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Abstract

Existing literature considers more often merging or collation under different circum-

stances. Few efforts were made to investigate the optimal condition of separation. This

study is trying to fill in this gap. Furthermore, many economic and operational research

studies have analysed the optimal timing of switching between different regimes. Most of

these studies focus on the situation of the same decision maker in different regimes. In

this paper, via differential game, we first notice that the classical multiple stage optimal

regime switching condition obtained via Maximum principle is no longer working due to

the decision makers changed before and after the separation. Thus, there may be different

choices because of shortage of transversality condition between different periods. Dynamic

programming does not depend on this kind of trasnversality condition, and can provide

the optimal time of separation from an international agreement or treaty. Nonetheless, the

optimal switching time depends essentially on the choice of strategic space after separation.
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1 Introduction

The recent years have noticed numerous withdrawals of countries from international or-

ganizations: (1) the most recent happens on July 7, 2020, the Trump administration

formally notified the United Nations that it is pulling out of the World Health Organiza-

tion, which effective as of July 6th, 2021;1 (2) during the same Trump presidency period,

on June 1, 2017, President Trump announced that the U.S. would cease all participation

in the 2015 Paris Agreement on climate change mitigation until some fair conditions to

the U.S.A can be negotiated; (3) the United Kingdom withdrew from the European Union

on January 31, 2020; (4) Canada withdrew from Kyoto Protocol on December 13, 2011...

Except political separation and withdrawals, companies’ splitting (and merging) happen

all the time. Some of the splitting (and merging) also have quite influential social and

market effects, such as, October 2014, technology giant Hewlett-Packard, known as HP,

splits itself into two separate companies: separating its computer and printer businesses

from its faster-growing corporate hardware and services operations, and eliminate an-

other 5,000 jobs as part of its turnaround plan; July 2015, PayPal spinoff from eBay and

this split benefits both eBay’s marketplace business by letting it accept different forms of

electronic payment and also gives PayPal more autonomy to work with other potential

partners, such as Amazon or Alibaba...

Obviously, this kind of phenomenons drew lots of attention in economic literature. There

are quite some economic papers investigating the impacts of Brexit( Sampson, 2017;

Latorre et al., 2020; the special issue of Oxford Review of Economic Policy, vol 33, 2017;

etc.), U.S. withdrawal from the environmental related Kyoto Protocol and Paris agreement

(Bucher et al., 2002; Dai et al., 2017; Nong and Siriwardana, 2018; ...), empirical study of

Mayer et al (2019) on the cost of being non-EU, and the general theoretical investigation

of Gancia et al (2020) on the gain of being in some economic unions and partnerships.

Nevertheless, all these studies are silence about the timing of switching from cooperation

to non-cooperative competition and ignore the possible choice of strategic space while

separating happens.

The above list splitting phenomenons do not just happen randomly, rather the timing

is well-planned and strategies are carefully chosen. Notwithstanding, as clearly stated

1But at the same time, Joe Biden, who will challenge Donald Trump in the November 2020 presidential
election, tweeted: “On my first day as President, I will rejoin the WHO and restore our leadership on
the world stage.”
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by Boucekkine et al (2020), in the economic and operational research literatures, the

optimal timing of transitions (if any) are only implicitly tackled though the vast major-

ity of the models developed are dynamic.2 There exists however an increasing number

of papers interested in optimal regime transition and the inherent timing (Tomiyama,

1984; Boucekkine et al., 2013; Boucekkine et al., 2004; Moser et al., 2014; Saglam, 2011;

Zampolli et al. 2016; etc.). Commonly, all these studies use multi-stage optimal control

techniques. Furthermore, there are few economic literature merging multi-stage optimal

control and dynamic games ingredients, though the corresponding operational research

literature is less poor (see for example Boucekkine et al., 2011).

A quite rich set of questions arises from the examples given above: What are the tradeoffs

involved in the decision to move from cooperation to competition (and vice versa), and

what is the optimal timing for the institutional regime change if any? What are the

conditions that the coalition is always better than separation and from whose point of

view it is better?

In this paper, we propose a preliminary exploration of the switching problem mentioned

above. To this end, we solve a two-stage optimal control problem. In the first stage, two

players cooperate on a common state variable which could be a public good or a public bad.

Then, when separation happens, the disunion players engage in a dynamic competition

game in the second stage. Arguably, under the current setting, in the second stage, the

essential interesting question is the equilibrium concepts: path strategies, i.e., open-loop

strategies, with commitment when separation happens, or decision rule strategies, i.e.,

the Markovian strategies, where players can adjust their strategies with the process of the

competition, or the mixture of the two. The games are solved via backward induction,

thus, the choices of strategy spaces not only matter for the outcomes of the second stage,

but also are crucial for the switching time and the choices of the first stage optimal control

problem.

The paper is organized as follows. Section 2 briefly presents the differential game setting

and clearly describes the possible choices of strategy spaces. Section 3 provides the op-

timal switching time under two different Makovian strategies: one is both players adopt

Markovian strategy; and the other is only one player did so while the other one stays with

the first best choice before separation. In Section 4, some comparison studies take places

in terms of switching time, social welfare as well as long-run state situations. Section 5

2This is specially true in the political transitions literature, with the notable exception of Boucekkine
et al., 2016.
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concludes.

2 A simple model of optimal switching and strategic

spaces

2.1 The model

Suppose there is one bloc or coalition, such as the Kyoto Protocol, the Paris climate

Agreement, and that one of the bloc’s players, named player i, would like to quit the bloc

at some future date T . The rest of the bloc is named as player J . The two players, i and

J, share a common variable, y ∈ [0, Y ].

When players act as one bloc, players i and J choose jointly the level of variables xi, xJ ∈
[0, X] ⊂ [0,+∞), which provide them with a joint utility. Their choices for xi and xJ

increase the level of y, which induces a loss in utility. Let us assume that at time 0,

players play cooperatively until time T , when player i decides to quit the bloc. Note that

at time T , player J may also switch her strategy.

Let us provide an economics example that will accompany us throughout the paper.

Suppose there exists a unique final good, which requires only a polluting resource as

input. With a quantity of pollution xj, j ∈ {i, J}, player j produces accordingly final

good. The consumption of this final good provides players with utility, but at the same

time it increases the level of CO2 emissions, y. Obviously, the level of CO2 affects both

players. In the end, player j can obtain utility directly from the consumption of xj, but

she also suffers from pollution, since y brings disutility.

Initially, the objective of the players in the bloc is to maximize joint overall welfare,

defined as

max
xi,xJ

W (∞) =

∫ +∞

0

e−rt [ui(xi) + uJ(xJ)− ci(y)− cJ(y)] dt, (1)

where r is the time discount rate, ui and uJ are, respectively, utility functions of player

i and J, which are strictly increasing and concave; and ci(y), cJ(y) are their respective

disutility due to pollution, which are strictly increase and convex. Obviously, we assume

that the jointed objective function is simply the sum of the two players’ objectives. On
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the other hand, this is the simplest way to define the jointed utility and on the other hand

it would allow us to focus on the effects of strategic choices instead of the difference from

objective functions between jointed and individual players.

Decisions are subject to the dynamic constraint:

ẏ(t) = f(xi, xJ , y) = xi + xJ − δy(t), y(0) = y0 given, (2)

and δ ∈ [0, 1] is the depreciation rate. In our example, y stands for CO2 emissions, so

that δ would stand for the natural reabsorption rate of CO2 in the atmosphere.

Suppose that player i’s share in the total welfare is α ∈ (0, 1) and the remaining share,

1− α, belongs to the rest of the bloc, i.e., welfare of players i and J are

Wi = αW (∞) and WJ = (1− α)W (∞).

Noteworthy, the share α is independent of xi. We assume that α is given at the initial

date and that renegotiation is impossible or too costly 3. Note that this could be one of

the reasons why player i could decide to quit the bloc at some future date T and play

non-cooperatively. Another possible reason is that the commitment made at time t = 0

to the trajectory xi may seem unfair or too strict for player i at some later date.

If player i quits the bloc at time T , then as already said, she obtains a share α of overall

welfare until time T . From time T onwards, player i’s objective becomes

Wi,II = max
xi

∫ +∞

T

e−rt [ui(xi)− ci(y)] dt, (3)

and player J faces

WJ,II = max
xJ

∫ +∞

T

e−rt [uJ(xJ)− cJ(y)] dt, (4)

subject to the same state equation:

ẏ(t) = f(xi, xJ , y) = xi + xJ − δy(t), t ≥ T, (5)

where initial condition y(T ) comes from the outcome of the first period.

3One way to avoid player i quitting the bloc is allowing renegotiation such that α is a function of
contribution, α = α(xi), or ratio of contribution: α = α(xi, xJ).
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The optimal switching time for player i is defined as

max
T

(
αW (T ) +

∫ +∞

T

e−rt [ui(xi)− ci(y)] dt

)
= max

T
(αW (T ) +Wi,II) , (6)

where W (T ) is the same integral in (1) but over time interval [0, T ]:∫ T

0

e−rt [ui(xi) + uJ(xJ)− ci(y)− cJ(y)] dt.

Intuitively, the first term in (6) is non-decreasing in term of T , that is, the longer the

time period, the higher is the social welfare, otherwise T = 0 already. Similarly, the

second term in (6) is non-increasing with respect to T , otherwise T = +∞. Obviously,

the precise optimal choice of T relys on the strategy space after the separation. Under

some parameter setting, T = 0 is the optimal, i.e., no union or bloc at all; with some

other parameter setting, T = +∞ may be the optimal choice; and of course still with

other setting the optimal T checks 0 < T < +∞.

The interior optimal switching time T should be given by solution of

α
dW (T )

dT
+
dWi,II

dT
= 0,

provided the second order optimality condition

α
d2W (T )

dT 2
+
d2Wi,II

dT 2
< 0

holds.

In the discussion section, we give special attention to the situation where T = +∞, that

is the coalition will continue forever. Here, we first suppose specially, there exits unique

interior solution: 0 < T < +∞, then implicit function theorem yields

∂T

∂α
= −

dW (T )
dT

αd
2W (T )
dT 2 +

d2Wi,II

dT 2

> 0.

In other words, if player i is the dominating player in the bloc. i.e., occupying a relatively

larger share from the aggregate welfare, she quits the bloc later. And the small player

would rather quit the bloc earlier to gain some freedom and free from commitments.
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It is worth mentioning that time T should not consider as truncated terminal time, rather

it is the time the separation happens. Different from most of the optimal switching

literature, under the current setting, before and after time T , players change: before time

T , the bloc makes choice for the bloc as one while after T there are two competing players.

Thus special care should be taken when employing the usual necessary optimal switching

conditions at T . This difficulties come mainly from the choice of different strategic spaces

after the separation. In the following sections, we introduce some of these cases.

2.2 The choices of strategic spaces

If all players act as one bloc from time 0, then the solution to the bloc’s optimal control

problem forms the first best choice. When a player decides to leave the bloc at time T ,

the common strategy space for the game when t ∈ [0, T ] is no longer valid after T . As a

result, it is necessary to decide the strategic spaces for both players i and J from time T

on. As mentioned by Reiganum and Stokey (1985, Page 162) “ when formulating a model

care should be taken to choose a strategy space that is appropriate for the situation under

study”. Under the current setting, the choice of strategic spaces is rather complicated

and a few alternative scenarios raise.

In the first scenario both players i and J recalculate their optimal strategies depending

on the state. This is the standard differential game with Markovian strategies starting

from time T . One example of this situation is the Brexit, which describes the exit of the

UK from the EU. Among others, the Brexit induces the UK and the EU to recalibrate

their commitment to the Paris Climate Agreement. When the Agreement was signed in

December 2015, the UK was part of the EU and had put in its effort as part of the EU.

At that time, the EU presented the Intended National Determined Contribution (INDC)

on behalf of all the 28 Members States. After the Brexit, the EU has to recalibrate its

INDC and the UK has to present its own contribution. Of course, if UK wants to pursue

stronger climate actions, the British government can potentially submit more ambitious

INDC and decide to implement stronger climate policy accordingly.

In a second scenario, player J sticks to its original commitment while player i updates

her own strategy depending on the state of pollution, that is, player i plays Markovian

strategies. The United States withdrawal from the Paris Agreement in 2017 belongs to this

strategy case (and rejoined in 2021 after new presidency). Obviously, the other countries

from the Paris Agreement did not recalculate their strategies. The U.S., at least during
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Trump’s presidency, did not commit to new target either. 4 As in the second scenario,

the problem becomes an optimal control problem for player i taking as given player J’s

commitment.

For example, a third scenario could be that only player i recalculates and commits her

new optimal strategy, which may be different from her Markovian strategy. Player J

does not recalculate hers, and she rather stays committed to the first best resolution.

The Canadian withdrawal from the binding Kyoto Protocol in 2011, and rejoining non-

binding agreement to the Copenhagen Accord in 2009 matches this strategy case. On

the one hand, Canada did not manage to reach their initial committed target to Kyoto

Protocol and faced billions of dollars penalties. On the other hand, Canada still believed

in the need of reducing greenhouse gas emissions. As a result, Canada committed in 2009

to the non-binding Copenhagen Accord with a recalculated target. In the meantime the

remaining countries of the Kyoto protocol (player J in our model), did not adjust their

commitment. Of course, under the new situation, player J’s commitment is no longer

optimal, but commitment is commitment and it should be respected. Starting from T ,

the problem becomes an optimal control problem for player i alone. Thus, player i takes

as given player J’s time variant strategy, which usually makes the problem more difficult

to solve mathematically.

A fourth setting could be that player i updates her strategy based on the state variable

(i.e., player i adopts a Markovian behavior), and player J knows that. Instead of sticking

to the first best commitment, player J recalculates and adopts a new commitment (thus

open-loop behavior). Note that player J takes into account the fact that player i plays

a Markovian strategy. This is the so called Heterogeneous Strategic Nash equilibrium a

la Zou (2016). Again, due to the withdrawal of the US from the Paris Agreement, Dai

et al (2017) demonstrate that: “under the condition of constant global cumulative carbon

emissions and a fixed burden-sharing scheme among countries, the failure of the U.S. to

honor its National Determined Contribution commitment to different degrees will increase

the U.S. carbon emission space and decrease its mitigation cost. However, the carbon

emission space of other parties”, thus the remaining countries in the agreement, “will be

reduced and their mitigation costs will be increased”. Given that the U.S. plays Markovian

feedback strategies and that it does not commit to any new target, the commitment of the

4Although the U.S. did not set any target as a country, the governors of several U.S. states formed
the United States Climate Alliance to continue to advance the objectives of the Paris Agreement at the
state level despite the federal withdrawal.
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remaining bloc has to take that into account. Another example of this kind of scenario

comes from the US withdrawal from Kyoto Protocol in 2001 and the remanning parties’

Bonn Agreement.

Although there may be other cases, we focus here on the first two scenarios in more detail

via linear-quadratic form as Jun and Vives (2004).

3 The linear-quadratic model

To illustrate more clearly the outcomes of the above model, in the rest of the paper, we

take linear-quadratic functional forms. The utility functions are

ui(xi) = aixi −
x2i
2
, uJ(xJ) = aJxJ −

x2J
2
,

and pollution damage functions are

cj(y) =
by2

2
, j = i, J.

In other words, regardless the development level, the pollution damage is the same for

both players for simplicity. xj can be considered as pollution emission of player j in

order to produce final consumption goods, aj is efficiency parameter which converts the

pollution into the consumption good. Thus, higher ai indicates more advanced economies

which can convert more consumption from the same unit of pollution.

The jointed welfare function is

max
xi,xJ

W (∞) =

∫ +∞

0

e−rt
[
aixi + aJxJ −

x2i + x2J
2

− by2
]
dt, (7)

subject to the following dynamic constraint:

ẏ(t) = xi + xJ − δy(t), y(0) = y0 given, (8)

and δ ∈ [0, 1] is the depreciation rate. In our example, y stands for CO2 emissions, so

that δ would stand for the natural reabsorption rate of CO2 in the atmosphere.
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3.1 Joint optimal choice before T

The first best solution for t ∈ [0,+∞) is obtained from the bloc’s optimal control problem

with objective function (7) and subject to the state equation (8).

Via HJB

Proposition 1 For any state trajectory y(t), the optimal choices for player i and J are

x∗j(y) = aj +B + Cy, j = i, J,

where

C =
r + 2δ −

√
(r + 2δ)2 + 8b

2
(< 0), B =

(ai + aJ)C

r + δ − 2C
(< 0).

The optimal trajectory of state is: ∀t ≥ 0,

y(t) = (y0 − y∗)e(2C−δ)t + y∗

where y∗ is the optimal long-run steady state and given by

y∗ =
ai + aJ + 2B

δ − 2C
.

Thus the jointed social welfare, where the detail calculation is given in Appendix A.1:

W (∞) =
(a2i + a2J − 2B2)

2r
− 2BC

∫ +∞

0

e−rty(t)dt− (C2 + b)

∫ +∞

0

e−rty2(t)dt

=
(a2i + a2J − 2B2)/2− 2BCy∗ − (C2 + b)(y∗)2

r
+

2BC(y0 − y∗) + 2(C2 + b)y∗(y0 − y∗))
2C − δ − r

+
(C2 + b)(y0 − y∗)2

2(2C − δ)− r
.

(9)

If player i is not happy about the above optimal choice of the bloc and quits the bloc at

time T , the above optimal choice continues until t = T and state variable reaches

y(T ) = (y0 − y∗)e(2C−δ)T + y∗ (10)

with T undetermined which depends on the choice of strategic space after the separation.
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In the following, we illustrate two difference choices of strategic spaces after separation

and demonstrate the importance of this different choices: The first case is where both

players adopt Markovian strategy after separation and the second case is the situation

where player J remains the initial commitments but player i adopts Markovian strategy

when the separation happens.

The social welfare of player i before the separation is thus

αW (T ) = α

[
(a2i + a1J − 2B2)(1− e−rT )

2r
− 2BC

∫ T

0

e−rty(t)dt− (C2 + b)

∫ T

0

e−rty2(t)dt

]
= α

[
a2i + a2J − 2B2

2
− 2BCy∗ − (C2 + b)(y∗)2

]
1− e−rT

r

+α
[
2BC(y0 − y∗) + 2(C2 + b)y∗ (y0 − y∗)

] 1− e(2C−δ−r)T

2C − δ − r

+α (C2 + b) (y0 − y∗)2
1− e(2(2C−δ)−r)T

2(2C − δ)− r
.

(11)

Furthermore, it is straightforward that

dW (T )

dT
= e−rT

[
a2i + a2J − 2B2

2
− 2BCy(T )− (C2 + b)y2(T )

]
> 0 (12)

if and only if

y(T ) = (y0 − y∗)e(2C−δ)T + y∗ ∈ (0, y)

where

y =
−2BC +

√
4B2C2 + 2(C2 + b)(a2i + a2J − 2B2)

2(C2 + b)
(> 0).

Remark. This is an interesting result, though I am still not clear the intuition behind.

Obviously, if initial condition checks

y0 > y,

then T = 0. Additionally, consider the situation where y0 < y∗, then from the explicit

solution, it is easy to see the accumulation of y(t) is strictly increasing over time. Thus,

if y∗ < y, separation will never happen, i.e., T = +∞.

In the following, in order to study interior situation where separation happens in finite

time, we impose parameter condition as following.
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Assumption 1 Assume given parameters check the following inequality conditions:

y0 < y < y∗.

3.2 Both player adopt Markovian strategy

Suppose player i exits the bloc at time Tm, the following existence of affine Markovian

subgame perfect strategy can be obtained, whose proof is given by Appendix A.2.

Proposition 2 Suppose at time Tm play i quits from the bloc and after the separation

both player i and J adopt Markovian strategy. Then there exists stable affine Markovian

subgame perfect Nash equilibrium (MSPE)

(xmi , x
m
J ) = (ai +Bm + Cmy, aJ +Bm + Cmy) , ∀y,

with coefficients

Cm =
(r + 2δ)−

√
(r + 2δ)2 + 12b

6
(< 0), Bm =

(ai + aJ)Cm

r + δ − 3Cm
(< 0).

For given initial condition at Tm, the corresponding optimal state trajectory is

ym(t) = (y(Tm)− ŷm)e(2C
m−δ)(t−Tm) + ŷm, ∀t ≥ Tm,

where ŷm =
ai + aJ + 2Bm

δ − 2Cm
(> 0) is asymptotically stable long-run steady state.
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It is easy to check that social welfare in the second period of player i is

Wm
i,II =

∫ +∞

Tm

e−rt
(
aixi −

x2i
2
− by2

2

)
dt

=
a2i − (Bm)2

2

∫ +∞

Tm

e−rtdt−Bm Cm

∫ +∞

Tm

e−rtym(t)dt− ((Cm)2 + b)

2

∫ +∞

Tm

e−rt(ym)2dt

=

[
a2i − (Bm)2

2
− ŷmBmCm − (Cm)2 + b

2
ŷm

2
]
e−rT

m

r

+
[
BmCm(y(Tm)− ŷm) + ((Cm)2 + b)ŷm (y(Tm)− ŷm)

] e(2C
m−δ−r)Tm

2Cm − δ − r

+
((Cm)2 + b)

2
(y(Tm)− ŷm)2

e(2(2C
m−δ)−r)Tm

2(2Cm − δ)− r
.

(13)

It is straightforward to obtain the following results.5

Corollary 1 If production efficiency parameters ai and aJ check
(
2− r+δ

Cm

)
ai < aJ , then

separation will never happen: Tm = +∞.

Recall ai and aJ measure production efficiency as mentioned above, this corollary states

that if the bloc’s advantage is sufficiently high, individual players have no incentive to

quit the bloc. This is a rather straightforward result that the separation only can happen

when some players feel no longer get sufficient benefits staying within the bloc.

In order to focus on the situation where separation happens in finite time, we impose the

following assumption on the development parameters:

Assumption 2 Suppose (
2− r + δ

Cm

)
ai > aJ .

Recall Cm < 0, the above sufficient condition of separation requires the leaving players’

production efficiency should not be too low comparing to the remaining part. Obviously

5Proof. Similar to the previous subsection’s arguments,

dWm
i,II

dT
=
e−rT

m

2
[−a2i + (Bm)2 + 2 Bm Cm y(Tm) + ((Cm)2 + b)y2(Tm)] < 0

only if −a2i + (Bm)2 < 0. Otherwise, we must have
dWm

i,II

dT
> 0. In other word, Tm = +∞. Condition

−a2i + (Bm)2 > 0 is equivalent to
(
2− r+δ

Cm

)
ai < aJ .
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if ai = aJ , the above assumption is always true, thus separation happens in finite time

for sure – no longer has advantage, thus incentive, to stay together.

Combing (11) and (13), the first order condition

α
dW (T )

dT
+
dWm

i,II

dT
= 0

yields the following results whose proof is given in the Appendix A.3.

Proposition 3 Let Assumption 1 and 2 hold. Suppose player i quits the bloc at time

Tm and after that player i and J adopt MSPE given by Proposition 2. Then if sharing

parameter α checks

max

{
(Cm)2 + b

2(C2 + b)
,

a2i − (Bm)2

a2i + a2J − 2B2

}
< α < 1, (14)

player i’s unique optimal quitting time Tm ∈ (0,+∞) is given by

Tm =
1

2C − δ
ln

(
ym − y∗

y0 − y∗

)
, (15)

where

ym =
−Σ−

√
Σ2 − 4ΛΓ

2Λ
(∈ (y0, y

∗)) ,

with

Λ = ((Cm)2 + b)− 2α(C2 + b), Σ = 2Bm Cm − 4αBC

and

Γ = ((Bm)2 − a2i ) + α(a2i + a2J − 2B2).

If sharing condition (14) fails, either Tm = 0, separation starts immediately; or Tm = +∞,

no separation at all. The surprising finding is that it is not the small beneficial, rather

the player, who has larger share in the aggregate welfare, would like to leave the bloc.

Here, we do not model the relationship between contribution and share. If the share α

is related to contribution, then condition (14) indicates that the main contributor of the

bloc would like to quit the bloc in order to enjoy the full benefit from her efforts instead

sharing with the others. If so, the condition (14) is no longer surprising.
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3.3 Only player i recalculates her Markovian choices

Suppose player i exits the bloc at time T i. Player i face the following optimal control

problem:

max
xi

∫ +∞

T i

e−rt
(
aixi −

x2i
2
− b y2

2

)
dt,

subject to

ẏ = xi + x∗J − δy, ∀t ≥ T i,

with y(T i) = (y0 − y∗)e(2C−δ)T
i
+ y∗ and x∗J(y) = aJ +B + Cy given.

Via HJB

We have the following results.

Proposition 4 Suppose at time T i player i quits the bloc and remaining player J stays

with her initial commitment. Then the optimal Markovian strategy of player i is, for

t ≥ T i,

xii(y) = ai +Bi + Ciy, ∀y. (16)

Furthermore, given initial condition y(T ), the corresponding state variable yi(t) is give by

y(t)i = (y(T i)− ŷi)e(Ci+C−δ)(t−T i) + ŷi ∀t ≥ T i,

where ŷi is the asymptotically stable long-run steady state and given by

ŷi =
ai + aJ +B +Bi

δ − C − Ci
,

and parameters

Ci =
r + 2δ − 2C −

√
(r + 2δ − 2C)2 + 4b

2
(< 0),

Bi =
(ai + aJ +B)Ci

r + δ − C − Ci
(< 0).
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W i
i,II =

∫ +∞

T i

e−rt
(
aixi −

x2i
2
− by2

2

)
dt

=
a2i − (Bi)2

2

∫ +∞

T i

e−rtdt−Bi Ci

∫ +∞

T i

e−rtyi(t)dt− ((Ci)2 + b)

2

∫ +∞

T i

e−rt(yi)2dt

=

[
a2i − (Bi)2

2
− ŷiBiCi − (Ci)2 + b

2
ŷi

2
]
e−rT

i

r

+
[
BiCi(y(T i)− ŷi) + ((Ci)2 + b)ŷi (y(T i)− ŷi)

] e(2C
i−δ−r)T i

2Ci − δ − r

+
((Ci)2 + b)

2
(y(T i)− ŷi)2 e(2(2C

i−δ)−r)T i

2(2Ci − δ)− r
.

(17)

Similar to the above Corollary 1, if
dW i

i,II

dT
> 0, player i will never quit the bloc. Thus ,

the following corollary is straightforward.6

Corollary 2 If production efficiency parameters ai and aJ check
(

2C(r+δ−C)−CCi

Ci(r+δ−C)
− r+δ

Ci

)
ai <

aJ , then separation will never happen: T i = +∞.

It is easy to check that C < Cm < Ci < 0 and the production efficiency ratio checks
7 aJ

ai
> 2C(r+δ−C)−CCi

Ci(r+δ−C)
− r+δ

Ci > 2 − r+δ
Cm > 2. In other words, for given parameters

setting and production efficiency, Corollary 1 and 2 indicate that it takes

larger technology gap for player i to quit the bloc if she knows player J will

be inactive after her quit. In other words, it is easier for player i to quit the

bloc if both players adopt Markovian strategy than if player J is inactive.

In the rest of this subsection, in order to study the situation where player i quits the bloc

in finite time, we impose the following assumption

6The proof is the same as before. The necessary condition for separation happens, that is,

dW i
i,II

dT
=
e−rT

m

2
[−a

2
i − (Bi)2

2
+Bi Ci y(T i) +

(Ci)2 + b

2
y2(T i)] < 0,

is −a2i + (Bi)2 < 0. Thus, if the opposite is true, (Bi)2 − a2i > 0.
7The difference is(

2C(r + δ − C)− CCi

Ci(r + δ − C)
− r + δ

Ci

)
−
(

2− r + δ

Cm

)
= 2

(r + δ − C)(C − Ci)− CCi

Ci(r + δ − C)
+

(r + δ)(Ci − Cm)

CiCm
> 0,

where both terms on the right hand side are positive due to C < Cm < Ci < 0 .
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Assumption 3 Suppose(
2C(r + δ − C)− CCi

Ci(r + δ − C)
− r + δ

Ci

)
ai > aJ .

This assumption is similar to the one in Assumption 2.

The first order condition of social welfare

α
dW (T )

dT
+
dW i

i,II

dT
= 0

yields the following results whose proof is the same as the one for Proposition 3.

Proposition 5 Let Assumption 1 and 3 hold. Suppose player i quits the bloc at time T i

and takes optimal choice as in Proposition 4 while player J adopts the same choice as in

Proposition 1. Then if sharing parameter α checks

max

{
a2i − (Bi)2

2(a2i + a2J − 2B2)
,

(Ci)2 + b

4(C2 + b)

}
< α < 1, (18)

player i’s unique optimal quitting time T i ∈ (0,+∞) is given by

T i =
1

2C − δ
ln

(
yi − y∗

y0 − y∗

)
, (19)

where

yi =
−Σi −

√
(Σi)2 − 4ΛiΓi

2Λi

with

Λi =
(Ci)2 + b

2
− 2α(C2 + b), Σi = Bi Ci − 4αBC

and

Γi =
(Bi)2 − a2i

2
+ α(a2i + a2J − 2B2).

4 Comparison studies

17



4.1 A limited case

It is worth to study a limited special case where ai = aJ = 0. In other words, we do

not consider the gain from consumption, rather in the objective function, there are only

costs: from emission, x2j (j = i, J), and from pollution accumulation, y2.

Furthermore, given depreciation parameter δ is nonessential, we take δ = 0. Then, it is

straightforward,

x∗j = Cy, ∀y, C =
r −
√
r2 + 8b

2
, B = 0, y∗ = 0,

and

y(t) = y0e
2Ct,

which is strictly decreasing from y0 to y∗ = 0.

Obviously, the three Assumptions in the above subsections all fail and we can not directly

apply the above findings.

Nonetheless, it is easy to get that

α
dW (T )

dT
= −α(C2 + b)y20e

(4C−r)t < 0.

Thus, delay the separation deceases the social welfare of player i (as well player J), thus

the separation should happen immediate: T = 0.

However, if separation indeed happens at Tm and after the separation, both players adopt

Markovian strategy, then,

xmj = Cmy, ∀y, Cm =
r −
√
r2 + 12b

6
, Bm = 0, ŷm = 0,

and

ym(t) = y(Tm)e2C
m(t−Tm).

It is straightforward,

dWm(T )

dT
=

(Cm)2 + b

2
(y(Tm))2e−rT

m

> 0.

In other words, delay the separation will increase the afterward social welfare of both

18



players, which yield Tm = +∞, and that contradicts to the above T = 0.

From the first order condition8

α
dW (T )

dT
+
dWm(T )

dT
=

[
−α(C2 + b) +

(Cm)2 + b

2

]
(y(Tm))2e−rT

m

= 0,

if and only if

α = αm =
(Cm)2 + b

2(C2 + b)
.

Hence, the following results are proved.

Proposition 6 Let ai = aJ = 0 and δ = 0. If the two identical players decide to separate

at Tm from their coalition, and after the separation, both players adopt Markovian strategy,

then, {
Tm = 0, if α < αm,

Tm = +∞, if α > αm.

In other words, the identical players’ coalition either stays together forever or separate

immediately at the beginning of the study.

A similar exercise can be done for the case where one player adopts Markovian strategy

and the other one stays with the coalition’s optimal choice, regardless the two players

otherwise identical. Similar results of separation happens either at the beginning of the

cooperation or never. More precisely,{
T i = 0, if α < αi,

T i = +∞, if α > αi, ,

with αi = ((Ci)2+b)/2
2(C2+b)

and Ci =
√
r2+8b−

√
r2+12b

2
.

The above two different cases, defined as different strategic spaces after the separation,

share similar separation patterns. The only difference relies on the threshold of share α.

It is easy to show that
(αi)2 + b

2
< (αm)2 + b,

thus there is less chances for the coalition to stay together if both player adopt Markovian

8The second order condition is always zero and provides no more information of sufficiency.
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strategy after separation. We can conclude the above study into the following:
if 0 < α < αi, Tm = T i = 0,

if αi < α < αm, Tm = 0, T i = +∞,
if αm < α < 1, Tm = T i = +∞.

Thus, even this very special case of identical players, care should be given to the strategic

choice after potential separation when study international agreement.

4.2 Marginal Bellman values –shadow values

It is easy to prove that C < Cm < 0 and B < Bm < 0. Thus

V ′(y) = B + Cy < Bm + Cmy = V ′j (y), ∀y > 0, j = i, J.

In other words, as one union, the bloc is more sensitive to the increases of pollution than

each individual player.

At the separation Tm,

V ′(y(Tm)) < V ′j (y(Tm)), j = i, J.

4.3 Long-run steady states

The long-run steady states check the following relationship

Corollary 3 For given parameter ai, aJ , r, δ and b, the 3 possible long-run steady states

rank as

ŷi > ŷm > y∗.

4.4 Switching times

From Proposition 3 and 5, it is straightforward that

Tm − T i =
1

2C − δ
ln

(
ym − y∗

yi − y∗

)
.

Given C < 0, thus Tm > T i if and only if ym < yi.

20



It is rather difficult to say, though ym and yi are explicit. Can we plot by numerical

exercises to show that both cases: Tm > T i and Tm < T i are possible ?

4.5 Social welfare of player i, J and aggregate

5 Conclusion

The main contribution of this paper is that we demonstrated, via linear-quadratic dif-

ferential game, the importance of strategic choices after the separation from a union or

international organization. The choice of strategy matters not only for the moment of

switching, the long-run steady state and essentially the individual and aggregate social

welfare, but also for the choice before the separation. Thus it provides information when

preparing a union or international treaty, cares should not only give to the period while

the treaty is active, but also need to take into account the aftermath.
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A Appendix: Proof

A.1 Proof of joint social welfare (9)

From the definition of joint social welfare, we have

W (∞) =

∫ +∞

0

e−rt
[
aixi + aJxJ −

x2i + x2J
2

− by2
]
dt

=

∫ +∞

0

e−rt
[
ai(ai +B + Cy)− (ai +B + Cy)2

2
+ aJ(aJ +B + Cy)− (aJ +B + Cy)2

2
− by2

]
dt

=

∫ +∞

0

e−rt
[

(ai +B + Cy)

2
(2ai − (ai +B + Cy)) +

(aJ +B + Cy)

2
(2aJ − (aJ +B + Cy))− by2

]
dt

=

∫ +∞

0

e−rt
[

(ai +B + Cy)(ai −B − Cy)

2
+

(aJ +B + Cy)(aJ −B − Cy)

2
− by2

]
dt

=

∫ +∞

0

e−rt
(ai +B)(ai −B) + (aJ +B)(aJ −B)

2
dt

+

∫ +∞

0

e−rt
[

(ai −B)− (ai +B) + (aJ −B)− (aJ +B)

2
Cy − C2y2 − by2

]
dt

=
a2i + a2J − 2B2

2

∫ +∞

0

e−rtdt− 2BC

∫ +∞

0

e−rtydt− (C2 + b)

∫ +∞

0

e−rty2dt.

Furthermore, ∫ +∞

0

e−rtydt =

∫ +∞

0

e−rt[(y0 − y∗)e(2C−δ)t + y∗]dt

=

∫ +∞

0

e−rt(y0 − y∗)e(2C−δ)tdt+

∫ +∞

0

e−rty∗dt

= (yo − y∗)
∫ +∞

0

e(2C−δ−r)tdt+ y∗
∫ +∞

0

e−rtdt

(yo − y∗)(−1)

2C − δ − r
+
y∗

r
.

Similarly, ∫ +∞

0

e−rty2dt = · · · = − (yo − y∗)2

2(2C − δ)− r
− 2y∗(yo − y∗)

2C − δ − r
+

(y∗)2

r
.

Substituting the above two explicit forms into W (∞) and rearranging terms, we obtain

the expression of (9).
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A.2 Proof of Proposition 2

The proof is completed in three steps: step 1 demonstrates the existence of affine-linear

Marvkovian Nash equilibrium; step 2 shows the stability and step 3 proves that the given

affine-linear strategy is the unique.

Remark for Ben. The uniqueness still need to proof, but similar to previous

work.

Step 1. Existence of Markovian Nash equilibrium

Define the Bellman Value function of player j = i, J as Uj(y), which must check the

following HJB equation: for t ≥ Tm,

rUj(y) = max
xj

[
ajxj −

x2j
2
− b y2

2
+ U ′j(y) (xi + xJ − δy)

]
, j = i, J.

Then the first order condition yields

xmj (t) = aj + U ′j(y(t)). (20)

Guess

Uj(y) = Aj +Bjy +
Cj
2
y2, and j = i, J,

then

U ′j(y) = Bj + Cjy.

Substituting xi = ai + Bi + Ciy and xmJ (t) = aJ + BJ + CJy(t) into the HJB equations,

comparing coefficients on both hand sides, it yields
rAi = (ai+Bi)

2

2
+ (aJ +BJ)Bi,

(r + δ − Ci − CJ)Bi = Ci(ai + aJ +BJ),

(r + 2δ)Ci = C2
i + 2Ci CJ − b,

(21)

and 
rAJ = (aJ+BJ )

2

2
+ (ai +Bi)BJ ,

(r + δ − Ci − CJ)BJ = CJ(ai + aJ +Bi),

(r + 2δ)CJ = C2
J + 2Ci CJ − b,

(22)
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Remark. More generally, if bi 6= bJ , then the b in the last two equations should be bi and

bJ respectively.

Solving the above two group equations system simultaneously, it follows that the only

coefficients which yields valid Bellman value functions are

Ci = CJ =
(r + 2δ)−

√
(r + 2δ)2 + 12b

6
≡ Cm, and Bi = BJ =

(ai + aJ)Cm

r + δ − 3Cm
≡ Bm,

and

Amj =
a2j
2r

+
(ai + aJ)Bm

r
+

3(Bm)2

2r
, j = i, J.

Thus the Markovian Nash equilibrium is given by

(xmi , x
m
J ) = (ai + U ′i(y), aJU

′
J(y)) = (ai +Bm + Cmy, aJ +Bm + Cmy) , ∀y.

Step 2 Stability

The stability is straightforward by substituting the above Markovian Nash equilibrium

into the state equation, it yields

ẏ = (ai + aJ + 2Bm) + (2Cm − δ)y ∀t ≥ Tm

with y(Tm) coming from the first period cooperation and Tm unknown. The explicit

solution is thus straightforward as given in the Proposition. Furthermore, it is easy to

obtain that long-run steady state

ym(t) = (y(Tm)− ŷm)e(2C
m−δ)t + ŷm(> 0).

Given 2Cm− δ < 0, for any y(Tm), the trajectory asymptotically converges to this steady

state.

A.3 Proof of Proposition 3

Suppose −a2i +(Bm)2 < 0 and Assumption 1 holds. The switching time Tm must be given

by the FOC

α
dW (T )

dT
+
dWm

i,II

dT
= 0,
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provided the second order sufficient condition holds:

α
d2W (Tm)

dT 2
+
d2Wm

i,II(T
m)

dT 2
< 0.

Substituting the explicit forms of dW (T )
dT

and
dWm

i,II

dT
into the first order condition, it yields

αe−rT [(a2i + a2J − 2B2)− 4BCy(T )− 2(C2 + b)y2(T )]

+e−rT [(Bm)2 − a2i ) + 2Bm Cmy(T ) + ((Cm)2 + b)y2(T )] = 0.

Combining terms, the above equation can be rewritten as the following second degree

polynomial in term of y(T ):

Λ y2(T ) + Σ y(T ) + Γ = 0 (23)

where

Λ = (Cm)2 + b− 2α(C2 + b), Σ = 2Bm Cm − 4αBC

and

Γ = (Bm)2 − a2i + α(a2i + a2J − 2B2).

The roots, if exists, are

ym(T ) =
−Σ±

√
Σ2 − 4ΛΓ

2Λ
. (24)

Given parameters Λ,Σ and Γ are independent of switching time T , the second order

sufficient condition holds if and only if

(2Λy(Tm) + Σ) y′(Tm) < 0.

Given the assumption that pollution accumulation is increasing over time, that is, y′(Tm) >

0 is true always, then the second order sufficient condition holds if and only if

2Λy(Tm) + Σ < 0. (25)

Combing the second order condition (25) and the explicit solution (24), it follows that

2Λy(Tm) + Σ = ±
√

Σ2 − 4ΛΓ < 0
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if and only if the negative sign is taken in the explicit solution (24). Taking into account

that only positive pollution level is possible, then

ym(T ) = −Σ +
√

Σ2 − 4ΛΓ

2Λ
> 0,

which is true either (i) Λ < 0, Γ > 0 (these two inequality implicitly guarantee the

existence of real positive solution from FOC) and regardless the sign of Σ or; (ii) Λ > 0,

Γ > 0, Σ < 0 and provided Σ2 − 4ΛΓ ≥ 0 (the last condition guarantees the existence of

real solution from FOC. If it fails, T = +∞, separation never happens).

The case (i) corresponds to the situation where the first order condition yields unique

positive root; while case (ii) corresponds to two positive roots from the FOC, in which

one yields maximum welfare and the other one is related to minimum welfare. We study

case by case.

Case (i). Condition Λ < 0 is equivalent to

α >
(Cm)2 + b

2(C2 + b)

and Γ > 0 if and only if

α >
a2i − (Bm)2

a2i + a2J − 2B2
.

Combing the above two inequalities together, it follows that if and only if

max

{
(Cm)2 + b

2(C2 + b)
,

a2i − (Bm)2

a2i + a2J − 2B2

}
< α < 1, (26)

the unique positive solution from the FOC (23), denoted as ym, is

ym =
−Σ−

√
Σ2 − 4ΛΓ

2Λ
(> 0).

On the other hand,

y(T ) = (y0 − y∗)e(2C−δ)T + y∗ = ym.

Rearranging terms, it yields that

Tm =
1

2C − δ
ln

(
ym − y∗

y0 − y∗

)
.
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Recall Assumption 1 guarantees that y0 < y(T ) < y∗, thus, 0 < ym−y∗
y0−y∗ < 1 and

Tm ∈ (0,+∞).

Case (ii). Similar to the case (i), condition Λ > 0 if and only of

α <
(Cm)2 + b

2(C2 + b)
,

Γ > 0 if and only if

α >
a2i − (Bm)2

a2i + a2J − 2B2

and Σ < 0 if and only if
BmCm

2BC
< α.

Thus, the first condition is

max

{
BmCm

2BC
,

a2i − (Bm)2

a2i + a2J − 2B2

}
< α <

(Cm)2 + b

2(C2 + b)
. (27)

Now consider the last condition Σ2− 4ΛΓ ≥ 0, which guarantees the existence of solution

from the FOC. If it fails, then for any α, separation will never happen, Tm = +∞.

Σ2 − 4ΛΓ ≥ 0

if and only if

α ∈ (0, α]
⋃

[α, 1), (28)

where α and α are the two roots of second degree of polynomial

Aα2 +Bα + C = 0,

with

A = 4B2C2+2(a2i+a
2
J−2B2)(C2+b)(> 0), C = (Bm)2(Cm)2−((Cm)2+b)((Bm)2−a2i )(> 0)

27



and

B = −4BC(Bm)2(Cm)2 + 2((C2 + b)((Bm)2 − a2i )− (a2i + a2J − 2B2)((Cm)2 + b) < 0.

Combining the condition (27) and (28) together, it follows that if and only if

max

{
BmCm

2BC
,

a2i − (Bm)2

a2i + a2J − 2B2
, α

}
< α <

(Cm)2 + b

2(C2 + b)
, (29)

the FOC has positive solution ym which yields maximum social welfare for player i.

The above condition (29) seemingly extends the exiting interval of α obtained in case (i).

Nonetheless, this extension depends on the relationship between
a2i−(Bm)2

a2i+a
2
J−2B2 , (Cm)2+b

2(C2+b)
and

the combination on the left-hand-side of (29).

If
a2i−(Bm)2

a2i+a
2
J−2B2 >

(Cm)2+b
2(C2+b)

, then condition (29) is an empty interval, that is, case (ii) can not

happen. And condition (26) is reduced to

a2i − (Bm)2

a2i + a2J − 2B2
< α < 1.

If
a2i−(Bm)2

a2i+a
2
J−2B2 <

(Cm)2+b
2(C2+b)

, then (29) rather shrinks the definition domain from case (i), given

its left-hand-side condition. Combing condition (29) and (26) yields

max

{
a2i − (Bm)2

a2i + a2J − 2B2
,

a2i − (Bm)2

a2i + a2J − 2B2

}
< α < 1.

which is the sufficient condition. That completes the proof.

A.4 Proof of Proposition 4

Define the Bellman Value function as Vi(y), which must check the following Hamilton-

Jacob-Bellman (HJB) equation: for t ≥ T i,

rVi(y) = max
xi

[
aixi −

x2i
2
− b y2

2
+ V ′i (y) (xi + x∗J − δy)

]
,
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where x∗J is given in Proposition 1,

x∗J = aJ +B + Cy.

Given the linear-quadratic forms of the objective function and linear state equation, we

can guess that the Bellman value function follow affine-quadratic form as:

Vi(y) = Ai +Biy +
C2
i

2
y2,

Taking first order condition on the right hand side of the HJB equation, it yields the

optimal choices

xi(y) = ai + V ′i (y) = ai +Bi + Ciy, ∀t ≥ T i.

Substituting the optimal choice into the right hand side of the HJB equation, we have

RHS = ai(ai +Bi + Ciy)− (ai +Bi + Ciy)2

2
− by2

2

+(Bi + Ciy) [(ai +Bi + Ciy) + (aJ +B + Cy)− δy]

= ai(ai +Bi) + aiCiy −
1

2

[
(ai +Bi)

2 + 2Ci(ai +Bi)y + C2
i y

2
]
− by2

2

+(Bi + Ciy)[(ai + aJ +Bi +B) + (Ci + C − δ)y]

= ai(ai +Bi)−
(ai +Bi)

2

2
+Bi(ai + aJ +Bi +B)

+ [aiCi − Ci(ai +Bi) + Ci(ai + aJ +Bi +B) +Bi(Ci + C − δ)] y

+

[
−C

2
i + b

2
+ Ci(Ci + C − δ)

]
y2

=
a2i −B2

i

2
+B2

i +Bi(ai + aJ +B) + [Ci(ai + aJ +B) +Bi(Ci + C − δ)] y

+

[
−C

2
i + b

2
+ Ci(Ci + C − δ)

]
y2.
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Comparing coefficients on both sides of the HJB equation, it follows
rAi = (ai+Bi)

2

2
+ (aJ +B) Bi,

(r + δ − C − Ci)Bi = (ai + aJ +B) Ci,

(r + 2δ)Ci = C2
i + 2C Ci − b.

(30)

The last equation yields one positive and one negative roots. Given the valid Bellman

value function must be concave, so we take only the negative one:

Ci =
r + 2δ − 2C −

√
(r + 2δ − 2C)2 + 4b

2
.

Given C < 0 and b > 0, it is straightforward, (r + 2δ − 2C)2 + 4b > (r + 2δ − 2C)2 > 0.

Thus

Ci < 0.

Furthermore,

Bi =
(ai + aJ +B)Ci
r + δ − C − Ci

(< 0).

Substituting the above optimal choice of player i and x∗J into the state equation, it follows

ẏ = (ai + aJ +B +Bi) + (Ci + C − δ)y ∀t ≥ T i

with y(T i) from Proposition 1. The solution is straightforward.
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