0.003 0.678 0.005

Cost +10% 3, 594, 938 248, 258 0.877 0.651 −0.056 −0.165 0.424 0.006 0.566 0.004

Cost +20% 1, 633, 960 160, 311 0.867 0.603 −0.083 −0.254 0.626 0.005 0.365 0.003

Cost +30% 1, 275, 206 107, 837 0.837 0.518 −0.092 −0.280 0.732 0.020 0.246 0.002

Cost +40% 1, 258, 593 113, 914 0.800 0.439 −0.103 −0.299 0.729 0.010 0.260 0.002

Cost +50% 1, 249, 959 111, 359 0.753 0.357 −0.113 −0.310 0.733 0.011 0.254 0.002

Cost +30% (mrs) 1, 241, 037 75, 794 0.835 0.515 −0.100 −0.307 0.824 0.002 0.173 0.001

Cost +50% (mrs) 1, 256, 080 67, 485 0.747 0.348 −0.122 −0.335 0.841 0.004 0.154 0.001

Peak prevalence decreases up to a rise of 30% in mobility cost and then it is almost rigid to

further increment (see Table 3). Peak prevalence of 1,275,206 individuals would amount to a

need of 86,801 beds in hospitals. Not reported numerical investigations show that to decrease

this peak prevalence would require to start mobility restrictions with a lower share of infected

individuals than 3%.

However, increasing mobility costs have also a growing negative impact both on economic

activity and a death rate. This trade-off is represented in Figure 3a, which corresponds to the

pandemic possibilities frontier discussed in Kaplan et al. (2020) and Acemoglu et al. (2020) but

calculated in a very different theoretical framework. We can appreciate from Figure 3a how a
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scenario with 30% of additional cost and an exit threshold of 0.1% from mobility restriction

Pareto dominate the scenario with 30% of additional cost and an exit threshold of 0.5%.
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Figure 3. Trade-offs in alternative scenarios of mobility restrictions and exit from these restrictions.

Numerical experiments based on the parameters reported in Table 1.

However, the former scenario presents two additional non favourable characteristics with

respect to the latter. First, as reported in Figure 3b, the share of susceptible after 425 days

from the outbreak of epidemics is substantially higher (82.4% versus 73.3%); moreover, as

highlighted by Figures 4e and 5e, it requires a prolonged period of mobility restrictions (almost

one year!). In this respect, scenarios with 30% of additional cost and an exit threshold of 0.5%

or with 50% of additional cost and an exit threshold of 0.1% endogenously present a succession

of periods with and without mobility restrictions making this scenario more socially feasible.

We conclude observing that, even though individuals are perfectly informed of restriction

policy and on the behaviour of pandemic, several scenarios include waves of infections, as

result of the endogenous switching between a regime with mobility restrictions and one without

any restriction (see, e.g., Figures 5c-5f).

7. Concluding remarks

We provide a dynamic macroeconomic general equilibrium model with pandemic, denoted

ESIRD, where perfect-foresight forward looking agents’ (short-term) mobility positively affects

their income (and consumption), but also contributes to the spread of pandemic in an extended

SIRD model. Dynamics of economy and pandemic is jointly driven by strategic complementaries

in production and negative externalities on infection rates of individual mobilities. We therefore

address one of the main economic-driven leverages of compartmental epidemiological models,
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(b) Infection rate when lockdown

implies an increase of 20% of cost

of mobility
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(c) Infection rate when lockdown

implies an increase of 30% of cost

of mobility
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(d) Infection rate when lockdown

implies an increase of 50% of cost

of mobility
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(e) Infection rate when lockdown
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Figure 4. Dynamics of infection rate in different scenarios of mobility restriction (severity of lockdown)

and exit from these restrictions (threshold for relaxing the restrictions). Numerical experiments based

on the parameters reported in Table 1.

i.e. the endogenization of reproduction rate of epidemic (Avery et al., 2020). After having

proved the existence of a Nash equilibrium and studied the recursive construction of equilib-

rium(a), we conduct some numerical investigations on the forward-backward system resulting

from individual optimizing behaviour, calibrating model’s parameters on Italian experience on

COVID-19 in 2020-2021.

In our ESIRD model the forward-looking behavior of agents tends to smooth the peak preva-

lence of pandemic with respect to the simplest SIRD model with “dumb” agents, but in our

numerical explorations peak prevalence appears to be still too high to be sustainable for the Ital-

ian health system (e.g. in relation to the number of available beds in hospital). Once establish

that self-regulation of individual mobility decisions is not sufficient to manage the pandemic,

we evaluate different regimes of mobility restrictions, which can be easily accommodate within

our theoretical framework.



MOBILITY DECISIONS, ECONOMIC DYNAMICS AND EPIDEMIC 23

0 100 200 300 400

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Number of days

S
h
a
r
e
 
o
f
 
i
n
d
i
v
i
d
u
a
l
s

Susceptibles

Infected

Recovered

Dead

Mobility

Production

(a) Dynamics when lockdown

implies an increase of 10% of cost

of mobility
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(b) Dynamics when lockdown

implies an increase of 20% of cost

of mobility
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(c) Dynamics when lockdown

implies an increase of 30% of cost

of mobility
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(d) Dynamics when lockdown

implies an increase of 50% of cost

of mobility
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(e) Dynamics when lockdown

implies an increase of 30% of cost

of mobility and more restrictive

conditions for the exit of lockdown
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Figure 5. Dynamics of epidemics and of main economic variables in alternative scenarios of mobility

restrictions and exit from these restrictions. Numerical experiments based on the parameters reported

in Table 1.

In particular, we argue that regimes compatible with the saturation of healthcare system must

be evaluated in terms of trade-off between economic losses and fatalities as proposes, e.g., by

Kaplan et al. (2020); Acemoglu et al. (2020), but also for their social feasibility of maintaining

prolonged periods of mobility restrictions and for leaving higher shares of susceptible at the end

of the period, which makes fresh outbreak of epidemic more likely. In this respect, we point

out that successive small waves of epidemic can be the result of an efficient regime of mobility

restrictions.

Our analysis raises a series of issues for future research.

We ignore heterogeneity of population in terms of “risk groups” (typically, in case of Cavid-19,

age cohorts, see Salje et al., 2020 and Acemoglu et al., 2020), and therefore we cannot evaluate

any policy conditioned to individual characteristics, as, for instance, done by Brotherhood et al.

(2020) or Gollier (2020). We also focus on a world before the vaccine, that is standard in this

kind of models (Boppart et al., 2020) and consistent with the period used to calibrate the
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model. However, in a world with vaccine, or with an expected date of its availability, different

questions arises for the timing, targets and costs of vaccination (Hung & Poland, 2021) as well

as on the timing of mobility restrictions. Finally, we did not include other non-pharmaceutical

interventions, and in particular we do not model testing policies, as, for instance, in Eichenbaum

et al. (2020b).

Some extensions of empirical analysis appear very promising. Firstly, the possibility to

study scenarios where mobility restrictions are (mostly) focused on mobility for production or

on mobility for consumption. For example, in Europe the second waves of restrictive measures

in the period Oct 2020 - May 2021, largely revolved around mobility for consumption.9 A

second extension concerns the more precise estimation of the relationship between individual

mobility, aggregate mobility and production in presence of strategic complementarities, which

poses non trivial issue of identification (Manski, 2000).

From the theoretical point of view, a general question on the proposed theoretical framework

is if the Markov equilibrium can be found in a generalized feedback form, where the closed-

loop strategies Θ depends not only on time and state of each agent, but also on the current

distribution of the other agents. A possible answer is to look at the Master Equation associated

to our model, which, in turn, could be a first step to obtain stronger properties of the equilibria,

like subgame perfection, and, possibly, uniqueness (see, e.g., Section 1.4 in Cardaliaguet &

Porretta (2020)).
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132, 369–397.

Huang, Jizhou, Wang, Haifeng, Xiong, Haoyi, Fan, Miao, Zhuo, An, Li, Ying, & Dou, Dejing. 2020.

Quantifying the economic impact of COVID-19 in mainland China using human mobility data.

arXiv preprint arXiv:2005.03010.

Hung, Ivan FN, & Poland, Gregory A. 2021. Single-dose Oxford–AstraZeneca COVID-19 vaccine

followed by a 12-week booster. The Lancet, 397(10277), 854–855.

Jones, Callum J, Philippon, Thomas, & Venkateswaran, Venky. 2020. Optimal Mitigation Policies in

a Pandemic: Social Distancing and Working from Home. Tech. rept. National Bureau of Economic

Research.

Jovanovic, Boyan, & Rosenthal, Robert W. 1988. Anonymous sequential games. Journal of Mathe-

matical Economics, 17(1), 77–87.

Kaplan, Greg, Moll, Benjamin, & Violante, Giovanni L. 2020. The great lockdown and the big stimulus:

Tracing the pandemic possibility frontier for the US. Tech. rept. National Bureau of Economic

Research.

Laibson, David, Lee, Sean Chanwook Lee, Maxted, Peter, Repetto, Andrea, & Tobacman, Jeremy.

2018. Estimating Discount Functions with Consumption Choices over the Lifecycle.

Lasry, Jean-Michel, & Lions, Pierre-Louis. 2006a. Jeux à champ moyen. I – Le cas stationnaire.
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Appendix A. Procedure of simulation

NOTE: In this appendix the notation is lightened from that used in the body of the article

to avoid making the formulas too heavy thinking and difficult to read.

(A) Set initial value of utilities and their feasible range. We argue that as t goes to

infinitum the number of infected agents converges to zero, i.e. limt→∞ µ (t, I) = 0 and

limt→∞ µ (t, R)� 0 and the lifetime utilities is maximum. Then:

U(S)max = lim
t→∞

U(t, S) = lim
t→∞

κ(t, µ(t, I), SR) + ln(1 + Z̄(t))

ρ
=(32)

=
κ(∞, 0, SR) + ln

(
1 + 1/γp(∞, 0, SR)− aSR0 /aSR1

)
ρ

;

U(R)max = lim
t→∞

U(t, R) = lim
t→∞

κ(t, µ(t, I), SR) + ln(1 + Z̄(t))

ρ
=(33)

=
κ(∞, 0, SR) + ln

(
1 + 1/γp(∞, 0, SR)− aSR0 /aSR1

)
ρ

;

U(I)max = lim
t→∞

U(t, I) =
ρκ(∞, 0, I) + (1− ρ)πRκ(∞, 0, SR)

ρ [1− (1− ρ) (1− πR − πD)]
+

+
[1− (1− ρ) (1− πR)] ln

(
1 + 1/γp(∞, 0, SR)− aSR0 /aSR1

)
ρ [1− (1− ρ) (1− πR − πD)]

.(34)

where:

(35)

κ(t, µI , SR) := ln

(
aSR1

γp(t, µI , SR)

)
+γp(t, µI , SR)

aSR0

aSR1

+ln

(
P1

γc(t, µI , SR)

)
+γc(t, µI , SR)

P0

P1

−2;

and

(36) κ(t, µI , I) := ln

(
aI1

γp(t, µI , I)

)
+ γp(t, µI , I)

aI0
aI1

+ ln

(
P1

γc(t, µI , I)

)
+ γc(t, µI , I)

P0

P1

− 2.

(B) Feasible range. Feasible range is defined as follows:

T := {(x, y, z) ∈ (0, U(R)max)× (0, U(I)max)× (0, U(R)max) : y ≤ x ≤ z} .(37)

(C) Set initial conditions of population at period 0 with ε very small

µ(0, S) = 1− ε;(38)

µ(0, I) = ε;(39)

µ(0, R) = 0;(40)

µ(0, D) = 0.(41)

(D) Set the initial value of utilities in the three states in the feasible range T by

choosing δI , δS, δR ≥ 0.
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U(0, R) = U(R)max(1− δR);(42)

U(0, S) = U(0, R)(1− δS);(43)

U(0, I) = U(0, S)(1− δI)(44)

(E) Calculate a(0) and b(0):

a(0) = βP × µ(0, I)× θp(0, µ(0, I), I)(45)

b(0) = βC × µ(0, I)× θc(0, µ(0, I), I),(46)

where

θp(0, µ(0, I), I) = 1/γp(0, µ(0, I), I)− aI0
aI1

and(47)

θc(0, µ(0, I), I) = 1/γc(0, µ(0, I), I)− P0

P1

.(48)

(F) Find ∆U(1, S, I) := U(1, S)− U(1, I) by solving the following implicit equation

0 = −(1− ρ) (1− πR − πD) ∆U(1, S, I) + (1− πR − πD)U(0, S)− U(0, I) + πRU(0, R)+

(49)

− πRκ(1, µ(1, I), R) + κ(1, µ(1, I), I)− (1− πR − πD)χ (∆U(1, S, I)) + πD ln (1 + Z (∆U(1, S, I))) ,

where

χ (∆U(1, S, I)) :=(50)

ln

(
aSR1

γp(1, µ(1, I), S) + (1− ρ)a(0)∆U(1, S, I)

)
+

+
aSR0

ASR1

{γp(1, µ(1, I), S) + (1− ρ)a(0)∆U(1, S, I)}+

+ ln

(
P1

γc(1, µ(1, I), S) + (1− ρ)b(0)∆U(1, S, I)

)
+

+
P0

P1

{γc(1, µ(1, I), S) + (1− ρ)b(0)∆U(1, S, I)} − 2

and

Z̄(0) = Z (∆U(1, S, I)) = µ(0, S)×
[

1

γp(1, µ(1, I), S) + (1− ρ)a(0)∆U(1, S, I)
− aSR0

aSR1

]
+

(51)

+ µ(0, I)× θp(0, µ(0, I), I) + µ(0, R)× θp(0, µ(0, I), R).(52)

where

θp(0, µ(0, I), R) = 1/γp(0, µ(0, I), R)− aSR0

aSR1

and(53)

θc(0, µ(0, I), R) = 1/γc(0, µ(0, I), R)− P0

P1

.(54)
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(G) Calculate the level of movement of susceptible

θp(0, µ(0, I), S) =
1

γp(0, µ(0, I), S) + (1− ρ)a(0)∆U(1, S, I)
− aSR0

aSR1

;(55)

θc(0, µ(0, I), S) =
1

γc(0, µ(0, I), S) + (1− ρ)b(0)∆U(1, S, I)
− P0

P1

.(56)

(H) Calculate the level of utilities at period 1

U(1, R) =
U(0, R)− ln

(
1 + Z̄ (0)

)
− κ(0, µ(0, I), R)

1− ρ
;

(57)

U(1, I) =
U(0, I)− πRU(0, R) + πRκ(0, µ(0, I), R)− κ(0, µ(0, I), I)− (1− πR) ln

(
1 + Z̄ (0)

)
(1− ρ) (1− πR − πD)

;

(58)

U(1, S) = U(1, S, I) + U(1, I);

(59)

(I) Upgrade the composition of population

µ(1, S) = µ(0, S)
[
1− a(0)θp(0, µ(0, I), S)− b(0)θc(0, µ(0, I), S)

]
,(60)

µ(1, I) = µ(0, S)
[
a(0)θp(0, µ(0, I), S) + b(0)θc(0, µ(0, I), S)

]
+ µ(0, I)(1− πR − πD),(61)

µ(1, R) = µ(0, I)πR + µ(0, R),(62)

µ(1, D) = µ(0, D) + µ(0, I)πD.(63)

(J) Check if Condition (37) is satisfied. If not start with a new set of δs at point

D. If Condition (37) is satisfied and the number of periods is lower of a given

threshold repeat points E-I by taking the new level of µs at point I.
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