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Abstract

We analyze the rationality of a Decision Maker (DM) who chooses from lists of sets of

alternatives. A new class of choice functions, representing DM’s choice-behavior, and a novel

rationality axiom are proposed and studied.
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1 Introduction

The present paper is devoted to study the rationality of a Decision Maker (DM) who chooses

from lists of sets of alternatives, where for a list A = (A1, . . . , Ak) we mean a finite collection

of disjoint sets whose order matters. We propose considering the DM’s behavior as rational

if she never selects previously disregarded alternatives from a given list. This quite obvious

consideration is the key principle on which the new rationality axiom, that we propose and call

No-Regret (NR), relies.

We show that NR encompasses some of the most prominent rationality notions of the classical

choice model, which assumes the DM chooses from a set of mutually exclusive alternatives and, in

particular, it generalizes a sort of independence of irrelevant alternatives property to the present

more general setting.

We observe there are a variety of real life decisions requiring selections to be made from sets of

alternatives presented according to some specific order. Some possible examples are:

1. A DM, that manages a venture capital fund, chooses some bonds, stocks, equities from the

set At of all the securities available at each moment t, with t = 1, . . . , n. Alternatively, t

could denote different stock exchanges (for instance, Singapore, New York, London etc.)

ordered in a list according to their opening time and from which the DM chooses different

securities.

2. A DM chooses from a list of sets of wines collected according to their characteristics (white,

red, dessert wine etc.)
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3. A DM wants to buy a watch and she chooses from an online list of sets of watches grouped

by brand name (Rolex, Breguet, IWC, etc.).

4. In an exam, a student has to solve two problems from a list of sets of exercises divided by

subject.

5. A customer has to fill a satisfaction survey selecting from a list of questions her level of

satisfaction.

6. A scholar sequentially checks a list of scientific journals looking for new published papers

on the topic she is studying.

7. Consider the problem of finding an equilibrium in a market with excess demand. A DM

with endowment ω faces prices p, making a choice x1 from the budget set A1 := {x :

(p1, x) ≤ (p1, ω)} at the current prices p1. The choice of the DM (and other agents),

changes prices in order to diminish the excess demand. Afterwards, she makes a choice

from At = {x : (pt, x) ≤ (pt, xt−1)}, with t = 2, . . . k, following a kind of iterative procedure

in which the budget set at time t depends on the choice (and equilibrium prices) at t − 1.

The DM chooses (x1, . . . , xk) from the list A = (A1, . . . , Ak). We observe that a DM might

manipulate her endowments in order to get a better equilibrium output at the end of the

choice procedure, adopting, in this way, a non-rational behavior.

8. The coach of the national team has to select k players for the next World Cup from the

8 teams that play a knockout-tournament in the national competition. There are four

quarterfinals, with the losers eliminated, followed with the semifinals, with the losers playing

an extra match to decide the bronze medal. The winner of the final gets the gold medal,

the loser the silver. He selects players from teams according to two criteria: players with

fresher legs (hence, those whose team lost the match at the quarterfinals) and strongest

players (presumably those who won the final).

These non-exhaustive list of examples of choice from lists of sets could be integrated by many

other instances from commonly observed situations as e.g. the online shopping from different

departments or the hospital’s hiring process of doctors grouped by specialization. Nonetheless,

our interest is not motivated by any of these specific examples, the main aim of the present work

is in fact more in general the study of the rationality of a DM who has to solve her decision

problem of choice from lists of sets of alternatives.

We consider the DM’s behavior as rational if she does not choose earlier ignore alternatives that

are worthless for her (NR axiom). This means that the not-chosen alternatives can be removed

from the set from which the DM chooses without any impact on its value (Outcast property, O).

We show that NR axiom encompasses both the Heritage axiom (H), (a fundamental rationality

property, saying that if an alternative is chosen from a set it will be chosen from any subset of the

latter containing it) and the Path-independent axiom (PI) (according to which the DM’s choice

does not depend on any particular order of the alternatives). We study the relationships between

NR property and these three (H, O, PI) classical notions of rationality with the aim to test by

comparison that the new NR property is a quite general rationality axiom.

We consider the choice from lists of sets either as (i) a subset of the union of all the sets of a list or

2



as (ii) a sub-list of the list from which the DM chooses. We show that the class of choice functions

on lists of sets of alternatives (CFL) that satisfy the NR property is stable under union, but not

stable under intersection (see Section 2 below).

Then, we proceed by studying four general mechanisms of choice from lists of sets. In the first

three, a DM chooses from a list facing one set of alternatives at a time, so she credibly acts

according to the classical choice model, namely her decision making behavior can be captured

by a choice function selecting alternative(s) from a set. In the forth, the choice mechanism is

induced by a binary relation over sets (hyperrelation). Thus

(1) We first analyze an iterative search mechanism (see among others Masatlioglu and Nakajima,

(2013)) that typically arises whenever, for instance, a DM buys a book from an online book-shop.

Next time she looks for a new book from the same web-store, she will see a set of books suggested

by the algorithm that takes into account the previous purchase and that in addition suggests

her to buy again the first book itself. We show (see Theorem 1) that a DM that, according to

our example, does not buy books that she disregarded as boring and uninteresting is endowed

with the pseudorationality (see Moulin, (1985)), i.e. her choice is not sensitive to any particular

order of presentation of the different sets of alternatives in a list when her choice mechanism is

of iterative-search type.

(2) Then, we consider the issue of solving the smaller parts of a complex choice problem sequen-

tially in order to gain a better understanding of the problem: this mental technique has been

applied in mathematics, logic, and in decision processes, since before Aristotle. In the cognitive

sciences, Newell and Simon (1971) have shown that one mental strategy for solving a complicated

problem is to analyse parts of it sequentially so as to minimize dependencies between parts and

maximize the possibility of obtaining the best solution. In economics, people sequentially choose

from a list of sets into which a set of alternatives has been divided. For instance, in many-to-

many matching models (see e.g. Aygun and Sonmez (2012), Echenique and Oviedo (2006) and

Roth and Sotomayor (1990)), colleges are faced with sets of candidates partitioned into groups

according to their preferences for the colleges. Namely, candidates who have one college as first

choice are grouped in the first set, others for whom that college is the second choice are in the

second set of candidates and so on. Candidates thus partitioned form lists of sets of alternatives

from which colleges are called upon to choose. A selection committee choosing sequentially from

those sets decides to offer a place to some candidates, who therefore represent the choice from

a list of sets of alternatives. In order to provide a rationale for this issue, we construct a CFL

by implementing the classical choice function f that selects sequentially from the element-sets of

a list. We show such a choice function on lists satisfies NR if and only if the choice function f

inducing such CFL satisfies the Path-independent axiom (see Theorem 2 below).

We remark here the importance of such first two results that can be interpreted as new

characterizations of the much studied class of path-independent choice functions. Therefore,

NR property (see (4) below) can be seen as a generalization of the Path-independence axiom

characterizing the choice functions studied in Danilov and Koshevoy (2005) and Plott (1973).

(3) Next we consider an intertemporal choice model where commodities are collected not only

by their physical attributes, but also by the date at which they are bought and consumed. So,

the DM’s choice problem consists in tye selection of finite horizon consumption stream that is
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the selection of commodities from sets of alternatives that are available at each time t = 1.

With this interpretation in mind, we propose a third mechanism of choice from lists of sets of

alternatives in which a DM separately chooses from each set their best alternative(s). It should

be rational for her to focus on alternatives of great worth (Matroidal axiom, (M) see Danilov and

Koshevoy, (2009)) and to neglect those ones that are valueless (Outcast axiom, (O)). We show

that the DM’s behavior who separably selects from each set of alternatives in a list and that is

consistent with M and O rational principles is represented by a dichotomous choice function (see

Danilov and Koshevoy, (2009)), namely that operator that divides alternatives in ‘acceptable’

and ‘unacceptable’ according to their value for the DM (see Theorem 3).

(4) Finally, we observe that if the elements of sets from a list are not mutually exclusive, the

DM needs to look for a heuristic criterion that helps her decide the best solution-set of the many

available to solve her choice problem. Namely, we need to introduce preferences over sets, i.e.

hyperrelation, telling us when a set of alternatives A is at least as good as another set B. We

show (see Theorem 4 below) that the CFL (see (18) below) that is induced by a hyperrelation

fulfilling some compelling properties, satisfies NR if and only if the hyperrelation is generated by

a choice function that complies with the Heritage rationality property.

The rest of the paper is organized as follows. Section 2 provides notation and the main

definitions and reviews some elements of the classical choice model useful for comparison purposes.

Section 3 and 4 show the main results, Section 5 contains some final comments, and all the proofs

are in the last Section.

2 Choice functions on lists of sets of alternatives and the

No-Regret property

Let X be a finite set of alternatives and 2X be the set of all possible subsets of X. A choice

function f : 2X → 2X is a contraction operator, i.e. for any A ∈ 2X , f(A) ⊆ A. The set of

all choice functions is denoted with CF(X). The empty choice is allowed, namely for some set

A ∈ 2X , it may be that f(A) = ∅.
A list A is a collection of non-intersecting sets (A1, . . . , Ak) of alternatives of A ∈ 2X , (i.e.

Ai ∩ Aj = ∅ for i 6= j), where s := l(A) is the length and ∪Ai is the support of the list A. The

set of all lists with support in all subsets of X is denoted by L. Then, we can observe two kinds

of choice from a list, analytically defined as follows:

Definition 1 A mapping

F : L → 2X , (1)

from a list A = (A1, . . . , Ak) ∈ L into a subset of its support, i.e. F (A) ⊆ ∪iAi, and a mapping

F : L → L (2)

from a list A = (A1, . . . , Ak) ∈ L into a sublist, i.e. F(A) = (A′1, . . . , A
′
k), withA′t ⊂ At for t =

1, . . . , k.

We call both F and F Choice Functions on Lists of sets of alternatives (CFL).
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Remark 1. We observe that we can get a CFL of type (2) from one of type (1), namely:

FF (A) = (A1 ∩ F (A), . . . , Ak ∩ F (A))

and viceversa a choice function of type (1) from a F(A) = (A′1, . . . , A
′
k), where A′t ⊂ At, with

t = 1, . . . , k, namely:

FF (A) = ∪tA
′

t ⊂ ∪tAt for t = 1, . . . , k.

�

An explanation of CFL of the form (1) and (2), considers, for instance, that if At is the set

of assets for trade at day t, with t = 1, . . . , k, then the behavior of a DM, that trades different

securities each day, can be represented by a choice function of the form (2), while, if At is a set

of assets available at each time t of a day, and the choice is a set of securities at the end of a

trading day, then DM’s behavior can be described by a choice function of the form (1).

In what follows, we analyze the rationality of a DM whose behavior is represented by an element

of the class of CFL. In other words, we study which choice function on lists of sets of alterna-

tives might be considered rational. We usually regard as rational a choice function that satisfies

to some extent some principle of consistency, namely some suitable criterion that, if satisfies,

prevents any logical contradiction. In the classical choice model, where a DM chooses (one or

some) alternatives from a set, she is considered to be rational if the function f ∈ CF(X), which

describes her behavior, satisfies at least some of the following well-known rationality conditions,

all much discussed in the theory of choice literature:

Heritage (H) For any A, B ∈ 2X , if A ⊆ B then f(B) ∩A ⊆ f(A).

The Heritage condition (see e.g. postulate 4 in Chernoff (1954), Aizerman and Aleskerov

(1995), Aizerman and Malishevski (1981)) means that if an alternative a is chosen from a set B,

then it is also chosen from the smaller set A ⊆ B including a. This is a very basic requirement

in the classical approach to choice theory (see e.g. Moulin, (1985)).

Outcast (O) For any A,B ∈ P (X), if f(A) ⊂ B ⊂ A, then f(B) = f(A).

Property O (see e.g. postulate 5 in Chernoff (1954), Aizerman and Aleskerov (1995), Aizerman

and Malishevski (1981), Danilov (2012)) says that removing the alternatives that are not chosen

from a set does not affect the worth of the set.

We recall here that for single-valued choice functions, the Outcast and Heritage axioms are

equivalent and provide a rational choice with respect to a linear order defined on the set of

alternatives.

Plott (1973) proposed to consider a choice as rational if it does not depend on the way we

divide the set of alternatives, namely the DM’s choice does not depend on any particular order

of presentation of the alternatives. This means that if a set A is divided into two subsets B and

C, then making the choice from A must be the same as making a choice first from B and then

from C, or the other way round, and finally making a choice from the union of these two choice

sets. Analytically:
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Path-independence (PI) For any A ∈ 2X , with A = B ∪ C,

f(A) = f(f(B) ∪ f(C)). (3)

A choice function that satisfies (3) is called a Plott function in Danilov and Koshevoy (2005)

and usually path-independent.1 We denote the set of all Heritage, Outcast and Path-independent

choice functions with He, Ou and Pl, respectively. We then recall that for a choice function

f ∈ CF(X) satisfying both H and O axioms is tantamount to satisfy path-independent property

(see Aizerman and Malishevski (1981) and Lemma 6 in Moulin (1985)).

All the aforementioned axioms guarantee a certain rational choice behavior. In what follows,

we introduce a new rationality property, that is a generalization (to the present more compre-

hensive choice model) of the Outcast property just reviewed above and therefore as such it has a

strong rationality content.

We consider a DM as rational if she does not reconsider rejected alternatives when she makes

a choice from lists of sets of alternatives: the alternatives that she disregards will never more be

chosen. This rationality principle is what we propose here and call No-Regret postulate and it

can be formalized as follows:

Definition 2 (No-Regret (NR) choice function) A CFL F : L → 2X satisfies No-Regret

property (NR) if, for any list A = (A1, . . . , Ak) ∈ L and each list B = (F (A)∪B1, B2, . . . , Bk) ∈ L
such that ∪jBj ⊆ ∪iAi \ F (A):

F (B) ∩ (∪Bi) = ∅. (4)

Correspondingly, a F : L → L is a CFL that satisfies No-Regret-property if for any list A =

(A1, . . . , As) ∈ L, F(A) = (A′1, · · · , A′k), with A
′

t ⊂ At, for t = 1, . . . k, and for any B =

(∪tA′t ∪B1, B2, · · · , Bl), Bs ⊂ ∪t(At \A′t), s = 2, . . . , l,

F(B) = (A′′, ∅, · · · , ∅), with A′′ ⊂ ∪tA′t (5)

The NR property means that if a DM makes a choice F (A) (respectively, F(A)) from a list

A = (A1, . . . , Ak) ∈ L, then, for any list, with F (A) as the first set and all other sets taken from

alternatives that have not been chosen before, her choice will be from F (A). A DM is considered

to be rational if she does not reconsider rejected alternatives when she makes a choice from lists

of sets. We further notice that F (A) could be empty. In such a case, if a choice from some list

A is empty, then a choice from any list, the support of which is a subset of the support of A, is

also empty.

The NR property is a variant of a sort of principle of independence of irrelevant alternatives.

In particular, it is a generalization of the Outcast postulate equivalently defined as:

for any B ⊂ A \ f(A), f(B ∪ f(A)) ⊂ f(A). (6)

and exactly meaning that a DM does not select any previously not-considered alternative.

1The difference between these two classes of choice functions is that the non-emptiness of the choice sets is not

required for the Plott functions.

6



Remark 2. We recall that:

(i) the class of choice functions satisfying the Outcast property is studied in Aizerman and

Malishevski (1981), Brandt and Harrenstein (2011), and characterized in Danilov (2012);

(ii) Ou is stable under union, that is for any two choice functions f, g ∈ CF(X) satisfying

(6), f ∪ g, defined as (f ∪ g)(A) = f(A) ∪ g(A), also satisfies Outcast axiom;

(iii) Ou is not stable under intersection and

(iv) any choice function might be obtained as intersection of Outcast choice functions (see

Aizerman and Malishevski (1981)).

�

Remark 3 In order to familiarize the reader with Ou, we provide here the following two

examples of choice function satisfying O:

(i) Let B ⊂ X be a set of “bliss” elements of X, then the choice function fB(A) = B ∩ A,

selecting the bliss-alternatives that, if available, are in A, is an Outcast choice function.

(ii) Let � be a weak order on X, that is a reflexive, complete and transitive binary relation, then

f�(A), that selects the set of maximal elements in A with respect to �, is an Outcast choice

function.

�

Before analyzing our new class of choice functions and its related rationality property, we first

observe that, if F,G, (respectively F ,G), are CFL satisfying NR then their union, defined as

(F ∪G)(A) = F (A) ∪G(A) is also a CFL that satisfies NR, i.e., in general:

Proposition 1 The set of choice functions on lists of sets of alternatives that satisfies NR is

stable under union.

Proof Let F and G satisfy NR-property. Then we have to check that for any list A =

(A1, · · · , Ak), and for any list B = (B1, · · · , Bk) such that

∪tBt ⊂ ∪tAt \ ∪t(A′t ∪A′′t ),

where F(A) = (A′1, . . . , A
′
k), G(A) = (A′′1 , . . . , A

′′
k), there holds

(F ∪ G)(F(A) ∪G(A) ∪ B) ∩ B = (∅, · · · , ∅) (7)

Because of NR-property for F and G, we have

F(F(A) ∪G(A) ∪ B) ∩ B = (∅, · · · , ∅), (8)

and

G(F(A) ∪G(A) ∪ B) ∩ B = (∅, · · · , ∅) (9)

From (8) and (9) we get (7).

�
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We further notice that example (i) of Remark 3 above can be generalized to the present

setting. Namely, for any set of bliss elements B ⊂ X, the CFL:

FB(A) = (B ∩A1, . . . , B ∩Ak)

satisfies the NR-property. While, we also remark that, for a f ∈ Ou, the CFL

F(A) = (f(A1), . . . , f(Ak))

does not necessarily satisfy NR axiom.

Finally, we observe that the class of CFL satisfying NR has a maximal element, defined as:

1(A) = A.

Therefore, it is a semi-lattice with respect to the union operator, exactly like Ou.

3 CFLs relying on choice functions

A DM who chooses from lists of sets and faces one set after another plausibly uses, as in the

classical choice model, a choice function f ∈ CF(X) to directly make selection from a set of

alternatives at a time. It is the case, for instance, of the choice from a list of a single set, namely

F (A) = f(A).

3.1 Iterative search

For a list A = (A1, · · · , Ak), we define the following iterative choice procedure:

C1 = f(A1),

C2 = f(C1 ∪A2),

. . .

Ck = f(Ck−1 ∪Ak).

(10)

and set:

F 1
f (A) = ∪i=1,...,kCi.

This means that, for example, if a list is composed by only two sets (A1, A2), we have that:

F 1
f (A1, A2) = f(A1) ∪ f(f(A1) ∪A2).

In words, a DM faces a set A1 at time 1 and makes a choice f(A1), then she faces the set A2

at time 2, but she already made the choice f(A1), so, at time 2, she has to choose from the set

A2 ∪ f(A1) and a possible choice is a subset of A2 and some subset of f(A1). However, since the

choice f(A1) has already been made at time 1, the DM has to add f(A1) to the choice at time 2.

The present choice mechanism describes how a search procedure of the desire alternatives iter-

atively depends on the time in which the DM faces them, but also by what she selected in the

past. In other words, F 1
f reflects the dependence, for instance, of a choice at time 2 from that at

time 1 and therefore how much a choice mechanism could be strictly connected over time.
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It is worth noticing that the present choice procedure crucially depends on the order of the sets

in the list. Indeed, for the list A = (A2, A1), we get F 1
f (A2, A1) = f(A2) ∪ f(f(A2) ∪ A1), that

represents a choice set different from F 1
f (A1, A2) = f(A1) ∪ f(A2 ∪ f(A1)): the present iterative

choice mechanism is not commutative.

We suggest as a suitable interpretation for such a choice procedure to think of a college (the

DM) that chooses from sets of candidates partitioned into groups according to their preferences

for different colleges. Candidates who listed the college as the tth in their preference order appear

at time t. Hence, the choice of a college from a list of candidates goes as follows: C1 is the choice

from the set of candidates who ranked this college as their first choice, C2 is the choice from

the union of C1 and the set of candidates who were not chosen from the colleges they ranked

first and ranked this college as their second option, and so on. At each next step, a college faces

and chooses those who were rejected by other colleges and eventually add them to the previously

chosen candidates for a new choice. We observe that in such a choice procedure, a college can

not reject candidates chosen at each previous step.

Then, for F 1
f , a list A = (A1, . . . , Ak), the sets Ci defined as in (10) and any set B ⊂ ∪Ai\∪Ci,

the NR axiom entails that:

f(f(C1 ∪ · · · ∪ Ck) ∪B) ∩B = ∅.

We are now ready to state under which conditions a CFL F 1
f satisfying NR property could be

considered as a representation of the behavior of a rational DM who chooses from lists of sets of

alternatives following the choice mechanism under (10), namely:

Theorem 1 For f ∈ CF(X), F 1
f is a CFL that satisfies NR axiom if and only if f ∈ Pl.

Proof Let f be path independent. Then,

f(C1 ∪ · · · ∪ Ck) = Ck.

For a two step list (f(C1 ∪ · · · ∪ Ck), D), we get

C ′1 = Ck, C
′
2 = f(Ck ∪D).

Because of path independence, we have

f(A1 ∪A2 ∪ · · · ∪Ak) = f(f(A1) ∪A2 ∪ · · · ∪Ak) = f(f(f(A1) ∪A2) ∪ · · · ∪Ak) = · · · = Ck.

Because of that C2 = f(f(A1 ∪ · · · ∪Ak) ∪D) = f(A1 ∪ · · · ∪Ak ∪D) = f(A1 ∪ · · · ∪Ak) = Ck.

That is NR axiom is verified.

For the other direction. Let Ff satisfies NR. Then f satisfies the Outcast axiom and is

idempotent. Now we have to check that the Heritage axiom is also satisfied. Suppose not that H

is violated for a pair A ⊂ B. This means that A ∩ f(B) is not a subset of f(A). Let us denote

C := (A ∩ f(B)) \ f(A), C is nonempty. Consider the following partition

B = A
∐

B \A.

Denote by D := f(f(A)∪ (B \A)). Then, since C is non-empty, E := f(B)\D is also non-empty.
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Because f(B) ⊂ D ∪ E ⊂ B, due to O, we have

f(D ∪ E) = f(B) ⇒ E = f(B) ∩ E.

That is not the case due to NR-property, and, hence, the implication holds true.

�

Namely, the DM’s choice from a list of sets of alternatives is rational if it does not depend on

any particular order of presentation of the sets of alternatives, i.e. it is path-independent.

We finally notice that, for a path-independent f , the CFL:

Ff (A) = (A1 ∩ C1, A2 ∩ C2, · · · , Ak ∩ Ck)

does not have the form:

(f(A1), f(A2), . . . , f(Ak)).

We study such a class of choice functions in Section 3.3.

3.2 Sequential search

For a list A = (A1, . . . , Ak) ∈ L, we consider the CFL:

Gf (A) = Ck,

where Ck is defined as in (10), and f ∈ CF(X) is a choice function representing the DM’s

behavior. Namely:

Gf (A) := f(Ak ∪ (f(Ak−1 ∪ (. . . ∪ f(A2 ∪ f(A1)))))) (11)

Gf could be interpreted as a CFL representing the behavior of, for instance, a firm (hospital)

that sequentially chooses from sets of applicants (doctors), who are divided according to their own

ability (specialization), those who best fit the different vacancies it offers (see e.g. Chambers and

Yenmez, (2017)). In a college admission model, F 2
f stands for the selection mechanism from sets

of candidates ordered according to their preferences for the different colleges. So, a college first

chooses from the set A1 to which belong all candidates who put the college as their best choice.

Then, from the set of all candidates who indicates the college as their second choice and so on,

with the possibility for the college to reject previously chosen candidates. Such a sequential choice

procedure was analyzed in depth by Manzini and Mariotti (2007, 2012) and it is very much used

for establishing the existence of stable matching (see e.g. Aygun and Sonmez (2012), Echenique

and Oviedo, (2006) and Roth and Sotomayor (1990)).2

For this sub-class of CFL, the No-Regret axiom says that for any f ∈ CF(X), any list

A = (A1, · · · , Ak), and any B ⊂ ∪iAi \ Ck:

Gf (Gf (A) ∪B) ∩B = ∅. (12)

2We recall that Fleiner (2003) showed that choice rule (11) fulfils substitutability, an essential property for

the existence of a stable solution in matching market models (see Roth and Sotomayor, 1990). Koshevoy (1999)

showed that substitutability property is equivalent to path-independent axiom.
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The choice function (11) also shows the strategy of a DM who has to solve a sequence of

choice assignments, which consists in storing the solution(s) to the first assignment solved and in

solving the next in the list. At the end, she builds on all the solutions she found to the different

sub-assignments to reach her final goal. A necessary condition to succeed in coping with the

complexity of her choice tasks is that the sequential choice protocol disregard alternatives they

are somehow of no value to the DM.

We show that the class of CFL in (11) that satisfies NR in (12) coincides with the class of

choice functions (closed by set-union) introduced by Plott (1973), namely:

Theorem 2 For any f ∈ CF(X) and any A= (A1, . . . , As) ∈ L, the following statements are

equivalent:

1. Gf satisfies NR-property in (12);

2. f ∈ CF(X) is path independent.

Proof The proof follows the same line of arguments of the proof of Theorem 1 and therefore

it is omitted.

The rationality of whom choosing sequentially from sets of alternatives in a list, disregards

alternatives that do not help solve her choice problem, coincides with the (pseudo-)rationality (see

Moulin, 1985) of a DM whose choice is not influenced by the particular position of an alternative

in a list. It is worth observing that a DM who adopts the sequential choice procedure under (11)

is ‘immune’ to manipulation of the alternatives by putting them in a particular order (strategy-

proof ). Finally, and importantly, Theorem 2 can be considered as a new characterization of the

rich class of choice functions proposed by Plott (1973) and therefore No-Regret property in (4)

can be read as an extension of the path-independent rationality axiom to the present more general

setup. Finally, we observe that F2
f is invariant under permutations of the sets of the list, while

Ff is not.

3.3 Separable choice

Another interesting case of CFL, built by applying a choice function f ∈ CF(X) to each set in

a list, is the following:

C1 = f(A1),

C2 = C1 ∪ f(A2),

. . .

Ck = Ck−1 ∪ f(Ak).

(13)

with:

If (A) = Ck = f(A1) ∪ f(A2) ∪ · · · ∪ f(Ak).3

At least three possible suggested interpretations for the choice procedure under (4) help the

reader to better understand the underlying selection mechanism, Indeed, If could represent the

3We notice that the corresponding CFL of type (2) takes here the form, Ff (A) = (f(A1), . . . , f(Ak)).
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behavior of a DM who fills her wish-list choosing from (a list of) different departments (the sets

of alternatives) in an online market. Still, she chooses her meal selecting from the appetizers, the

desserts etc, i.e. the sets of different dishes in which a menu (the list) is usually divided. Finally,

she buys different bonds from the sets At of securities available at each period of time t, with

t = 1, . . . k. In general, a DM chooses the best elements from the sets of alternatives available at

each certain period, independently on the choices she made in other moments.

In the present case, the NR-property reads as follows:

f(A ∪B) ⊂ f(A) ∪ f(B), (14)

f(A \ f(A)) = ∅, (15)

and

for any B ⊂ A \ f(A), f(B ∪ f(A)) ⊂ f(A) (16)

where (14) says that the choice from the union of two sets is a smaller set than the set obtained as

the union of the choice of the two subsets; (15) is the Matroidal property identified in Danilov and

Koshevoy (2009) and meaning that deleting a ‘good’ alternative does not make ‘bad’ alternatives

‘good’.4 and (16) is a restatement of the Outcast property. In order to characterize F 3
f , we need

to introduce the notion of dichotomous choice function, namely those f ∈ CF(X) such that,

for any A ∈ 2X , f(A) = A ∩ f(X), i.e. those choice functions that divide all alternatives into

“acceptable” (those belonging to f(X)) and non-acceptable. Thus, for any A ∈ 2X , a dichotomous

choice function f only selects all the acceptable alternatives in A.5

Thus, we state that:

Theorem 3 For a choice function f ∈ CF(X), If is a CFL that satisfies the NR property if

and only if, for some B ⊂ X, fB is dichotomous.

Proof It is easy to check that, for a dichotomous fB , IfB satisfies NR-property. Vice versa,

from NR sub-(14), (15) and (16), we obtain, for x ∈ f(X), that f(x) 6= ∅, and, for any y ∈
X \ f(X), that f(y) = ∅. Then, we have:

f(A) = A ∩ f(X).

In fact, if f(A) = ∅, then this obviously holds. Let f(A) 6= ∅, then, due to (14), for any a ∈ f(A),

f(a) 6= ∅ and hence a ∈ f(X).

�

4 CFLs induced by hyperrelations

A DM who chooses from lists of sets of alternatives needs to make comparisons between the

elements of a set and the elements of the set next in a list in order to find alternatives that are

4We also observe that, according to the Matroidal property, deleting some ‘bad’ alternative can transform some

other ‘bad’ alternative into ‘good’ one.
5We recall that a dichotomous choice function satisfies both Heritage and Matroidal property (see Danilov and

Koshevoy, (2009).
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solutions to her choice problem. However, if the members of the sets to compare are not mutually

exclusive as for instance in matching theory (see e.g Echenique and Oviedo (2006) and Roth

and Sotomayor (1990)), in certain voting procedures (see e.g. Brams and Fishburn, (2002)), in

coalition formation (see e.g. Ray and Vohra, (2014)) and in sequentially rationalizable choices

(see e.g. Manzini and Mariotti (2007) and (2012)), it may be necessary to take preferences on

sets, i.e. binary hyperrelations (see e.g. Danilov, Koshevoy and Savaglio, 2015), as a primitive.

Let us consider the following very compelling properties that a hyperrelation ≺ should satisfy

(see Danilov, Koshevoy and Savaglio, (2015)):

• Monotonicity with respect to set inclusion (Mon). For all A,B ∈ 2X , A ⊆ B

implies A ≺ B.

• Stability with respect to contraction (Cont). For any A, A′, B ∈ 2X , A′ ⊆ A ≺ B

implies A′ ≺ B.

• Stability with respect to extension (Ext). For any A, B, B′ ∈ 2X , A ≺ B ⊆ B′

implies A ≺ B′.

• Union (U) For any A, A′, B ∈ 2X A ≺ B and A′ ≺ B imply A ∪A′ ≺ B.

Mon is a suitable axiom much discussed in the economic literature on ranking sets of alter-

natives in terms of freedom of choice (see Barberà, Bossert and Pattanaik, 2004). Cont and Ext

reflect the relationships between a hyperrelation and set-inclusion: if a set provides more suitable

alternatives than another, then this a fortiori holds for any subset of the latter (i.e. Cont), and

if a set offers more ‘suitable alternatives’ than another set, then the set containing the former

as its subset will certainly provide more ‘suitable alternatives’ than the latter (i.e. Ext). Cont

and Ext may be considered as a weakening of the transitivity property. Namely, if a transitive

hyper-relation ≺ satisfies Mon then ≺ is stable with respect to contraction and extension. The

Union property simply says that the union of two sets both worse than another is still worse than

the latter. We observe that the U axiom is tantamount to the Robustness property in Barberà,

Bossert and Pattanaik (2004).

A hyperrelation≺ that satisfies Mon, Cont, Ext, and U is called decent in Danilov, Koshevoy

and Savaglio (2015). They showed that all the aforementioned properties make a hyperrelation

≺ connected with the important class of choice functions satisfying Heritage property, a property

that plays a crucial role in establishing the rationality of a choice. They indeed proved, for a

choice function f ∈ CF(X) and any A,B ⊂ X, that the hyperrelation:

AκfB if, for every a ∈ A, f(a ∪B) ⊆ B (17)

is decent if f satisfies Heritage property and vice versa any hyperrelation that is decent takes

the form of κf with f that is a Heritage choice function (see Theorem 1 and Proposition 2 in

Danilov, Koshevoy and Savaglio, (2015)).

Another compelling property for a decent hyperrelation ≺, was intruduced by Puppe (1996),

who called it ‘Independence of Non-essential Alternatives’. It makes possible in a set to distinguish

some alternatives, that could be considered as “essential’ and some others that are somehow

worthless for the DM’s choice problem. Analytically,
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• Framed (F) Let ≺ be a decent hyperrelation and f its corresponding choice function, then,

for every A ∈ 2X , A ≺ f(A).

In what follows, we investigate the relation between the foregoing axiomatic structure and

the class of choice functions on lists of sets of alternatives satisfying NR. In order to do that, we

consider a hyperrelation ≺ and the following CFL:

R≺(A1, . . . , Ak) = ∪j∈JAj , (18)

where j ∈ J if and only if there is no j′ < j such that Aj ≺ Aj′ .

In words, choice function (18) selects the top elements with respect to the hyperrelation ≺
among those of the collection (A1, . . . , Ak). The choice mechanism proceeds as follows:

P1 = A1

P2 =


P1 if P1 � A2

A2 if P1 ≺ A2

P1 ∪A2 otherwise

· · · · · ·

Pk =


Pk−1 if Pk−1 � Ak

Ak if Pk−1 ≺ Ak

Pk−1 ∪Ak otherwise

and it defines:

R�(A) = Pk.

This means that a DM adds At at time t if it is not dominated by the union of previously

chosen sets.

Then, we show that:

Theorem 4 If ≺ is a monotone hyperrelation satisfying the condition [A ≺ B, C ≺ B implies

A ∪ C ≺ B ∪ C], then R≺ satisfies NR if and only if ≺ is decent and framed.

Proof (⇒) We have to show that if R≺ satisfies NR, then the monotone hyperrelation ≺
satisfies Cont, U and Ext and is Framed,.

Let A = (A1, A2) be any two-sets partition of A ∈ 2X , then:

R≺(A1, A2) =


A1

A2

A1 ∪A2

.

Cont follows from a direct application of (18) satisfying NR to A = (A1, A2).

Consider now the list A = (A1, A2, A3) of A ∈ 2X and suppose that A1 ≺ A3 and A2 ≺ A3, then
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by NR the fact that A
′ ≺ A3 for any A

′ ⊆ A1 ∪A2 entails that A1 ∪A2 ≺ A3, i.e. U is satisfied.

Take a list A = (A1, A2 \A3, A3) and suppose that A1 ≺ A3 ⊂ A2, then

R≺(A1, A2 \A3, A3) =

A3

A2

.

If R≺ = A2, we have that Ext is satisfied. If R≺ = A3, then A1∪A2 \A3 ≺ A3 and A2 \A3 ≺ A3.

By Theorem’s assumption A1 ∪A2 \A3 ≺ A2 and by Cont A1 ≺ A2, i.e. Ext is satisfied. Hence,

≺ is decent and by Proposition 2 in Danilov, Koshevoy and Savaglio (2015) we conclude that

the f ∈ CF(X) inducing ≺ satisfies H. In particular, it follows, by applying NR, that ≺ is also

framed. Therefore, by Theorem 3 in Danilov, Koshevoy and Savaglio (2015) f ∈ CF(X) is also

Outcast and then, by Aizerman and Malishevski (1981), f ∈ CF(X) satisfies path-independence.

(⇐) Let ≺ be a decent hyperrelation, then it satisfies Ext and by Proposition 2 in Danilov,

Koshevoy and Savaglio (2015) it must be induced by a f ∈ CF(X) that satisfies H and takes

the form of ≺f . Moreover, ≺ is also framed and therefore, by Theorem 3 in Danilov, Koshevoy

and Savaglio (2015), f must satisfy Outcast. We then have to show that the corresponding

choice function on lists of sets of alternatives R≺f
satisfies NR. Suppose by contradiction that

R≺f
does not satisfy NR. We know that Aj ∈ R≺f

(A1 · · · , Ak) means that Ai ≺ Aj for any

i 6= j, i.e. f(a ∪ Aj) ⊂ Aj for any a ∈ Ai. Suppose that for some entry a of the union of

the sets that are not in R≺f
(A1 · · · , Ak) we have that a ∈ f(a ∪ R≺f

(A1, · · · , Ak). Then, there

exists a At ∈ R≺f
(A1, . . . , Ak) such that a /∈ f(a ∪ At) that contradicts H. Again, suppose that

NR doesn’t hold true. This means that for any B ⊂ ∪Ai \ R≺f
(A1 · · · , Ak) there exists some

a ∈ B such that a ∈ f(a∪R≺f
(A1, · · · , Ak) and a 6∈ R≺f

(A1, · · · , Ak), that contradicts (16), i.e.

Outcast. Hence, R≺f
must satisfy NR.

�

Because of Proposition 2 and Theorem 3 in Danilov, Koshevoy and Savaglio (2015), Theorem

4 states the case in which No-Regret property is equivalent to Path-independent axiom. Moreover,

Theorem 4 establishes that if the DM, obeying to PI postulate, is rational then she chooses from

a list of sets of alternatives by collecting only those sets that are not dominated, namely the ones

that contain alternatives valuable to her. On the other hand, if she disregards those elements

(sets) of a list that are worthless for her because she will never choose any of their alternative,

then her rationality behavior is exactly that of a DM who is ‘pseudo-rational ’ namely, her choice

cannot be manipulated by the presentation of the sets of alternatives in a list.

5 Summary and relation with the literature

We extend the classical choice set-up, in which a DM chooses from a set of alternatives, to the

case in which she makes her selection from lists of sets of alternatives. We collect some general

procedures of choice from lists of sets of alternatives and study a corresponding new rationality

property, showing that it is quite general to encompass and extend other rationality notions

already discussed in the theory of choice literature.
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Our proposal is definitively linked to Rubinstein and Salant (RS, (2006)), that analyzes a

choice model in which the DM encounters alternatives in the form of lists of singletons. In that

paper, the set of all possible lists of alternatives is a set of linear orders on X, namely the set of

the permuted elements (xπ(1), . . . , xπ(n)) of X = {x1, . . . , xn}, where π : N→ N is a permutation

function. For this special case of lists of singleton sets, our rationality property of No-Regret

requires that if xi is the choice from a list, then it will be the choice from any list that starts with

xi.

RS (2006) shows that a choice function f on a list of alternatives A = (a1, . . . , an) satisfies

the Path-independent property if and only if f satisfies Outcast axiom. Namely, a DM chooses

one alternative from a list or equivalently that same alternative contained in any of the possible

disjointed sublists in which the list could be split (pseuforationality) and this is consistent with

choosing that alternative neglecting all others as useless for her (Outcast rationality). In Our

setting, RS (2006) can be seen as a model of choice from sublists of alternatives as the following

example shows. Let M be a set of ‘top elements’ of X, the choice function on lists of alternatives:

FM (x1, . . . , xk) = xj

if and only if

xj = {x1, . . . , xk} ∩M,and {x1, . . . , xk−1} ∩M = ∅.

satisfies the No-Regret property, that in such specific case is equivalent to the Outcast axiom,

i.e. a DM chooses xk if and only if it is the earliest occurrence of the top elements in the (sub-)list

(xi1 , . . .). Moreover, we remark that NR axiom, for such a case, is equivalent to Outcast property

and, by Proposition 1 in Rubinstein and Salant (2006), to Path-independent axiom making clear

how NR puts into relation choice from lists of sets with choice from sub-lists.

We conclude mentioning, among others, the following prominent papers analyzing choice from

lists of alternatives of Guney (2014), Dimitrov, Mukhererjee and Mutu (2016), Yildiz (2016),

Masatlioglu and Nakajima (2013), Ishii, Kovach and Ulku (2021). All these works propose quite

complete guidelines for choice protocols from lists, which invariably differ from our own proposal

in some significant respects. They study the case of choice from lists of alternatives as opposed

to our more general case of lists of sets of alternatives. They provide a rational to some (real-life

met) selection procedure of a single best alternatives out of a list, while we study the rationality of

a DM who makes selections by using general choice mechanisms from lists of sets of alternatives,

a definitively different exercise.
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