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Abstract

We consider a best-of-three Tullock contest between two ex-ante symmetric players. An

e¤ort-maximizing designer commits to a vector of three biases (advantages or disadvantages),

one per match. When the designer can choose victory-dependent biases (i.e., biases that de-

pend on the record of matches won by players), the e¤ort-maximizing biases eliminate the

momentum e¤ect, leaving players equally likely to win each match and the overall contest.

Instead, when the designer can only choose victory-independent biases, the e¤ort-maximizing

biases alternate advantages in the �rst two matches and leave players not equally likely to win

the overall contest. Therefore, in the victory-independent optimal contest, ex-ante symmetric

players need not be treated identically, though a coin �ip may restore ex-ante symmetry. We

analyze several extensions of our basic model, including generalized Tullock contests, ex-ante

asymmetric players, best-of-�ve contests, and winner�s e¤ort maximization.
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1 Introduction

In a contest, players exert costly e¤orts to win a prize. We call a one-shot contest between players

X and Y �unbiased� if swapping the e¤orts of X and Y implies swapping their probabilities of

winning; that is, X and Y are treated equally.1 Unbiased contests are prevalent in the literature, in

part because of the �common wisdom�that unbiased one-shot contests maximize total e¤ort when

players are symmetric.2 In fact, asymmetries between players due to their exogenous characteristics

lead to lower aggregate e¤ort in many commonly used setups because of the so-called discouragement

e¤ect: �a weaker player, either with higher unit costs of e¤ort or a lower value of winning, �nds

it relatively unpro�table to try to beat the stronger player and, consequently, cuts back on his

costly expenditure. This, in turn, may allow the stronger player to bid more passively as well when

compared to a contest in which he faces a player of similar strength�(Dechenaux, Kovenock, and

Sheremeta, 2015; p. 622-623). Indeed, the common wisdom has a parallel for asymmetric players; if

X is stronger than Y , e¤ort maximization is achieved by giving a disadvantage to X so as to restore

a level playing �eld, and each player has the same probability of winning in equilibrium. This result

appears, for instance, in Proposition 2 of Franke (2012) which is stated for a setup similar to ours,

but static. It is, in fact, intuitive that a level playing �eld maximizes competition, and therefore

aggregate e¤ort, in a one-shot setup.

We ask whether the common wisdom that leads to the optimality of unbiased contests between

two ex-ante symmetric players extends from static to dynamic contests: with endogenous biases in

each of the matches that make up the overall contest, should one mirror the common wisdom for

static contests and induce a level playing �eld in the overall contest?3 In general, when moving

from a static to a dynamic setting, an important force arises: the momentum e¤ect.4 For instance,

a player�s loss in the �rst match of the game gives her a one-match disadvantage in the second

1This property is called �anonymity�in the seminal axiomatization of Skaperdas (1996). Our usage of �unbiased�
follows Drugov and Ryvkin (2017).

2We borrow the term �common wisdom� from Drugov and Ryvkin (2017, p. 118): �The �common wisdom�
prevailing in the literature that it is optimal not to bias the contest when players are symmetric (and thus it is
optimal to �level the playing �eld�when players are di¤erent) has an obvious intuitive appeal.�A non-exhaustive list
of papers showing that symmetric players should be treated identically includes: Dukerich et al. (1990); Schotter
and Weigelt, (1992); Baye, Kovenock, and De Vries (1993) and (1996); Baik (1994); Gradstein (1995); Clark and Riis
(2000); Stein (2002); Nti (2004); Fu (2006); Fain (2009); Epstein et al. (2011); Franke (2012); Franke et al. (2013);
Lee (2013), along with references in Drugov and Ryvkin (2017). The technical details vary from model to model
though they have the key underlying intuition in common. Serena (2017) shows that the common wisdom holds not
only for maximization of total e¤ort, but also winner�s e¤ort. This common wisdom does have exceptions that we
discuss in the literature review, with special attention to Drugov and Ryvkin (2017).

3Henceforth, we reserve the word �contest� for the overall dynamic competition, and use the �match� for a
component competition of a contest.

4Early and seminal contributions on the momentum e¤ect appear in Harris and Vickers (1985, 1987) and Budd,
Harris and Vickers (1993). For more recent contributions see, for instance, Klumpp and Polborn (2006), Konrad
(2009) and Konrad and Kovenock (2009). The momentum e¤ect is sometimes called �avalanche e¤ect� (e.g., Beviá
and Corchón, 2013), and sometimes �momentum/discouragement e¤ect� (Feng and Lu, 2018). We use momentum
and momentum/discouragement e¤ect interchangeably.
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match, and when a contestant is su¢ ciently disadvantaged, competition� and thus e¤orts� su¤ers.5

Indeed, players in the second match are typically asymmetric, even though they are symmetric to

start with, as one player is one match ahead of her rival. Thus, as we investigate the common wisdom

in our dynamic setting, we ask whether it is bene�cial to mitigate the momentum/discouragement

e¤ect by means of biased matches, and if so, how. Furthermore, we investigate whether it is the case

that, for biases that maximize total e¤ort in our dynamic setting, the overall ex-ante probability of

winning is the same for the two ex-ante symmetric players.

Many real-life contests have the two features we capture, namely; (i) dynamics, so that the

victory of the contest occurs only if a player wins a su¢ cient number of matches, and (ii) varying

biases as the contest progresses, so that in each match a player may have or may be given a

competitive advantage, or a pre-existing competitive advantage may be endogenously mitigated.

Perhaps the most natural application for our model is sports, where it is often the case that

competitions unfold over time through a series of matches where players� advantages vary. The

related literature recognizes the importance of e¤ort maximization in sports.6 For instance, Feng

and Lu (2018), working on a contest design question related to ours and using a model with ex-

ante symmetric contestants where e¤ort maximization is the goal, also use sports as their leading

example.7 And even more directly, �organizers of athletic or artistic competitions often need to

maximize average performance (or some related measure) in order to thrill audiences�(Moldovanu

and Sela, 2001; p. 543-544).8 In sports, the identity of the player who is advantaged by biases

is often endogenous in each match. For instance, the location of each match is endogenous and

generates a home-�eld advantage, which is the bene�t that the home team has over the visiting

team because of psychological e¤ects (for instance, the e¤ect of supporting fans on home and away

teams and referees), physiological e¤ects (the advantage home teams have playing near home in

familiar situations, or the disadvantages away teams su¤er from travelling), or strategic e¤ects (such

as the home team batting second in baseball).9 In addition, the extent to which the designer has

control over the size of the biases varies. In fact, the home-�eld advantage can be mitigated by

introducing instant replays to weaken the referees�discretion or by reserving a certain proportion

of tickets for the visiting team. Also, the winner of the previous round is sometimes advantaged

(e.g., the pool player who shoots a ball into a table�s pocket makes the next move) and sometimes

disadvantaged (the soccer team that scores a goal does not kick o¤ next).

5For empirical evidence of momentum e¤ect see, e.g., Malueg and Yates (2010).
6The other prominent objective in sports is the selection of the �better�player as the winner of the competition.

As we focus on the competition between two ex-ante symmetric players, this objective is not relevant for our setup.
7Furthermore, Feng and Lu (2018) in their footnote 2 cite Gradstein and Konrad (1999), stating that �contest

structures result from the careful consideration of a variety of objectives, one of which is to maximize the e¤ort of
contenders.�

8 In the extension of Section 6.4, we consider the alternative of winner�s e¤ort maximization, as some organizers of
sport contests may alternatively be interested in, for instance, having the world record broken during the competition.

9Empirical evidence abounds, for instance, in soccer (Nevill and Holder, 1999) and for the NFL (Vergin and Sosik,
1999). Jamieson (2010) provides a general meta-study of home-�eld advantages.
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To account for such varying control over biases across applications, we consider two alternative

settings. First, we let the designer have �full� control over biases (Section 4), in the sense that

biases can be contingent on the outcome of previous matches; for instance, if X wins today, she

will be given a disadvantage tomorrow, otherwise an advantage. This is the case, for instance, in

badminton contests which typically have a best-of-three structure where the winner of each match

serves at the beginning of the next match (see, Badminton World Federation, 2019).10 In this

setup with victory-dependent biases, we �nd that the e¤ort-maximizing designer leaves the �rst

and third matches unbiased, and biases the second match in favor of the loser of the �rst match,

to completely compensate for her disadvantage of lagging one match behind. Such structure of

biases leaves players equally likely to win each match and the entire contest. In this sense, we

conclude that, when the designer can tailor biases to the outcome of previous matches, the common

wisdom of equalizing players�equilibrium winning probabilities extends from a static setting to our

dynamic one. This result contributes to the understanding of whether, in subsequent matches, one

should favor the winner or the loser of early matches. In particular, this result contrasts with the

�favor-the-leader�result in the literature that we discuss below.

Second, in the perhaps more realistic case of limited control (Section 5), the designer cannot

tailor biases to the outcome of previous matches; e.g., whoever plays at home today plays away

tomorrow, regardless of who wins today. This is the case, for instance, in volleyball contests which

typically have a best-of-�ve structure where one team begins play by serving in the �rst and last

sets, and the other team begins play by serving in the other sets, regardless of who wins each set

(FIVB, 2020).11 In this setup with victory-independent biases, we �nd that the e¤ort-maximizing

designer does not treat ex-ante symmetric players identically; in particular, rather than leaving each

match unbiased, the optimal biases favor one player �rst and the other later. And the tie-break is

not unbiased. Moreover, these biases do not balance out ex-ante; that is, in the bias con�guration

that maximizes total e¤ort, the overall ex-ante probability of winning is not the same for the two

ex-ante symmetric players. To clearly identify the forces underlying our results, we add a further

intuitive restriction on the designer�s choice of biases by analyzing �alternating contests�in which

the biases in the �rst and second match have the same magnitude and favor one player in the �rst

match and the other in the second, whereas the tie-break is left unbiased. We show that, even in

this more restrictive setup, ex-ante symmetric players are not treated identically, because biases

are introduced in the optimum and the overall ex-ante probability of victory is not identical for the

two players.

To understand the intuition behind the optimality of biasing dynamic contests between ex-ante

symmetric players, we focus on the simpler intuition behind the optimality of biasing alternating

contests. Recall that, in unbiased dynamic contests between ex-ante symmetric players, early

10Note that, in badminton, serving is found to be a disadvantage in doubles and an advantage in singles by Bialik
(2016), who analyzes data from the 2016 Olympics.
11 In volleyball, serving is often seen as a disadvantage (e.g., Bialik, 2016).
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victories distort future matches so that the laggard gives up and the front-runner eases up. It turns

out that this momentum/discouragement e¤ect is mitigated by alternating advantages. Despite

creating an asymmetry in the �rst match� thus reducing �rst-match e¤orts� alternating advantages

tend to reduce asymmetries in the second match, since the player most likely lagging one match

behind in the second match is given an advantage� thus increasing second-match expected e¤orts.

Most importantly, alternating �rst- and second-match advantages increases the probability that

the game will reach a tie-break� thus increasing third-match expected e¤orts.12 We show that

the second- and third-match positive e¤ects of alternating advantages on e¤orts overcome the

�rst-match negative e¤ect. We conclude that in the optimal bias con�guration, the two ex-ante

symmetric players need not be treated identically and one player is more likely to win the overall

contest. A similar intuition applies for the optimal biases even if one does not restrict attention

to alternating contests. In this sense, the common wisdom discussed above does not extend from

a static to our dynamic setting if the designer cannot tailor biases to the outcome of previous

matches (i.e., for victory-independent biases). Of course, with symmetric players, ex-ante symmetric

treatment can be restored by a fair coin �ip that decides who should receive the advantage, as it

happens often in sports.13

Our two main results described above� one with victory-dependent biases (Section 4), and

one with victory-independent biases (Section 5)� are derived if the designer maximizes expected

total e¤ort in a best-of-three contest in which, in each match, the winner determination process is

characterized by the Tullock contest success function with discriminatory parameter r = 1 (Tullock,

1980). In Section 6, we show that our two main results are (locally) robust to considering several

extensions: discriminatory parameter r 6= 1, ex-ante asymmetric players, best-of-�ve contest, and
maximization of expected winner�s e¤ort, rather than total e¤ort.14

Literature. There are two relevant strands of the literature that are usually� but not exclusively�
kept apart; dynamic contests and biased contests. In dynamic contests,15 one important theoretical

contribution is that of Klumpp and Polborn (2006); they model the US primaries as a best-of-n con-

test between two candidates, where the battle�eld in each state takes the form of a Tullock contest.

As in Harris and Vickers (1985, 1987), they �nd that the outcome of the very �rst match creates an

asymmetry between ex-ante symmetric players that is endogenously carried over to later periods.

This momentum boosts e¤orts in the �rst matches and makes the later matches less relevant. This

�nding resembles the so-called �New Hampshire e¤ect�; candidates who win early primaries are

12 In fact, the third match is virtually certain to occur if an arbitrarily high advantage is given in the �rst period
to a player and in the second period to her rival.
13However, coin �ips are sometimes viewed as �unfair� in sports, and several proposals to avoid leaving such an

important role for luck have been presented (see, for instance, the auction approach of Che and Hendershott, 2008).
14We present a detailed description of the changes that each extension introduces in Section 6.
15One of the early contributions to dynamic Tullock contests with multiplicative biases is Leininger (1993), who is

mostly interested in players�choice of order of moves.
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more likely to win later primaries, too.16 Similar �ndings appear in Konrad and Kovenock (2009),

who model matches as all-pay auctions, and in Ferrall and Smith (1999), who adopt the rank-order

tournaments of Lazear and Rosen (1981). Malueg and Yates (2006) generalize Klumpp and Pol-

born�s (2006) results to a more general symmetric contest success function and derive results for a

three-match contest assuming the existence of a pure strategy equilibrium.17 All the above models,

while more general than ours in many other respects, do not consider the question of how to bias

match-by-match the overall contest to maximize total e¤ort.18

There is an extensive literature on biases in static contests, where biases are de�ned as tilting

the probability of winning in favor of one (or more) contestants, for given e¤orts.19 The common

wisdom typically drawn from this strand of the literature is the optimality of an unbiased contest

if the two players are symmetric (see Footnote 2). A recent prominent exception to this common

wisdom for static contests is presented in Drugov and Ryvkin (2017);20 they characterize very

general properties of the contest success function and of the cost of e¤ort that determine whether

a biased or unbiased contest between two ex-ante symmetric players is optimal. In the standard

Tullock contest with linear costs of e¤ort, multiplicative bias, and static competition, Drugov and

Ryvkin (2017), among other results, show that the common wisdom of the optimality of unbiased

contests is not robust to dropping the assumption of multiplicative biases. In contrast, we maintain

multiplicative biases, but investigate the common wisdom in a dynamic, rather than static, setting.

We are not the �rst to consider biases in dynamic contests (see, for instance, Meyer, 1991, 1992;

Lizzeri et al., 1999, 2002; Hö er and Sliwka, 2003; Aoyagi, 2010; Ederer, 2010).21 A common

�nding is the �favor-the-leader� result; for example, Meyer (1991, 1992) shows that biasing the

second match in favor of whoever performed better in the �rst match tends to be bene�cial for

the principal in terms of better information and of larger e¤orts, as one obtains only a second-

16A victory in the New Hampshire primary increases a candidate�s expected share of total primary votes by 26.6%
(Mayer, 2004).
17Empirical tests of theoretical predictions with sports data is provided for best-of-three contests by Malueg and

Yates (2010) and for best-of-n by Ferrall and Smith (1999). In the experimental literature, a test using best-of-three
Tullock contests is provided by Mago et al. (2013).
18For instance, Klumpp and Polborn (2006) allow for biases, but do not analyze the e¤ort-maximizing set of biases.

Konrad and Kovenock (2009) allow for asymmetries and show that in this case headstarts (a situation in which the
number of component contests that need to be won to secure overall victory varies across players with di¤erent values
for victory) could be used to generate maximal expected e¤ort.
19Early contributions where the bias enters the probability of victory is, for instance, in the corruption models of

Lien; in particular, Lien (1990), building on Lien (1986), considers a two-briber game where bribes are denoted by Bi,
and the corrupt o¢ cial determines the winner �not only by the amount of bribe, but by some other considerations
such as friendship.� Friendships are captured by a parameter � > 0, such that the winner is determined by the
ranking between �B1 and B2. Our biases are modeled essentially in the same way.
20Other exceptions to the common wisdom can be derived from an extension of the model to an ex-ante heteroge-

nous n-player setting (e.g., Franke et al., 2013), to a private information setting (e.g., Pérez-Castrillo and Wettstein,
2016), and to the maximization of the probability of a high-ability winner (e.g., Kawamura and Moreno de Barreda,
2014). In the present paper, we keep the standard two-player complete information setting under e¤ort-maximization.
21Another tool that could also a¤ect the contest outcome is the extra information that may or may not be disclosed

as the dynamic contest unravels, so that the designer induces a certain dynamic inference by players who may therefore
be discouraged or encouraged.
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order negative e¤ect of bias in the second period, but a �rst-order positive e¤ect of bias in the

�rst period. More recently, Clark et al. (2012), Möller (2012), Beviá and Corchón (2013), Esteve-

Gonzáles (2016), and Klein and Schmutzler (2017) analyze a two-period setting, assuming that if

a player wins (or exerts higher e¤ort) in the �rst period she will have a certain advantage in the

second period� modeled as a lower marginal cost of e¤ort, or as a favorable bias in the contest

success function.22 There are several di¤erences between the setups of those papers and ours. For

one, with victory-dependent biases, we allow for second-period advantages or disadvantages to the

�rst-period winner. But the key di¤erence in generating our contrasting result is that, unlike in the

two-match setting of the above papers and of Meyer (1991, 1992), in our best-of-three setting the

length of the game depends on the outcome of previous matches: contestants play a tie-break only

if they are tied after two matches. We discuss this further in Section 4.

Related to our setup with victory-dependent biases is Feng and Lu (2018), who analyze the e¤ort-

maximizing allocation of prizes among battles in a three-battle contest with a more general prize

structure than we consider. In contrast, our model endogenizes biases rather than the allocation of

prizes among matches and allows biases to di¤er across matches and to treat players di¤erently. Feng

and Lu�s �main insight is that mitigating the momentum/discouragement e¤ect is essential for e¤ort-

maximizing prize design in dynamic multi-battle contests� (Feng and Lu, 2018; p. 82). Similarly,

our results call for the complete elimination of the momentum/discouragement e¤ect, in accordance

with the insight of Feng and Lu, when we consider victory-dependent biases. Furthermore, we

highlight that whether or not biases are victory dependent plays a crucial role in addressing the

momentum/discouragement e¤ect.

Finally, our main �ndings share some common intuition with the �suspense� literature (e.g.,

Chan, Courty and Hao, 2009; Ely, Frankel and Kamenica, 2015). Suspense is de�ned by Chan et

al. (2009) as valuing contestants�e¤orts more in a close race; they show that rank-order schemes

depending on who wins are more preferred than schemes depending linearly on the �nal score when

preference for suspense increases. Suspense is de�ned by Ely et al. (2015) as the variance of next

period�s beliefs; they analyze how to reveal information over time to a Bayesian audience valuing

suspense. Our model does not have private information. But in a way related to the suspense

literature, our vector of optimal biases keeps the contest su¢ ciently �open�over time, so as not to

deter competition and e¤orts, which are of value to the designer.23

22An exception is Ridlon and Shin (2013), who �nd that, in a setup with ex-ante asymmetry in players�abilities,
if �abilities are su¢ ciently di¤erent, favoring the �rst-period loser in the second period increases the total e¤ort
over both periods. However, if abilities are su¢ ciently similar, [...] total e¤ort increases the most in response to a
handicapping strategy of favoring the �rst-period winner� (Ridlon and Shin, 2013; p. 768).
23Konrad and Kovenock (2009) in their Footnote 5 also point out the relation to the notion of suspense.
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2 Model

Two risk-neutral and ex-ante symmetric players, X and Y , play in a best-of-three contest. That is,

they play three matches at most, and the �rst player who wins two matches is the contest winner

and obtains a prize of value V > 0. In Figure 1, we draw the structure of the best-of-three contest

we describe. The game begins at node (0; 0), where no player has won a match; here, the e¤ort of

X is denoted as x(0;0) � 0 and that of Y as y(0;0) � 0. If X wins, the game then moves to node

(1; 0); here, the e¤ort of X is denoted as x(1;0) � 0 and that of Y as y(1;0) � 0. If instead Y wins

the �rst match in node (0; 0), the game then moves to node (0; 1); here, the e¤ort of X is denoted as

x(0;1) � 0 and that of Y as y(0;1) � 0. If the �rst two matches are won by the same player the game
ends, otherwise the game reaches node (1; 1) and the third match is played; here, the e¤ort of X is

denoted as x(1;1) � 0 and that of Y as y(1;1) � 0. For i; j 2 f0; 1g, if node (i; j) is reached, players
simultaneously choose e¤orts (x(i;j); y(i;j)) 2 [0;1)2, and the probability of victory of player X in

that match depends on the contest technology as follows:

p
(i;j)
X (x(i;j); y(i;j)) =

8<:
�(i;j)x

(i;j)

�(i;j)x(i;j)+y(i;j)
if (x(i;j); y(i;j)) 6= (0; 0) ;

1
2 if (x(i;j); y(i;j)) = (0; 0) ;

(1)

where �(i;j) 2 (0;1) and p(i;j)Y (x(i;j); y(i;j)) = 1� p(i;j)X (x(i;j); y(i;j)).24 The contest technology (1)

is axiomatized in Clark and Riis (1998) and micro-founded in Jia (2008). When �(i;j) = 1, (1) boils

down to the contest technology proposed by Tullock (1980). We refer to �(i;j) > 1 (�(i;j) < 1) as an

advantage (disadvantage) given to X in node (i; j). The vector of biases f�(0;0); �(1;0); �(0;1); �(1;1)g
is commonly known at the beginning of the game. The marginal cost of e¤ort equals 1 for both

players and there is complete information. In Figure 1, we specify the payo¤s gross of e¤ort costs;

net payo¤s simply subtract the cost of e¤ort.

We analyze how the expected total e¤ort (henceforth, TE) varies with the biases. We de�ne as

�optimal�the contest that maximizes TE, which is

TE �
�
x(0;0) + y(0;0)

�
+ p

(0;0)
X

�
x(1;0) + y(1;0)

�
+ p

(0;0)
Y

�
x(0;1) + y(0;1)

�
+
�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

� �
x(1;1) + y(1;1)

�
:

(2)

For simplicity, in (2) we omitted the arguments of probabilities, as we will do throughout the paper

whenever this does not yield confusion.

24 In Section 6.1 we consider the generalization of (1)

p
(i;j)
X (x(i;j); y(i;j)) =

�(i;j)
�
x(i;j)

�r
�(i;j)

�
x(i;j)

�r
+
�
y(i;j)

�r ;
with r 2 (0;1) :
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Figure 1: Nodes, matches, and payo¤s gross of e¤ort costs in a best-of-three contest between players
X and Y .
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Structure of the paper. In Section 3, we provide general preliminary results, well-known
in the literature, that apply to each node. In Section 4, biases are victory-dependent ; that is,

a possibly di¤erent � is chosen for each node, so that four biases f�(0;0); �(1;0); �(0;1); �(1;1)g are
chosen in order to maximize TE. In Section 5, instead, biases are victory-independent ; that is, �

cannot be conditioned on the outcome of the previous matches, so that three biases f�1; �2; �3g
are chosen in order to maximize TE; in the �rst match (i.e., node (0; 0)) player X is given bias

�1, in the second match (i.e., node (1; 0) or (0; 1)) she is given bias �2, and in the third match

(i.e., node (1; 1)), if played, she is given bias �3. The extra constraint of victory-independent

biases is inspired by the applications, as discussed in the Introduction. We conclude by considering

several extensions: Section 6.1 considers the generalization of (1) described in Footnote 24, Section

6.2 considers ex-ante asymmetric players, Section 6.3 considers a best-of-�ve contest, and Section

6.4 considers the maximization of expected winner�s e¤ort, rather than total e¤ort. Proofs are in

Appendix A for sections 3-5, and in Appendix B for the extensions in Section 6.1.

3 Preliminaries

Denoting with uWX the expected (continuation) payo¤ of player X if she wins, and with uLX her

expected (continuation) payo¤ if she loses, her payo¤ uX in a general node with bias � reads

uX =
�x

�x+ y
uWX +

�
1� �x

�x+ y

�
uLX � x =

�x

�x+ y

�
uWX � uLX

�
+ uLX � x:

De�ning the �e¤ective prize spread�as �uX � uWX � uLX ; we obtain

uX =
�x

�x+ y
�uX + u

L
X � x:

For player Y , we use a similar notation and obtain

uY =
y

�x+ y
�uY + u

L
Y � y:

The equilibrium is uniquely identi�ed by the FOCs, which give the typical property25

y =
�uY
�uX

x;

25Whenever confusion does not arise, we do not di¤erentiate notation between equilibrium levels and generic
variables.
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the equilibrium e¤orts are

x =
� (�uX)

2
(�uY )

(��uX +�uY )
2 ; (3)

y =
��uX (�uY )

2

(��uX +�uY )
2 ; (4)

the equilibrium probabilities of victory

pX =
��uX

��uX +�uY
; (5)

pY =
�uY

��uX +�uY
; (6)

and the equilibrium payo¤s

uX = �uXpX (1� pY ) + uLX ; (7)

uY = �uY pY (1� pX) + uLY : (8)

Summing (3) and (4), and using (5) and (6), we obtain the following property, which we use

repeatedly in our proofs,

x+ y = (�uX +�uY ) � pXpY : (9)

The common wisdom that in a static contest players should be left equally likely to win in equi-

librium is apparent in (9); for given �uX and �uY , x + y is maximized by choosing � such that

pX = pY = 1=2 (recall that pX + pY = 1).

In the following lemma, we consider the game players play after all biases become known. We

apply the above analysis for each node, (0; 0), (1; 0), (0; 1), and (1; 1), substituting the appropriate

continuation value. We then obtain that, in the model described in Section 2, TE in (2) can be

expressed as a function of the equilibrium probabilities of victory in each node as stated in the

following lemma.

Lemma 1 Consider a best-of-three Tullock contest between two ex-ante symmetric players. The
equilibrium probabilities of victory for X in each node are recursively determined as a function of

the vector of biases f�(0;0); �(1;0); �(0;1); �(1;1)g as follows:

p
(1;1)
X =

�
1 +

1

�(1;1)

��1
; (10)

p
(0;1)
X =

 
1 +

1

�(0;1)

1 + p
(1;1)
Y

p
(1;1)
X

!�1
; (11)

11



p
(1;0)
X =

 
1 +

1

�(1;0)

p
(1;1)
Y

1 + p
(1;1)
X

!�1
; (12)

and

p
(0;0)
X =

0B@1 + 1

�(0;0)

�
p
(0;1)
Y

�2
p
(1;1)
X

�
1 + p

(1;1)
Y

�
+ p

(1;0)
X

�
p
(1;1)
Y

�2 �
1 + p

(1;0)
Y

�
�
p
(1;0)
X

�2
p
(1;1)
Y

�
1 + p

(1;1)
X

�
+
�
p
(1;1)
X

�2
p
(0;1)
Y

�
1 + p

(0;1)
X

�
1CA
�1

; (13)

where p(i;j)Y = 1� p(i;j)X for any i; j 2 f0; 1g. Furthermore, in equilibrium, TE in (2) satis�es

TE

2V
=

�
p
(1;0)
X p

(1;1)
Y + p

(1;1)
X p

(0;1)
Y � p(1;1)X p

(1;1)
Y

�
p
(0;1)
X p

(0;1)
Y + p

(1;0)
X p

(1;0)
Y

��
p
(0;0)
X p

(0;0)
Y

+p
(0;0)
X p

(1;1)
Y p

(1;0)
X p

(1;0)
Y +

�
1� p(0;0)X

�
p
(0;1)
X p

(0;1)
Y p

(1;1)
X (14)

+
�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

�
p
(1;1)
X p

(1;1)
Y :

Proof. See Appendix A.

By changing the biases f�(0;0); �(1;0); �(0;1); �(1;1)g, one can generate di¤erent winning proba-
bilities at each node and therefore a¤ect TE. As 2V is independent of biases, in what follows we

often refer to the function � (A;B;C;D) de�ned as

� (A;B;C;D) �
�
D (1�D)B2 +D2C (1� C) +D (1� C)2 +B (1�D)2

�
A (1�A)

+A (1�D)B (1�B) + (1�A)DC (1� C) (15)

+(A (1�B) + (1�A)C)D (1�D) :

Using (14), one can easily verify that �
�
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

�
= TE= (2V ). Therefore, maxi-

mizing TE is equivalent to maximizing � .

4 Victory-dependent biases

The problem of maximizing TE when a possibly di¤erent � is chosen at each node has four choice

variables: f�(0;0); �(1;0); �(0;1); �(1;1)g 2 R4>0. As we can see from (5), with victory-dependent

biases one can generate any probability of victory between 0 and 1. Therefore, maximizing TE is

equivalent to

max �
�
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

�
;

where the choice variables are the four probabilities
n
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

o
2 (0; 1)4 and there

are no other constraints. We obtain the following result.
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Proposition 1 Consider a best-of-three Tullock contest between two ex-ante symmetric players.
With victory-dependent biases, the point f�(0;0); �(1;0); �(0;1); �(1;1)g = f1; 1=3; 3; 1g is the unique
global maximum for TE in R4>0. Thus, in the victory-dependent optimal contest p

(i;j)
X = 1=2 for

any i; j 2 f0; 1g.

Proof. See Appendix A.

The �asymmetric�nodes (1; 0) and (0; 1), where one player is leading by one match, are a¤ected

by the momentum/discouragement e¤ect typically present in dynamic contests without endogenous

biases. With endogenous biases, Proposition 1 shows that it is optimal to give the laggard an

advantage in these asymmetric nodes; namely, if X loses the �rst match, the game reaches node

(0; 1) and X is given an advantage of �(0;1) = 3, while if X wins the �rst match, the game reaches

node (1; 0) andX is given a disadvantage of �(1;0) = 1=3. These values of �(0;1) and �(1;0) counteract

the unbalanced competition due to the momentum/discouragement e¤ect and leave players equally

likely to win the second match in equilibrium, as Proposition 1 shows. The �symmetric� nodes

(0; 0) and (1; 1), where players have identical continuation values and have won an identical number

of matches, are optimally left unbiased by setting �(0;0) = �(1;1) = 1. Therefore, the unique global

maximum of Proposition 1 leaves players equally likely to win each match and the entire contest;

this is the victory-dependent optimal contest.

The result in Proposition 1 may at �rst seem to be an intuitive extension of the common

wisdom of static contest. However, further re�ection reveals it to be surprising. Intuitively, if

today�s victory grants an advantage tomorrow, a player �ghts �ercely today so as to require less

e¤ort to win tomorrow. This simple intuition has been extensively analyzed by the literature.

The general �nding, stemming from Meyer (1992), is that the second match should be biased in

favor of the winner of the �rst match in order to increase total e¤ort because, �...starting with no

bias, the introduction of a small amount in favor of the �rst-period winner generates a �rst-order

increase in �rst-period incentives, but only a second-order reduction in second-period incentives...�

(see Meyer, 1992; p. 167). Ridlon and Shin (2013), when analyzing competition between two

employees of asymmetric abilities, �nd an analogous result if abilities are su¢ ciently similar; �total

e¤ort increases the most in response to a handicapping strategy of favoring the �rst-period winner�

(Ridlon and Shin, 2013; p. 1). There are several di¤erences between the setups of those papers and

ours.26 But the key di¤erence in generating our contrasting result is that in our setup the length

26�Favor-the-leader� results are not universally true in all contest models, and thus it is informative to brie�y
describe the setups of Meyer (1992) and Ridlon and Shin (2013). In Meyer (1992), two agents, indexed by k, exert
e¤ort ak each, and agent k�s per-period output is given by xk = f (ak; s) + "k, where s is a common shock a¤ecting
the production of both agents and "k is the individual-speci�c shock. The function f is strictly increasing and weakly
concave in ak. The per-period winner is agent i (j) if xi + c >(<)xj , where c is the bias i�s output. Ridlon and
Shin (2013) consider a two-period model, where in each period two players compete in a Tullock contest for a �xed
prize v, with multiplicative biases, like ours. The designer does not know the identity of the contestants (who is
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Figure 2: Equilibrium e¤orts per match as a function of " when �(0;0) = �(1;1) = 1, �(0;1) = 3� ",
and �(1;0) = 1=(3� ").

of the game depends on the results of previous matches: contestants play a tie-break only if they

are tied. In contrast, all two matches are always played in Meyer (1992). This is very important

for us, as we explain below.

The intuition behind the �favor-the-leader�literature would suggest, in our setup, leaving some

small advantage in the second match to the winner of the �rst match by setting �(0;1) = 3 � "
with some small " > 0 and symmetrically �(1;0) = 1=(3 � "), which would result in p(0;1)X < 1

2 and

p
(1;0)
X > 1

2 . In Figure 2, we plot the e¤orts of each match, weighted by the corresponding probability

of reaching such match, as a function of ". One can see that, in our setup, setting " > 0 would result

in a �rst-order increase in �rst-period e¤orts and a negligible decrease in second-period e¤orts, in

line with the favor-the-leader literature. However, in our best-of-three setup, a new force arises:

setting " > 0 has an extra negative �rst-order e¤ect due to a lower probability of reaching node

(1; 1). Proposition 1 shows that all �rst-order e¤ects balance out and, when considering second-order

e¤ects, we �nd that the bene�cial e¤ect of setting " = 0 in terms of probability of reaching node

(1; 1) overwhelms the favor-the-leader increase in �rst-period e¤orts that setting " > 0 generates.

One may also wonder why the victory-dependent optimal contest does not give the loser of the

�rst match a greater than half probability of winning the second match; in fact, with favor-the-

loser biases, one restores second-match competition, which is bene�cial to e¤orts. One can see

the answer by setting " < 0 in the above favor-the-leader exercise. In Figure 2, we show that, in

strong and who is weak), but the outcome of the �rst period serves as a source of noisy information for the designer
about players� identities. The designer precommits to a bias, which she assigns in the second period to one of the
two players after having observed the outcome of the �rst period, and thus having updated her belief about who is
the strong player. They �nd that, if abilities are su¢ ciently similar, total e¤ort increases the most in response to a
favor-the-leader policy.
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our setup, setting " < 0 would result in a �rst-order decrease in �rst-period e¤orts, a negligible

change in second-period e¤orts, and a �rst-order increase in the third-period expected e¤ort, as the

probability of reaching the third period decreases in ". As above, Proposition 1 shows that all �rst-

order e¤ects balance out and, when considering second-order e¤ects, we �nd that the detrimental

e¤ect in �rst-period e¤orts dominates the bene�cial e¤ect of a greater probability of reaching the

third period that setting " < 0 generates.27

Thus, the common wisdom for static contests, namely to leave players equally likely to win in

equilibrium, extends to each node and to the entire contest in our dynamic model.28 However, this

is clearly possible because the designer can tailor biases to the outcome of previous matches, so as

to keep competition �erce at all nodes and counteract the momentum/discouragement e¤ect. In the

remainder of the paper we characterize and discuss the victory-independent optimal contest: the

optimal vector of biases when the designer cannot tailor biases to the outcome of previous matches.

5 Victory-independent biases

Under victory-independent biases, the model has the extra constraint �(0;1) = �(1;0) with respect

to Section 4. More generally, biases depend on matches only, not on nodes, so that �(i;j) = �i+j+1
with i; j 2 f0; 1g; that is, �i+j+1 is given to player X in the (i+ j + 1)th-match regardless of the

outcome of previous matches. Thus, the vector of biases that can be used to maximize TE is

f�1; �2; �3g: one bias per match. Proposition 1 shows that, with victory-dependent optimal biases,
�(0;1) 6= �(1;0). Hence, we obtain the following result.

Corollary 1 Consider a best-of-three Tullock contest between two ex-ante symmetric players. Victory-
independent biases are not optimal in the larger class of contests with victory-dependent biases.

Furthermore, in a contest with victory-independent biases, it is clearly impossible to induce

an equal equilibrium probability of winning across players at each node of the contest. An easy

way to see this is that, since �2 cannot depend on the outcome of the �rst match, one can set

�2 so as to achieve at most one between p
(1;0)
X = 1=2 and p(0;1)X = 1=2. In this sense, the mo-

mentum/discouragement e¤ect cannot be completely eliminated, as with victory-dependent biases

(Section 4), but can be at most mitigated.

An equal equilibrium probability of winning across players at each node implies an equal equi-

librium probability of winning the entire contest. Since the former can no longer be achieved,
27 In Figure 2, summing the e¤orts of the three matches, the graph of TE would be inverse U-shaped in " with

maximum at " = 0, consistent with the �nding of Proposition 1.
28Our main question is whether the common wisdom of the optimality of unbiased contests between two symmetric

players extends to a dynamic contest. But it is also interesting to see whether the related result for asymmetric
players discussed in the Introduction, i.e., that one should bias a static contest in favor of the weaker player to ensure
that each player has the same probability of victory in equilibrium (see e.g., Proposition 2 in Franke, 2012), also
holds in our dynamic model. In Section 6.2, we show that the answer crucially depends on the form of the asymmetry
between players.
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it is natural to ask whether the latter remains optimal, and in particular whether the victory-

independent optimal contest is achieved at �1 = �2 = �3 = 1, which is what we call a fully

unbiased contest. We �nd that a fully unbiased contest does not maximize TE.

Proposition 2 Consider a best-of-three Tullock contest between two ex-ante symmetric players.
With victory-independent biases, the fully unbiased contest f�1; �2; �3g = f1; 1; 1g� thus, p(0;0)X =
1
2 ; p

(1;0)
X = 3

4 ; p
(0;1)
X = 1

4 ; p
(1;1)
X = 1

2� does not maximize TE in R3>0. Therefore, the fully unbiased
contest is not the victory-independent optimal contest.

Proof. See Appendix A.

The main conclusion of the above proposition is that the fully unbiased contest is not optimal

within the family of contests with victory-independent biases. However, one can also show that the

fully unbiased contest does satisfy the FOCs for the maximization of TE. Hence, this underscores

the complexity of the problem, since the FOCs are not su¢ cient to fully characterize the maximum,

but they only provide necessary conditions.29

Below, we �rst explain the intuition behind the result in Proposition 2, and then provide an

analytical characterization of the contest with victory-independent optimal biases.

Intuition. We provide the intuition behind the non-optimality of a fully unbiased contest by
showing that TE increases as we move away from a fully unbiased contest to a particular structure

of biases, which we call alternating contest. In an alternating contest, one player has an advantage

in the �rst match, her rival an advantage of the same magnitude in the second, and the tie-break

is unbiased; that is, f�1; �2; �3g = f�; 1=�; 1g. We illustrate that, within the family of alternating
contests, moving away from � = 1 and setting, for instance, � = 2 increases TE. One can follow

the mathematics behind the reasoning below with the help of the two �gures of Appendix C, one

depicted for � = 1 and the other for � = 2. What happens when moving from � = 1 to � = 2?

In the �rst match, since players are ex-ante symmetric, setting � = 2 creates an asymmetry that

unbalances the �rst match, hence reducing e¤orts. This parallels the common wisdom for static

contests. Thus, setting � = 2 has a negative e¤ect on �rst-match e¤orts. In particular, the decrease

in �rst-match e¤orts is 21
64 �

26
81 ' 0:007.

In the second match, setting � = 2 gives player X an advantage in the �rst match and thus

she will most likely be the winner of the �rst match, but the second match is biased against her.

Hence, the e¤ect of the second-match bias against her is more likely to attenuate than enhance her

lead; in other words, the second-match bias is more likely to help the second-match laggard rather

than the second-match leader. Thus, setting � = 2 has a positive e¤ect on second-match e¤orts.
29 In numerical analysis, one of the commonly used methods is Newton�s method, as described, for instance, in

Judd (1998, Ch. 4.3, p. 103�104), who warns to check whether the Hessian matrix is de�nite. This warning is very
important in our case as Proposition 2 demonstrates, since the fully unbiased contest satis�es the FOCs but it is not
a maximum.
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In the third match, setting � = 2 increases the probability of reaching the third match at all,

as opposed to � = 1; this is easy to see for extreme alternating biases (� ! 1), where the third
match is reached with certainty. Total e¤ort increases with the probability of reaching the third

match. Thus, setting � = 2 has a positive e¤ect on third-match e¤orts. In particular, the bene�cial

e¤ect on e¤orts of increasing the probability of reaching the third match is 1
7 �

1
8 ' 0:018.

All in all, we can neglect the second-match positive e¤ect on e¤orts, as the third-match positive

e¤ect alone (0:018) su¢ ces to overcome the �rst-match negative e¤ect (0:007). In words, when

moving from a fully unbiased contest to an alternating contest (� = 2), the bene�cial e¤ect on the

e¤orts to increase the probability of reaching the third match overcomes the decrease in �rst-match

e¤orts due to the lack of balance in the �rst match.

While setting � = 2 su¢ ces to show that a fully unbiased contest (� = 1) can be improved

upon, Proposition 3 below shows that the TE-maximizing contest in the family f�; 1=�; 1g has �� 2
(4:2; 4:3). Furthermore, while Proposition 2 shows that the fully unbiased contest f�1; �2; �3g =
f1; 1; 1g is not optimal, it remains of interest the direction in which one could move to improve
upon the fully unbiased contest, and Proposition 3 shows that one such direction is precisely that

of an alternating contest.

Proposition 3 Consider a best-of-three Tullock contest between two ex-ante symmetric players.
With victory-independent biases and within the family of alternating contests f�1; �2; �3g = f�; 1=�; 1g,
let TE (�) be TE as a function of � 2 (0;1). Setting � = 1 (the fully unbiased contest) gives a local
minimum for TE (�). There is a unique �� such that �� and 1=�� are the only two global maximiz-

ers of TE (�). Furthermore, �� is found as the unique solution larger than 1 of @TE (�) =@� = 0,

and we �nd that �� 2 (4:2; 4:3). Finally, the only value of � such that the ex-ante probability of
victory are identical across players is � = 1; thus, the optimal alternating contest gives di¤erent

ex-ante probabilities of victory across symmetric players.

Proof. See Appendix A.

Numerical simulations show that the probability of reaching the third match sharply increases

(from 0:25 to 0:41) as one moves from � = 1 to � = ��, in line with the intuition discussed above.

An immediate consequence of Proposition 3 is the following:

Corollary 2 Consider a best-of-three Tullock contest between two ex-ante symmetric players. A
fully unbiased contest is not optimal in the class of alternating contests.

In the remainder of this section, we provide analytical and numerical features of the victory-

independent optimal contest, which is the best-of-three contest with victory-independent biases

chosen to maximize TE.
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Victory-independent optimal contest: analytical characterization. We proceed by

reformulating the problem in terms of p(0;0)X ; p
(1;0)
X ; p

(0;1)
X ; and p(1;1)X as done in Section 4: Since

�(0;1) = �(1;0), in contrast to Section 4, there is a constraint that p
(0;1)
X and p(1;0)X in (11) and (12)

must satisfy, as described in the following lemma.

Lemma 2 Consider p(0;1)X and p(1;0)X in (11) and (12). If �(0;1) = �(1;0), then

p
(1;0)
X = p

(0;1)
X

�
1 + p

(1;1)
X

��
1 + p

(1;1)
Y

�
2p
(0;1)
X + p

(1;1)
X p

(1;1)
Y

: (16)

Proof. See Appendix A.

Therefore, the victory-independent optimal contest is the solution to problem (P ) below:

max �
�
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

�
s.t. (16) ; (P)

where the choice variables are the four probabilities
n
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

o
2 (0; 1)4. Naturally,

if the optimal solution of (P ) exists, then it must satisfy the FOCs, but as we discussed above,

the FOCs are not su¢ cient. To make further progress toward the characterization of the optimal

solution of (P ), let �� be the value of � at the optimal solution of (P ), if it exists, and consider

p
(0;0)
X =

457

657
, p(0;1)X =

37

451
, and p(1;1)X =

313

730
;

along with the resulting p(1;0)X obtained from (16) and the above displayed values. Simple substitu-

tion of this feasible point into � (�) shows that

�� >
25

76
: (17)

In a sequence of lemmas, we use (17) to reach contradictions so as to characterize properties of the

optimal solution of (P ).

Lemma 3 Problem (P ) admits a solution. At the optimal solution of (P ), we have30

1

5
< p

(0;0)
X <

4

5
,
1

5
< p

(1;1)
X <

4

5
: (18)

Proof. See Appendix A.

30Throughout this section, when no confusion arises, we omit the star to denote equilibrium quantities.
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Lemma 4 At the optimal solution of (P ), we have

1) 0 = @�=@p(0;0)X , leading to

p
(0;0)
X =

1

2

�
p
(1;1)
Y

�2
p
(1;0)
X

�
1 + p

(1;0)
Y

�
+
�
p
(0;1)
Y

�2
p
(1;1)
X

�
1 + p

(1;1)
Y

�
p
(1;0)
X p

(1;1)
Y

�
1� p(1;1)X p

(1;0)
Y

�
+ p

(1;1)
X p

(0;1)
Y

�
1� p(0;1)X p

(1;1)
Y

� : (19)

2) p(1;0)X � 1
2

(1+p
(0;0)
Y )p

(1;1)
Y

1�p(1;1)X p
(0;0)
Y

:

3) p(0;1)X � 1
2

(1+p
(1;1)
Y )p

(0;0)
Y

1�p(1;1)Y p
(0;0)
X

:

4) p(1;1)X � 1
2 and @�=@p

(1;1)
X have the same sign.

Proof. See Appendix A.

Lemma 3 and Lemma 4 characterize p(i;j)X , while Lemma 5 below characterizes the connection

between �1, �2, �3 and p
(0;0)
X , p(1;0)X , p(0;1)X , p(1;1)X at the optimal solution of (P ).

Lemma 5 Consider the optimal solution of (P ) and the corresponding optimal values of �1, �2,
�3. We have

1) p(0;0)X T 1
2 , �1 T 1

2) p(1;0)X T 1+p
(1;1)
X

2 , �2 T 1

3) p(0;1)X T p
(1;1)
X

2 , �2 T 1

4) p(1;1)X T 1
2 , �3 T 1

Proof. See Appendix A.

We can use Lemma 3, Lemma 4, and Lemma 5 to show that the optimal solution of (P ) involves

alternating advantages in the �rst two matches, which is one of the salient features of the example

f�1; �2; �3g = f2; 1=2; 1g that we discussed above when illustrating the intuition.

Proposition 4 Consider the optimal solution of (P ) : The implied values of �1 and �2 are such
that (�1 � 1) (�2 � 1) < 0. Hence, the �rst match is biased in favor of a player and the second in
favor of her rival.
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Proof. See Appendix A.

Another salient feature of the example f�1; �2; �3g = f2; 1=2; 1g that we discussed above when
illustrating the intuition is that the tie-break is unbiased. This assumption was made to simplify

the intuition behind Proposition 2; however, this is not true of the optimal solution of (P ), as the

following proposition shows.

Proposition 5 Consider the optimal solution of (P ) : The implied values of �3 is di¤erent from 1.

Hence, the tie-break is biased.

Proof. See Appendix A.

An immediate consequence of Proposition 5 is the following:

Corollary 3 Consider a best-of-three Tullock contest between two ex-ante symmetric players. An
alternating contest is not optimal in the class of contests with victory-independent biases.

Next, we prove that the ex-ante probabilities of victory di¤er across players in the optimal

solution of (P ).

Proposition 6 In the victory-independent optimal contest solving (P ), the ex-ante probabilities of
victory are di¤erent across players.

Proof. See Appendix A.

Victory-independent optimal contest: numerical simulations. Propositions 4-6 ana-

lytically characterize some key properties of the victory-independent optimal contest. Numerical

simulations show that the victory-independent optimal contest makes all matches biased in the

following way:

f�1; �2; �3g � f5:22; 0:33; 0:75g;

in line with the analytical �ndings of Proposition 4 and Proposition 5.

Thus, it is optimal to give a large (approx. 5) advantage to player X in the �rst match, and

balance it out with a medium (approx. 3) advantage to player Y in the second match and a small

(approx. 4=3) advantage to player Y in the third match, if necessary. Moreover, one can show that

the optimal alternating contest already attains roughly 81% of the improvement achieved by the

victory-independent optimal contest over the fully unbiased contest. Reasonably, in the optimal

alternating contest � � 4:21, which is in-between the �rst-match advantage given to X (approx. 5)
and the second-match advantage given to Y (approx. 3) of the victory-independent optimal contest.
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Next, we analyze the equilibrium winning probabilities in the victory-independent optimal con-

test. Evaluating pX at each node, we obtain

p
(0;0)
X � 0:696, p(0;1)X � 0:082, p(1;0)X � 0:450, p(1;1)X � 0:429:

In (0; 0), on the one hand, the optimal bias yields a substantial departure from pX = 0:5. On the

other hand, it is less than what would happen without dynamics; in fact, if we apply the optimal

�1 to a one-shot contest, we obtain pX � 5:22=6:22 � 0:839. Instead, with dynamics, one needs to
account for the future advantages of Y . In (0; 1), it is not at all surprising to obtain a small pX .

In fact, two e¤ects point in the same direction: Y is both one match ahead and advantaged by the

bias. Instead, in (1; 0), while Y is still advantaged by the bias, she is lagging one match behind.

The bias favoring Y more than compensates for her disadvantage of lagging one match behind �

i.e., p(1;0)X < 1=2. In the last node (1; 1), the stakes are the same for X and Y . Thus, what accounts

for p(1;1)X being di¤erent than 1=2 is solely the mechanical e¤ect of �3 6= 1. Combining the above
�ndings, we calculate that the ex-ante probability of victory for player X is 0:488, in line with the

analytical �nding of Proposition 6.

6 Extensions

6.1 Generalized Tullock contests

In this section, we consider �generalized�Tullock contests, i.e., we replace the contest technology

(1) with

p
(i;j)
X (x(i;j); y(i;j)) =

8<:
�(i;j)(x(i;j))

r

�(i;j)(x(i;j))
r
+(y(i;j))

r if (x(i;j); y(i;j)) 6= (0; 0)
1
2 if (x(i;j); y(i;j)) = (0; 0) ;

(20)

where r 2 (0;1) (Tullock, 1980). The contest technology (1) corresponds to r = 1. In what follows,
we discuss separately the cases r 2 (0; 1), r 2 (2;1), and r 2 (1; 2], as the nature of equilibrium
is di¤erent in each case: the equilibrium is in pure strategies for r 2 (0; 1) ; in mixed strategies for
r 2 (2;1) ; and in semi-mixed or pure strategies for r 2 (1; 2] depending on the biases chosen by
the designer. Furthermore, for r 2 (1;1), a further adjustment to (20) in case of a tie with zero
e¤orts is needed, as we discuss below.

6.1.1 Generalized Tullock contest with r 2 (0; 1)

In this section, we begin by asking whether Proposition 1 and Proposition 2 carry over to a contest

technology (20) with r 2 (0; 1). With victory-dependent biases, we �nd that Proposition 1 carries
over 8r 2 (0; 1). Formally, we obtain:

21



Proposition 7 Consider a best-of-three generalized Tullock contest between two ex-ante symmetric
players with r 2 (0; 1). With victory-dependent biases, the point f�(0;0); �(1;0); �(0;1); �(1;1)g =n
1;
�
2�r
2+r

�r
;
�
2+r
2�r

�r
; 1
o
is the unique global maximum for TE in R4>0 for every r 2 (0; 1). Thus,

in the victory-dependent optimal contest p(i;j)X = 1=2 for any i; j 2 f0; 1g.

Proof. See Appendix B.

With victory-independent biases, we �nd that Proposition 2 carries over only if r is su¢ ciently

close to 1. Formally, we obtain:

Proposition 8 Consider a best-of-three generalized Tullock contest between two ex-ante symmetric
players with r 2 (0; 1). With victory-independent biases, there exists r̂ 2 (0; 1) such that, for

every r 2 (r̂; 1), the fully unbiased contest f�1; �2; �3g = f1; 1; 1g does not maximize TE in R3>0.
Therefore, if r 2 (r̂; 1), then the fully unbiased contest is not the victory-independent optimal contest.

Proof. See Appendix B.

Numerical results show that r̂ � 0:826581, and that, if r < 0:801; then the fully unbiased contest
is the victory-independent optimal contest.31 In fact, when r is small, the momentum/discouragement

e¤ect loses quantitative relevance, and thus dynamically leveling the playing �eld becomes less at-

tractive. Therefore, an interesting similarity between our results and those in Feng and Lu (2018)

arises for an r su¢ ciently close to 0. Since the momentum/discouragement e¤ect is small in this

case, we �nd no bene�t from the introduction of biases. Similarly, in this case Feng and Lu (2018)

�nd no bene�t from diverting resources away from a prize for winning all matches in favor of prizes

for winning individual matches: �When discriminatory power r stays low, the momentum e¤ect is

weaker; therefore, there is no need to provide battle prizes to mitigate the momentum e¤ect for

e¤ort elicitation�(see Feng and Lu, 2018, p. 83).

In Proposition 3, we showed that moving from f�1; �2; �3g = f1; 1; 1g in the direction implied
by an alternating contest f�1; �2; �3g = f�; 1=�; 1g increases TE for � in a neighborhood of 1. We
now generalize to r 2 (0; 1) this result.

Proposition 9 Consider a best-of-three generalized Tullock contest between two ex-ante symmetric
players and r 2 (0; 1). With victory-independent biases and within the family of alternating contests
f�1; �2; �3g = f�; 1=�; 1g, let TE (�) be TE as a function of � 2 (0;1). There exists ~r 2 (0; 1)
such that, for every r 2 (~r; 1), setting � = 1 (the fully unbiased contest) gives a local minimum for

TE (�). Therefore, if r 2 (~r; 1), then the fully unbiased contest is not optimal even within the class
of alternating contests.

31When r 2 [0:801; r̂], numerical results show that the fully unbiased contest is a local, but not global, maximum.
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Figure 3: Optimal � within the family of alternating contests as a function of r 2 [0:8; 1].

Finally, within the family of alternating contests, we numerically compute the optimal �� as a

function of r 2 (0; 1]. We �nd the threshold value ~r � 0:828 of Proposition 9, such that �� = 1 for
every r 2 (0; ~r), and for larger values of r we �nd that �� is an increasing function of r, as expected.
For r = 1, we �nd, as discussed in Proposition 3, that �� � 4:21. We plot �� as a function of r in
Figure 3, where we discretize the grid of r 2 [0:8; 1] into 21 values, of steps 0:01 each, and for each
such r we computed numerical simulations to derive the optimal �� in an alternating contest.

6.1.2 Generalized contest with r 2 (2;1)

In this section, we ask whether Proposition 1 and Proposition 2 carry over to a contest technology

(20) with r 2 (2;1). In doing so, we build heavily on the elegant characterization results by
Ewerhart (2017). In a nutshell, we �nd that when r 2 (2;1) there is a continuum of optimal

biases, both for the victory-dependent and victory-independent setups. The optimal biases we

characterized in Proposition 1 belongs to this continuum. And it turns out that the fully unbiased

contest, which is not optimal when r = 1 as shown in Proposition 2, also belongs to this continuum

of optimal biases.

In what follows, it will often happen as the analysis develops that, in a match, player j 2 fX;Y g
�ghts for an e¤ective prize �uj = 0 whereas her rival �ghts for a strictly positive e¤ective prize. It
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is well known that this situation may generate issues with equilibrium existence. To sidestep this

problem, we make the following key assumption that modi�es the contest technology in (20) :

If �ui > �uj = 0 with i; j 2 fX;Y g and i 6= j, then pi (0; 0) = 1. (A)

In words, we assume that the player �ghting for the strictly positive prize wins with probability

1 if both players exert 0 e¤ort, so that both players exerting no e¤ort is the only equilibrium.

Assumption (A) is common in the literature and it is also made, for instance, in Konrad and

Kovenock (2009) for an analogous reason (see the paragraph directly after their Proposition 1).32

As for victory-dependent biases, we �nd that when r 2 (2;1) there is a continuum of victory-

dependent optimal biases. The vector
�
�(0;0); �(1;0); �(0;1); �(1;1)

	
= f1; 1=3; 3; 1g of Proposition 1

is now only one among the continuum of optimal biases. Formally, we obtain the following result.

Proposition 10 Consider a best-of-three generalized Tullock contest between two ex-ante symmet-
ric players with r 2 (2;1) and assumption (A). With victory-dependent biases, TE is maximized

if and only if the quadruple
�
�(0;0); �(1;0); �(0;1); �(1;1)

	
satis�es the following condition:8>><>>:

�
1=r
(0;0)

�
1� �1=r(1;1)

�
�
�
�
1=r
(0;0) � 1

�
�
1=r
(1;0) = 0 if �(1;1) < 1,

�(0;0) = 1 if �(1;1) = 1;

�
1=r
(0;0)

�
1� �1=r(1;1)

�
�
�
�
1=r
(0;0) � 1

�
�
1=r
(0;1) = 0 if �(1;1) > 1:

(21)

Therefore, there is a continuum of victory-dependent optimal biases. Furthermore, full-rent extrac-

tion is achieved by all victory-dependent optimal biases.

Proof. See Appendix B.

As for victory-independent biases, we also �nd that when r 2 (2;1) there is a continuum of

victory-independent optimal biases. Formally, we obtain the following result.

Proposition 11 Consider a best-of-three generalized Tullock contest between two ex-ante symmet-
ric players with r 2 (2;1) and assumption (A). With victory-independent biases, TE is maximized
if and only if the triple f�1; �2; �3g satis�es(

�
1=r
1

�
1� �1=r3

�
�
�
�
1=r
1 � 1

�
�
1=r
2 = 0 if �3 6= 1,
�1 = 1 if �3 = 1:

(22)

Therefore, there is a continuum of victory-independent optimal biases. Furthermore, full-rent ex-

traction is achieved by all victory-independent optimal biases.
32Konrad and Kovenock (2009), in their Footnote 11, also present a limiting argument to justify assumption (A):
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Proof. See Appendix B.

Note �rst that (21) and (22) are very similar as, in the optimum, TE is not a¤ected by whether

biases are victory dependent or victory independent. In fact, when �3 or �(1;1) is smaller than 1,

then e¤orts in node (0; 1) are always 0 as the player who has an advantage in the tie-break will

also be one match ahead in the second match, and hence �(0;1) plays no role in TE by assumption

(A). Similarly, when �3 is greater than 1, e¤orts in (1; 0) are 0, and hence �(1;0) plays no role by

(A). Therefore, imposing the extra constraint of victory-independent biases (�2 = �(1;0) = �(0;1))

does not decrease TE. In what follows, we present the intuition behind propositions 10 and 11

by focusing on the continuum of victory-independent optimal biases with �3 � 1 characterized in
(22). (The intuition for the other cases, namely victory-dependent and �3 > 1; is analogous.) In

particular, we discuss two families of optimal biases satisfying condition (22); one with ��3 = 1 and

one with ��2 = 1.

Intuition. A �rst family of optimal biases that condition (22) includes is ��1 = 1, �
�
2 2 (0;1),

��3 = 1, and r 2 (2;1). This nests the case of f��1; ��2; ��3g = f1; 1; 1g, which we showed was not
optimal when r = 1 in Proposition 2. When ��1 = ��3 = 1, the equilibrium payo¤ of the third

match is 0 for both players, so that whoever is one match ahead in the second match wins for

sure with no e¤ort by (A) (as her rival is �ghting for an e¤ective prize of 0), and hence the only

match where e¤orts are non-negative is the �rst one, which is unbiased. Consequently, full rent

extraction is obtained, as is well-known to be the case, for instance, in a one-shot symmetric all-pay

auction (r ! 1). The above discussion applies to every maximizer in the family f1; ��2; 1g with
��2 2 (0;1).
A second family of optimal biases that condition (22) includes is one with ��1 6= 1, ��2 = 1, and

��3 6= 1. Consider, for instance, r = 3 and f��1; ��2; ��3g = f8; 1; 1=8g, which satis�es (22). In node
(1; 1) ; e¤orts are 1=4 for both players and X has payo¤ 0, whereas Y has payo¤ 1=2. In node (1; 0) ;

e¤orts are 1=4 for X and 1=8 for Y , X wins with probability 3=4 and has a payo¤ of 1=2, and Y has

a payo¤ of 0. In node (0; 1) ; both e¤orts are 0, Y wins for sure, and the payo¤ of X is 0 and that

of Y is 1. In node (0; 0) ; e¤orts are 1=4 for X and 1=2 for Y, and players are equally likely to win.

Hence, the full rent extraction is due to the fact that 3=4 of total e¤ort is exerted in node (0; 0)

while the remaining 1=4 necessary to reach full-rent extraction is exerted in node (1; 0), which is

reached with probability 1=2 and where total e¤ort is 3=8, and in node (1; 1), which is reached with

probability 1=8 and where total e¤ort is 1=2.

6.1.3 Generalized contest with r 2 (1; 2]

In this section, we ask whether Proposition 1 and Proposition 2 carry over to a contest technology

(20) with r 2 (1; 2]. In a nutshell, we �nd that our two results are locally robust; namely when r is
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su¢ ciently close to 1, Proposition 1 and Proposition 2 carry over.

For r 2 (1; 2], the equilibrium is in semi-mixed or pure strategies depending on the asymmetry

of the match, which is a¤ected by biases �0s, which are a choice variable for the designer. This

complicates the analysis. The equilibrium characterization that follows is based on the combina-

tion of the equilibria characterizations of pure strategy (e.g., Nti, 1999) and semi-mixed strategy

equilibrium (Wang, 2010). Uniqueness of the semi-mixed strategy equilibrium is proved by Feng

and Lu (2017).

For r 2 (1; 2], the pure-strategy equilibrium found by FOCs is unique. The characterization is

identical to that for r 2 (0; 1) which we developed in Lemma 6 of Appendix B. In particular, a
necessary and su¢ cient condition for existence of a pure-strategy equilibrium is8<:

�
�uX
�uY

�r
� 1

�(r�1) if �1=r�uX � �uY ;�
�uY
�uX

�r
� �

r�1 if �1=r�uX � �uY :

Using (5) ; (7), and (8) ; this can be equivalently restated in terms of the equilibrium probability of

victory pX as (
1� rpX � 0 if pX � 1

2 ;

1� r (1� pX) � 0 if pX � 1
2 :

In other words, taking as given that in the contest the pure-strategy equilibrium is played, a

designer that chooses � to implement pX can do so if and only if pX 2
�
1� 1

r ;
1
r

�
. If the designer

wants to implement more extreme values of pX , namely pX > 1
r (corresponding to Case I below)

or pX < 1� 1
r (corresponding to Case II below), then players must use the semi-mixed equilibrium

strategy described in Wang (2010).

Adapting Wang�s notation to ours and using Wang�s equilibrium characterization in Proposition

3, we obtain two cases.

� Case I: If
�
�uX
�uY

�r
� 1

�(r�1) , then there is a unique equilibrium which is in semi-mixed

strategies. In equilibrium, X always participates with e¤ort

x =
�uY

�
1
r

(r � 1)�
1
r

�
1� 1

r

�
;

while Y stays inactive with probability 1� ~py and exerts e¤ort �uY (1� 1=r) with probability
~py, where

~py =
�uY

�
1
r�uX

(r � 1)�
1
r .
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Hence, X wins with probability

pX = 1� �uY

�
1
r�uX

(r � 1)�
1
r +

�uY

�
1
r�uX

(r � 1)�
1
r

 
�urY (r � 1)

�1 �
1� 1

r

�r
�urY (r � 1)

�1 �
1� 1

r

�r
+�urY

�
1� 1

r

�r
!

= 1� �uY

�
1
r�uX

(r � 1)�
1
r

�
1� 1

r

�
; (23)

and has an equilibrium payo¤ of

uX = �uX �
�uY

�
1
r

(r � 1)�
1
r

�
1� 1

r

�
� �uY

�
1
r

(r � 1)�
1
r

�
1� 1

r

�
+ uLX

= �uX �
2�uY

�
1
r

(r � 1)�
1
r

�
1� 1

r

�
+ uLX ;

while Y�s equilibrium payo¤ is uLY . Therefore, we can recast total expected e¤ort and utilities

in terms of pX as follows:

x+ y = x+ ~py�uY (1� 1=r) = (�uX +�uY ) (1� pX) ; (24)

uX = �uX (2pX � 1) + uLX ;

uY = uLY :

� Case II:

If
�
�uY
�uX

�r
� �

r�1 , then there is a unique equilibrium which is in semi-mixed strategies. In

equilibrium, Y always participates with e¤ort

y = �1=r�uX (r � 1)�1=r
�
1� 1

r

�
;

while X stays inactive with probability 1� ~px and exerts e¤ort �uX
�
1� 1

r

�
with probability

~px, where

~px =
�

1
r�uX
�uY

(r � 1)�
1
r .

Hence, X wins with probability

pX =
�

1
r�uX
�uY

(r � 1)�
1
r

�
1� 1

r

�
; (25)

and has a payo¤ of uLX ; while Y has a payo¤ of

�uY � 2�
1
r�uX (r � 1)�

1
r

�
1� 1

r

�
+ uLY :
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Therefore, we can recast total expected e¤ort and utilities in terms of pX as follows:

x+ y = ~pxx+ y = (�uX +�uY ) pX ; (26)

uX = uLX ; (27)

uY = �uY (1� 2pX) + uLY :

If neither Case I nor Case II apply, then the pure-strategy equilibrium (e.g., Nti, 1999) is the

unique one. It is described at the beginning of Appendix B.

We �rst discuss the victory-dependent optimal contest with r 2 (1; 2]. We obtain the following
result.

Proposition 12 Consider a best-of-three generalized Tullock contest between two ex-ante sym-
metric players with r 2 (1; 2] and assumption (A). With victory-dependent biases, there exists

�r 2
�
1; 2

�p
3� 1

��
such that, if r 2 (1; �r], then p(i;j)X = 1=2 for any i; j 2 f0; 1g in the victory-

dependent optimal contest. In contrast, if r > 2
�p
3� 1

�
, then p(i;j)X = 1=2 for any i; j 2 f0; 1g

does not maximize TE.

Proof. See Appendix B.

Proposition 12 shows that the result with r = 1 in Proposition 1 is locally robust; when r 2 (1; 2]
is su¢ ciently close to 1, Proposition 1 carries over. However, we do not identify the global maximum

for every value of r in (1; 2], as for r > �r �nding the overall maximum becomes computationally

intensive. The reason is that in each of the four nodes, the designer may induce, with her choice of

biases, an equilibrium that is in pure strategies, in quasi-mixed strategies in which the equilibrium

payo¤ of Y is zero, or in quasi-mixed strategies in which the equilibrium payo¤ of X is zero, and

hence one has to work through 81 (34) possible cases.

As for victory-independent biases, we also �nd that the result with r = 1 in Proposition 2 is

locally robust; when r 2 (1; 2] is su¢ ciently close to 1, Proposition 2 carries over.

Proposition 13 Consider a best-of-three generalized Tullock contest between two ex-ante symmet-
ric players with r 2 (1; 2] and assumption (A). Let r0 be the unique solution in the interval (1; 2)
of

1 +

�
2� r
2 + r

�r
= r;

which yields r0 � 1:1935. With victory-independent optimal biases, if r � r0, then the fully unbiased
contest �1 = �2 = �3 = 1 does not maximize TE in R3>0.

Proof. See Appendix B.
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6.2 Ex-ante asymmetric players

In the results presented so far, we have focused on establishing whether the common wisdom that

unbiased static contests between ex-ante symmetric players maximize TE extends to our dynamic

setup. Clearly, asymmetries between players at the outset are an important departure from this

setup. But, as discussed in the Introduction, a counterpart of the common wisdom is that one

should bias a static contest between asymmetric players in favor of the weaker one to ensure that

each player has the same probability of victory in equilibrium (see e.g., Proposition 2 in Franke,

2012).

In this section on asymmetric players, we show several results. First, we show that how asym-

metry is modeled matters. Indeed, for victory-dependent biases, we show that� depending on how

asymmetry is modeled� optimal biases may or may not leave each player equally likely to win each

match, in contrast with the common wisdom for static contests. Second, for alternating contests,

we show that the introduction of an arbitrarily small amount of asymmetry with respect to the

case of symmetric players is su¢ cient to break the result in Proposition 3 that there are two global

maxima; instead, only one global maximum is obtained. Therefore, in contrast with what happens

with symmetric players, �ipping a fair coin to determine which player should �rst be advantaged

reduces TE. Third, we provide numerical simulations that con�rm, for �small�asymmetries, our

�nding in Proposition 3 regarding the ex-ante probability of victory: the optimal alternating con-

test exacerbates di¤erences in the ex-ante probability of victory across players as compared to a

designer that introduces no (further) biases.

There are two commonly adopted ways to formally analyze asymmetries in the contest literature.

A �rst common way is the one employed in Lien (1990) or in Section 5.2 of Klumpp and Polborn
(2006), i.e., players are asymmetric in terms of their e¢ ciency of e¤orts. In our setup, this is

formalized by changing the contest technology in (1) to

p
(i;j)
X

�
x(i;j); y(i;j)

�
=

�(i;j)�x
(i;j)

�(i;j)�x(i;j) + y(i;j)
: (28)

In words, the e¤ort of player X is multiplied by a commonly-known e¢ ciency parameter � > 0 in all

matches of the contest, and ex-ante asymmetries arise if � 6= 1. Hence, � = 1:1 could be interpreted
as player X being ex-ante 10% more e¢ cient than player Y in all matches. With this form of

asymmetry, according to the de�nition of bias we use, players have an exogenous bias to begin

with. With this form of asymmetry, our main results go through with minor modi�cations in both

victory-dependent and victory-independent setups. Indeed, if we de�ne ~�(i;j) � �(i;j)�, the problem
of maximizing TE by choosing the vector of ~�0s is equivalent to that of choosing the vector of �0s

in the ex-ante symmetric model of Section 2. Thus, in Proposition 1, the optimal p(i;j)X all remain

equal to 1=2 so that
�
~�(0;0); ~�(1;0); ~�(0;1); ~�(1;1)

	
= f1; 1=3; 3; 1g and

�
�(0;0); �(1;0); �(0;1); �(1;1)

	
=
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f1=�; 1= (3�) ; 3=�; 1=�g. Similarly, the characterization of the optimal solution of problem (P ) in

Section 5 is unchanged in terms of pi;jX and simply substitutes ~�(i;j) for �(i;j). This is because

problem (P ) is itself unchanged since the constraint is una¤ected by �. Proposition 2 shows that

the fully unbiased contest is not optimal even when players are ex-ante symmetric, therefore it

becomes less surprising to �nd that the fully unbiased contest is not optimal when players are

ex-ante asymmetric and we do not perform a formal analysis.

Focusing now on alternating contests, an important di¤erence with the symmetric setup is that,

as soon as � 6= 1, the total e¤ort obtained with bias � is di¤erent from that obtained with bias 1=�.
This ends up implying that the introduction of a small exogenous bias � 6= 1 breaks the indi¤erence
between �� and 1=�� in Proposition 3, as shown in the following result.

Proposition 14 Consider a best-of-three Tullock contest between two players in which the con-
test technology in each match is (28). With victory-independent biases and within the family of

alternating contests f�1; �2; �3g = f�; 1=�; 1g, let TE (�; �) be TE as a function of � 2 (0;1)
and � 2 (0;1). Note that TE (�; 1) is strictly maximized by the same �� and 1=�� identi�ed in
Proposition 3 (recall �� 2 (4:2; 4:3)): We obtain

0 <
@TE (�; �)

@�

����
(��;1)

= � @TE (�; �)

@�

����
(1=��;1)

: (29)

Therefore, there exists �� > 1 such that; if 1 < � < ��; then argmax� TE (�; �) is unique and

belongs to a neighborhood of ��. Similarly, there exists �̂ < 1 such that; if �̂ < � < 1; then

argmax� TE (�; �) is unique and belongs to a neighborhood of 1=��.

Proof. See Appendix B.

With the asymmetry introduced by setting � 6= 1, in line with Proposition 14, one should not
expect more than one maximizer for TE (�; �), as we in fact show in the numerical results in the

�rst two columns of Table 1. As can be seen in Table 1, it turns out that the optimal � more than

compensates for the asymmetry in �. In fact, when X is stronger than Y (� > 1), in the unique

optimal alternating contest, player X is less likely to win than player Y. Furthermore, for � in a

neighborhood of 1, the ex-ante probability of victory of X is closer to 1/2 in the fully unbiased

contest (i.e., �1 = �2 = �3 = 1) than in the optimal alternating contest, as shown in Table 1.

Thus, with small asymmetries, the optimal alternating contest pushes the ex-ante probability of

victory in favor of the weak player, but well beyond what is needed to restore a level playing �eld;

in fact, the weak player has an equilibrium probability of winning roughly twice as large as that of

the strong player.
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� ��
Ex-ante Win Prob. of X

Optimal Bias

Ex-ante Win Prob. of X

Fully Unbiased Contest

1/1.1 0.219177 0.645898 0.437185

1/1.05 0.231045 0.663162 0.467731

1 f0:237649; 4:20789g f0:685230; 0:31477g 0.5

1.05 4.32817 0.336838 0.532269

1.1 4.56252 0.354102 0.562815

Table 1. Optimal � and ex-ante probabilities of victory of player X in the optimal alternating and

fully unbiased contests for di¤erent values of �.

A second common way to introduce asymmetries in the model is to let the two players have
asymmetric valuations of victory and marginal costs; VX ; cX and VY ; cY for players X and Y ,

respectively (see, e.g., Franke, 2012).

With victory-dependent biases, a qualitative departure arises from our earlier results. Our

earlier results with VX = VY = V and cX = cY = 1 (see Proposition 1) show that the victory-

dependent optimal biases induce an identical probability of victory across players in each node,

including node (1; 0) and node (0; 1) where one player is one match ahead, and hence players

are asymmetric. This is similar to the canonical static result where the optimal biases induce an

identical ex-ante probability of victory across players regardless of the initial asymmetries between

players (see e.g., Proposition 2 in Franke, 2012). However, we show below that, in the case of

a best-of-three contest, the canonical static result does not extend; if (VX=cX) 6= (VY =cY ), then

setting p(0;0)X = p
(1;0)
X = p

(0;1)
X = p

(1;1)
X = 1=2 is not optimal.

Proposition 15 Consider a best-of-three Tullock contest between two ex-ante asymmetric players;
player X�s valuation is VX and her marginal cost of e¤ort is cX , and player Y �s valuation is VY
and her marginal cost of e¤ort is cY . With victory-dependent biases, if (VX=cX) 6= (VY =cY ), then
TE is not maximized by setting p(i;j)X = 1=2 for any i; j 2 f0; 1g.

Proof. See Appendix B.

Fixing VY = cX = cY = 1, even if we move away from VX = 1, the numerical results in Table

2 show that the victory-dependent optimal contest gives an ex-ante probability of victory closer to

1=2 than in the fully unbiased contest for victory-dependent biases (i.e., �(0;0) = �(1;0) = �(0;1) =

�(1;1) = 1). Thus, with small asymmetries, the optimal alternating contest pushes the ex-ante

probability of victory in favor of the weak player, but it stops short of what is needed to restore a

level playing �eld.
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VX
Ex-ante Win Prob. of X

Optimal Bias

Ex-ante Win Prob. of X

Fully Unbiased Contest

1/1.1 0.494899 0.437185

1/1.05 0.497387 0.467731

1 0.5 0.5

1.05 0.502613 0.532269

1.1 0.505101 0.562815

Table 2. Ex-ante probabilities of victory of player X in the victory-dependent optimal and fully

unbiased contests for di¤erent values of VX , �xing VY = cX = cY = 1.

Turning now to the optimal alternating contest discussed above, but for asymmetries modeled

in values and costs (VX=cX and VY =cY ) rather than in �, it is also the case that the total e¤ort

obtained with bias � is di¤erent from that obtained with bias 1=�: Just as we showed above for

� 6= 1, with the asymmetry introduced by setting (VX=cX) 6= (VY =cY ), one should not expect more
than one maximizer for TE (�), as we in fact �nd in the �rst two columns of Table 3, which is the

analogue to Table 1 for asymmetries modeled in valuations.

As can be seen in Table 3, it turns out that the optimal � more than compensates for the

asymmetry in valuations. In fact, when (VX=cX) > (VY =cY ), i.e., X is �stronger,� in the optimal

alternating contest, player X is less likely to win than player Y. Furthermore, for (VX=cX) and

(VY =cY ) su¢ ciently close to each other, the ex-ante probability of victory of X is closer to 1/2 in

the fully unbiased contest (i.e., �1 = �2 = �3 = 1) than in the optimal alternating contest. The

two �ndings discussed in this paragraph are qualitatively similar to the ones we found in the model

where asymmetries are modeled through � in the contest technology (28).

VX ��
Ex-ante Win Prob. of X

Optimal Bias

Ex-ante Win Prob. of X

Fully Unbiased Contest

1/1.1 0.219767 0.645484 0.437185

1/1.05 0.231499 0.662877 0.467731

1 f0:237649; 4:20789g f0:685230; 0:31477g 0.5

1.05 4.31967 0.337123 0.532269

1.1 4.55027 0.354516 0.562815

Table 3. Optimal � and ex-ante probabilities of victory of player X in the optimal alternating and

fully unbiased contests for di¤erent values of VX , �xing VY = cX = cY = 1.
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6.3 Best-of-�ve

Best-of-�ve competitions are often observed in volleyball, squash, table-tennis for teams, some tennis

tournaments (e.g., Grand Slam, Olympics �nal), some baseball tournaments (e.g., the Division

Series of the MLB post-season round), and some basketball tournaments (e.g., the championship

series of the Women�s NBA). In this section, we consider how propositions 1 and 2 extend to a

best-of-�ve, rather than best-of-three, contest. We also provide an analytical result for best-of-

n contests. Extending to more than three matches substantially enlarges the strategy space of the

designer.

For victory-dependent biases, rather than choosing four biases, the designer chooses nine bi-

ases:
�
�(0;0); �(1;0); �(0;1); �(1;1); �(2;0); �(2;1); �(1;2); �(0;2); �(2;2)

	
. Therefore, we treat the problem

numerically and �nd that the global maximum is reached when �(0;0) = �(1;1) = �(2;2) = 1,

�(1;0) = �(2;1) = 1=3, �(2;0) = 1=9, �(0;1) = �(1;2) = 3, and �(0;2) = 9.33 This structure of biases

mirrors the one obtained analytically for the best-of-three contest, where we additionally learn that,

if one player is two matches ahead of the rival, it is optimal to give an advantage of 9 to the rival,

so as to perfectly level the playing �eld. In fact, with the optimal vector of biases, both players are

equally likely to win each match and thus the overall contest.

For victory-independent biases, rather than choosing three biases, the designer chooses �ve bi-

ases: �1, �2, �3, �4, and �5. First, for an alternating-advantage best-of-�ve contest f�1; �2; �3; �4; �5g =
f�; 1=�; �; 1=�; 1g, numerical simulations show that TE is maximized at � = 9:171 and, for a

victory-independent optimal best-of-�ve contest, numerical simulations show that f�1; �2; �3; �4; �5g �
f0:057; 11:374; 0:204; 3:128; 1:414g maximizes TE. Second, besides the numerical simulations, we
can also analytically con�rm that a fully unbiased contest is not optimal by �xing �3 = �4 = �5 = 1

and asking what vector f�1; �2g maximizes TE. We proceed in two steps. First, repeatedly using
(5)-(8), we compute

u
(2;0)
X =

30 073

30 976
V; u

(2;0)
Y =

1

30 976
V

u
(1;1)
X =

23

128
V; u

(1;1)
Y =

23

128
V; (30)

u
(0;2)
X =

1

30 976
V; u

(0;2)
Y =

30 073

30 976
V:

Second, we derive the following result for a best-of-n Tullock contest.

Proposition 16 Consider a best-of-n Tullock contest between two ex-ante symmetric players. With
victory-independent biases, let �3 = ::: = �n = 1 and calculate u(2;0)X ; u

(2;0)
Y ; u

(1;1)
X ; and u(1;1)Y . If

33We do not treat this problem analytically, although the numerical simulations detect an intuitive vector of optimal
biases. This is because of the well-known complexities already noted by Klumpp and Polborn (2006; p. 1084) for
Tullock contests: �a general closed form solution for the SGPE strategies and payo¤s is desirable [..]. Unfortunately,
such a solution is di¢ cult to obtain for all but a very small number of districts.�
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u
(2;0)
X +u

(2;0)
Y � 2

�
u
(1;1)
X + u

(1;1)
Y

�
, then the fully unbiased contest (i.e., �1 = ::: = �n = 1) does not

maximize TE.

Proof. See Appendix B.

The inequality in Proposition 16 is satis�ed in a best-of-�ve contest, as can be seen in (30).

Therefore, we conclude the following.

Corollary 4 In a best-of-�ve Tullock contest, the fully unbiased contest �1 = ::: = �5 = 1 does not
maximize TE.

The result of Proposition 16 is in line with the result of Proposition 2. In fact, we conjecture

that the non-optimality of an unbiased contest between ex-ante symmetric players carries over to

best-of-n contests, since the same logic we explored appears to hold when comparing the vector of

victory-independent biases f�; 1=�; 1; :::; 1g and f1; 1; 1; :::; 1g because of two e¤ects; the symmetry
of the continuation values from the third match onwards, and the higher probability of reaching

nodes where players have the same number of victories. In fact, in all numerical simulations in

Table 4, the hypothesis u(2;0)X + u
(2;0)
Y � 2

�
u
(1;1)
X + u

(1;1)
Y

�
of the best-of-n result of Proposition 16

is satis�ed for n greater than 5.34

n 7 9 :: 19 :: 99

u
(2;0)
X + u

(2;0)
Y = u

(0;2)
X + u

(0;2)
Y 0:98795 0:98824 :: 0:98767 :: 0:98767

u
(1;1)
X + u

(1;1)
Y 0:36184 0:36882 :: 0:36769 :: 0:36769

Table 4. Equilibrium utilities in a best-of-n Tullock contest with �3 = ::: = �n = 1.

However, the structure of the victory-independent optimal contest in a best-of-n contest is not

a priori clear, and thus is left to future research (see Footnote 33).

6.4 Winner�s e¤ort maximization

The interest in the total e¤ort or the expected winner�s e¤ort crucially depends on the speci�c

application one has in mind. In sport contests, where the audience might �nd a lackluster perfor-

mance of the teams disappointing, total e¤ort maximization is a suitable objective. In contrast, in

sport contests where the organizer cares about having the world record broken, expected winner�s

e¤ort maximization is a suitable objective (see also Serena, 2017).

34The limit value for n ! 1 in Table 4 is consistent with Table 1 in Klumpp and Polborn (2006), where vseqJ as

J !1 is approximately 0:184, because u(1;1)X = u
(1;1)
Y .
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The expected winner�s e¤ort (WE) is de�ned as follows

WE � p
(0;0)
X

�
p
(1;0)
X �

�
x(0;0) + x(1;0)

�
+ p

(1;0)
Y p

(1;1)
X �

�
x(0;0) + x(1;0) + x(1;1)

��
+p

(0;0)
Y p

(0;1)
X p

(1;1)
X �

�
x(0;0) + x(0;1) + x(1;1)

�
+p

(0;0)
Y

�
p
(0;1)
Y �

�
y(0;0) + y(0;1)

�
+ p

(0;1)
X p

(1;1)
Y �

�
y(0;0) + y(0;1) + y(1;1)

��
+p

(0;0)
X p

(1;0)
Y p

(1;1)
Y �

�
y(0;0) + y(1;0) + y(1;1)

� (31)

The top two lines of WE capture player X�s overall e¤ort considering all instances when she

wins, and the bottom two lines do the same for player Y .

We �rst discuss the WE-maximizing victory-dependent biases. Recall that the TE-maximizing

victory-dependent biases are f�(0;0); �(1;0); �(0;1); �(1;1)g = f1; 1=3; 3; 1g. Numerical simulations
show that the WE-maximizing victory-dependent biases are

f�(0;0); �(1;0); �(0;1); �(1;1)g � f1; 0:424; 2:358; 1g;

where �(1;0) = 1=�(0;1), and hence players are ex-ante equally likely to win, as in the TE-maximizing

vector of biases. However, in contrast with the TE-maximizing vector of biases, now, in the second

match, the leader is left with an equilibrium probability of winning the second match greater than

1=2 (approximately 0:56). This is because, in the second match, the leader exerts much greater e¤ort

than the laggard (approximately 3 times greater), and as WE only values the e¤ort of the player

who ends up winning the contest, increasing the win probability of the player who exerts greater

e¤ort is bene�cial to WE. This explains why �(1;0) � 0:424, closer to 1 than the TE-maximizing
�(1;0) = 1=3, which would perfectly level the playing �eld.

Next, we discuss theWE-maximizing victory-independent biases. Recall that the TE-maximizing

victory-independent biases are f�1; �2; �3g � f5:22; 0:33; 0:75g. Numerical simulations show that
the WE-maximizing victory-independent biases are

f�1; �2; �3g � f2:14; 0:52; 0:89g:

The qualitative structure of an alternating contest found under TE-maximization carries over to

WE-maximization. However, biases are now �milder�: the optimal �0s are now closer to 1 in

every match. The intuition behind their optimality is similar to that for victory-dependent biases

explained above; now, with milder biases, in the second match, the most-likely leader (player X)

has a probability of winning the second match of approximately 0:59, while with TE-optimal biases

it was 0:45. As the leader exerts signi�cantly more e¤ort than the laggard, it is crucial for WE to

boost the leader�s probability of winning with a milder advantage given to the laggard. (Such an
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advantage is not too low, otherwise the e¤ect of losing the competition would prevail and would

jeopardize e¤orts.)

Finally, in line with the above intuition of optimal �0s being �milder�underWE-maximization,

we �nd analytically that, within the family of alternating contests, the WE-maximizing ��WE is

closer to 1 than the TE-maximizing �� identi�ed in Proposition 3.

Proposition 17 Consider a best-of-three Tullock contest between two ex-ante symmetric play-
ers. With victory-independent biases and within the family of alternating contests f�1; �2; �3g =
f�; 1=�; 1g, let WE (�) be WE as a function of � 2 (0;1). The fully unbiased contest � = 1 gives
a local minimum for WE (�). There is a unique ��WE such that ��WE and 1=��WE are the only

two global maximizers of WE (�). Furthermore, ��WE is found as the unique solution larger than

1 of @WE (�) =@� = 0, and we �nd that ��WE 2 (1:9; 2). Finally, the only value of � such that
the ex-ante probabilities of victory are identical across players is � = 1; thus, the WE-maximizing

alternating contest gives di¤erent ex-ante probabilities of victory across players.

Proof. See Appendix B.

7 Conclusions

We analyze the e¤ort-maximizing biases in a best-of-three Tullock contest. The �rst contribution

of the paper (Section 4) is to show that the common wisdom of the optimality of unbiased contest

between ex-ante symmetric players extends from a static to our dynamic setup when the e¤ort-

maximizing designer can tailor biases to the outcome of previous matches; that is, by giving a

player a di¤erent advantage or disadvantage tomorrow according to whether she wins or loses today.

Speci�cally, we characterize the victory-dependent optimal contest and show that it eliminates the

well-known �momentum e¤ect�and leaves the two ex-ante symmetric players equally likely to win

each match, and therefore the entire contest; the common wisdom of the optimality of unbiased

contest between ex-ante symmetric players extends. An interesting counterpoint arises when players

are ex-ante asymmetric in their valuations; we �nd that leaving the two ex-ante asymmetric players

equally likely to win at each match is not optimal.

The second contribution of the paper (Section 5) is to show that a fully unbiased contest is

not optimal when the e¤ort-maximizing designer cannot tailor biases to the outcome of previous

matches. We characterize the victory-independent optimal contest and show that biases favor one

player in the �rst match and the other in the second, and the tie-break is biased.35 At the optimum,

35With symmetric players, ex-ante symmetric treatment can be restored by a fair coin �ip that decides who should
receive the advantage, as it happens often in sports.
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the two ex-ante symmetric players are not equally likely to win in equilibrium, both at each match

and in the overall contest; hence, the two ex-ante symmetric players need not be treated identically,

as biasing the contest between ex-ante symmetric players increases e¤orts. The fact that the fully

unbiased contest is not optimal extends to: i) the maximization of the winner�s� rather than total�

e¤ort, ii) best-of-n contests, as long as a simple su¢ cient condition is satis�ed, and iii) to matches

that are modeled as generalized Tullock contests� i.e., with discriminatory parameter r 6= 1� as

long as r is su¢ ciently close to 1.

Our analytical and numerical results depict a bigger picture that could be rephrased as follows;

a fully unbiased contest is not optimal in the class of alternating contests (Corollary 2), which is not

optimal in the class of contests with victory-independent biases (Corollary 3), which is not optimal

in the class of contests with victory-dependent biases (Corollary 1).

To the best of our knowledge, our study is the �rst investigation of the common wisdom of

optimality of unbiased contests in a best-of-three setup, with biases that can di¤er across matches.

Being the �rst investigation, the present paper leaves room for future extensions. First, the families

of biases we analyze (alternating, victory-independent, and victory-dependent) are motivated by

real-life applications, but they are not exhaustive; biases could depend on, rather than the outcome

of matches, players�direct actions, such as e¤orts themselves, or transfers to the designer. Second,

we assumed that the designer has full control over the size of biases; an interesting extension for

applications is that of exogenous-value biases allocated by the designer to either player X or player

Y .
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APPENDIX

A Appendix A: Proofs of results in sections 3-5

In all proofs below, for simplicity we use this notation:

A = p
(0;0)
X ; B = p

(1;0)
X ; C = p

(0;1)
X , D = p

(1;1)
X

1�A = p(0;0)Y ; 1�B = p(1;0)Y ; 1� C = p(0;1)Y , 1�D = p
(1;1)
Y

(NOT)

Proof of Lemma 1. We specialize the general analysis of Section 3, i.e. equations (3)�(8), to

each node.

Node (1,1). Since (1,1) is the last match, uWX = uWY = V and uLX = u
L
Y = 0. Thus,

�u
(1;1)
X = �u

(1;1)
Y = V;�u

(1;1)
X +�u

(1;1)
Y = 2V;

and

D =

�
1 +

1

�(1;1)

��1
; (32)

which using (NOT) veri�es (10). Finally, we have

u
(1;1)
X = V D2; u

(1;1)
Y = V (1�D)2 :

Node (1,0). Recall that at (1,0), if player X wins the game ends, otherwise the game moves

to node (1,1). Thus,

�u
(1;0)
X = V � u(1;1)X ;�u

(1;0)
Y = u

(1;1)
Y ;�u

(1;0)
X +�u

(1;0)
Y = 2 (1�D)V;

and

B =

�
1 +

1

�(1;0)

�
1�D
1 +D

���1
(33)

which using (NOT) veri�es (12). Finally, we have

u
(1;0)
X = B2

�
V � u(1;1)X

�
+ u

(1;1)
X = B2V (1�D) (1 +D) + V D2;

u
(1;0)
Y = (1�B)2 u(1;1)Y = (1�B)2 V (1�D)2 :

Node (0,1). Proceeding as for node (1,0), we obtain

�u
(0;1)
X = u

(1;1)
X ; �u

(0;1)
Y = V � u(1;1)Y , �u(0;1)X +�u

(0;1)
Y = 2DV;
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and

C =

�
1 +

1

�(0;1)

2�D
D

��1
; (34)

which using (NOT) veri�es (11). Finally, we have

u
(0;1)
X = C2u

(1;1)
X = C2V D2;

u
(0;1)
Y = (1� C)2

�
V � u(1;1)Y

�
+ u

(1;1)
Y = (1� C)2 V D (2�D) + V (1�D)2 :

Node (0,0). Proceeding as for nodes (0,1) and (1,0), we obtain

�u
(0;0)
X = u

(1;0)
X � u(0;1)X = V B2 (1�D) (1 +D) + V D2 (1� C) (1 + C) ;

�u
(0;0)
Y = u

(0;1)
Y � u(1;0)Y = V (1� C)2D (2�D) + V B (1�D)2 (2�B) ;

and

�u
(0;0)
X +�u

(0;0)
Y = 2V (B (1�D) +D (1� C)�D (1�D) (C (1� C) +B (1�B))) :

Therefore,

A =

 
1 +

1

�(0;0)

(1� C)2D (2�D) +B (1�D)2 (2�B)
B2 (1�D) (1 +D) +D2 (1� C) (1 + C)

!�1
; (35)

which using (NOT) veri�es (13).

Moving now to total e¤ort in equilibrium, using (9) into (2) we obtain

TE =
�
�u

(0;0)
X +�u

(0;0)
Y

�
A (1�A) +A

�
�u

(1;0)
X +�u

(1;0)
Y

�
B (1�B)

+ (1�A)
�
�u

(0;1)
X +�u

(0;1)
Y

�
C (1� C) + (A (1�B) + (1�A)C)

�
�u

(1;1)
X +�u

(1;1)
Y

�
D (1�D) ;

and substituting the values of �u(i;j)X +�u
(i;j)
Y for any i; j 2 f0; 1g determined above, we obtain

TE = (2V (B (1�D) +D (1� C)�D (1�D) (C (1� C) +B (1�B))))A (1�A)

+A (2 (1�D)V )B (1�B) + (1�A) (2DV )C (1� C) + (A (1�B) + (1�A)C) (2V )D (1�D) :

This last displayed equation, using (NOT), veri�es (14).

Proof of Proposition 1. Recall (NOT ). By the discussion around equation (15), maximizing

TE by choosing biases is equivalent to solving the �original problem�:

max
A;B;C;D

� (A;B;C;D) ,

39



by choosing fA;B;C;Dg 2 (0; 1)4. In fact, as it can be seen in (5) and (6), the designer cannot
induce, with her choice of biases, an equilibrium probability of victory in a match which is 0 or 1

because �uX ;�uY > 0 in every match. Since � (A;B;C;D) is a polynomial, the �relaxed problem�

in which fA;B;C;Dg 2 [0; 1]4 admits a solution by Weierstrass�theorem. We now show that the
solution of the relaxed problem is interior, so the original and relaxed problems have the same

solution.

Note that � (1=2; 1=2; 1=2; 1=2) = 11=32. We now show that the optimal A 2 (0; 1). Indeed,

� (0; B; C;D) = DC (2�D � C) � 2

3

2

3

�
2� 2

3
� 2
3

�
=
8

27
<
11

32
;

and

� (1; B;C;D) = (1�B) (1�D) (B +D) �
�
1� 1

3

��
1� 1

3

��
1

3
+
1

3

�
=
8

27
<
11

32
:

Similarly, we can establish that the optimal D 2 (0; 1). Fix now any (A;D) 2 (0; 1)2 and consider
� only as a function of B and C, a function we denote with �AD(B;C). This function is strictly

concave; indeed, its Hessian matrix is the following negative de�nite matrix:"
�2A(1�D)(1� (1�A)D) 0

0 �2(1�A)D(1�A(1�D))

#
:

Therefore, setting the gradient of �AD(B;C) to zero, we see that �AD(B;C) is maximized at(
B = � (A;D) � 1

2
(2�A)(1�D)
1�D(1�A) 2 (0; 1) ;

C =  (A;D) � 1
2
(1�A)(2�D)
1�A(1�D) 2 (0; 1) :

(36)

Therefore, the optimal solution to the relaxed problem is interior. We now de�ne

~� (A;D) � �AD (� (A;D) ;  (A;D)) = � (A; � (A;D) ;  (A;D) ; D) :

By concavity of �AD, we see that � (A;B;C;D) � ~� (A;D). Straightforward algebra then shows

~� (A;D) =
1

4
(T1 (A;D) + T2 (A;D)) ; (37)

where

T1 (A;D) � A (1�A) +D (1�D) + 1� 2(1�A)A(1�D)D; (38)

T2 (A;D) � (A+D � 1)2
�

A(1�D)
1�D (1�A) +

D (1�A)
1�A (1�D) � 1

�
: (39)
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Furthermore, we see that T2 (A;D) � 0 for any (A;D) 2 (0; 1)2, as

A(1�D)
1�D (1�A) +

D (1�A)
1�A (1�D) � 1 = (A)

1�D
1�D +AD + (1�A) D

1�A+AD � 1

� A+ (1�A)� 1

= 0:

Using the change of variable x � A (1�A) and y � D (1�D), we can rewrite the RHS of
(38) as x + y � 2xy + 1, which is strictly increasing in x and y, as both x � 1

4 and y �
1
4 .

Therefore, A = D = 1
2 is a strict unique maximum for T1 (A;D) and, since T2 (A;D) � 0 and

T2
�
1
2 ;

1
2

�
= 0, A = D = 1

2 is a maximum for T2 (A;D) : Therefore, A = D = 1
2 is the unique

maximum of ~� (A;D). Since � (1=2; 1=2) =  (1=2; 1=2) = 1=2, there is a unique global maximum

for � (A;B;C;D) at fA�; B�; C�; D�g = f1=2; 1=2; 1=2; 1=2g. Recalling (NOT ), this implies p(i;j)X =

1=2 for any i; j 2 f0; 1g. Using (10)-(13), we obtain f�(0;0); �(1;0); �(0;1); �(1;1)g = f1; 1=3; 3; 1g.

Proof of Proposition 2. This proposition can be analytically proved as a special case of the

Proof of Proposition 8 setting r = 1.

Proof of Proposition 3. Recall (NOT ). From (14) with (32)-(35) and using the de�nitions of

�0s in an alternating contest (i.e., �(0;0) = �, �(1;0) = �(0;1) = 1=�, and �(1;1) = 1), then we can

characterize

TE (�) =
3�P1 (�)

(�+ 1)2(�+ 3)2(3�+ 1)2 (3�4 + 26�3 + 166�2 + 26�+ 3)
2 +

1

2
;

where

P1 (�) � 81�12 + 1431�11 + 13968�10 + 76167�9 + 284447�8 + 516514�7

+623232�6 + 516514�5 + 284447�4 + 76167�3 + 13968�2 + 1431�+ 81:

As TE (1) = 41=64 and lim
�!1

TE (�) = lim
�!0

TE (�) = 1=2, then TE (�) admits a global maximum

in the interval � 2 (0;1). The critical points of TE (�) are characterized by @TE(�)
@� = 0, with

@TE (�)

@�
=

3(1� �)P (�)
(�+ 1)3(�+ 3)3(3�+ 1)3 (3�4 + 26�3 + 166�2 + 26�+ 3)

3 ; (40)
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where

P (�) � 729�18 + 17010�17 + 181521�16 + 1007424�15 + 3158964�14 � 161928�13 � 54275324�12

�357517888�11 � 954820258�10 � 1282837972�9 � 954820258�8 � 357517888�7 (41)

�54275324�6 � 161928�5 + 3158964�4 + 1007424�3 + 181521�2 + 17010�+ 729:

As P is continuous and P (1) < 0, then � = 1 is a local minimum for TE (�), since @TE(�)
@� < 0

in a left neighborhood of � = 1 and @TE(�)
@� > 0 in a right neighborhood of � = 1.

Furthermore, besides � = 1, @TE(�)@� = 0 has at most two positive roots by the Descartes�rule

of signs applied to the polynomial P (�) in (41). As TE (�) = TE (1=�), we can focus on � > 1.

One can further show that P (4:2) < 0 and P (4:3) > 0, and hence ��, which is the solution of

P (�) = 0 for � > 1, satis�es �� 2 (4:2; 4:3). Furthermore, �� is a maximum since @TE(�)
@� > 0

in a left neighborhood of �� and @TE(�)
@� < 0 in a right neighborhood of �� (see (40)). Similar

considerations yield that 1=�� is also a maximum. As TE (�) = TE (1=�), both �� and 1=�� are

global maxima, and there cannot be any other solutions by the Descartes�rule of signs.

Finally, we show that the only value of � such that, in an alternating contest, the ex-ante

probabilities of victory are identical across players is � = 1. In an alternating contest, as �3 = 1

and D = 1=2, simple algebra shows that the ex-ante probabilities of victory are identical across

players if and only if

AB = (1�A) (1� C) :

Furthermore, using (35), in an alternating contest we have �1 = 1=�2 = 1=�, thus

A =
3B2 +

�
1� C2

�
3B2 + (1� C2) + �

�
3 (1� C)2 +B (2�B)

� :
We then have the ex-ante probabilities of victory are identical across players if and only if

�
3B2 +

�
1� C2

��
B = �

�
3 (1� C)2 +B (2�B)

�
(1� C)

()
��

3�
3�+1

�2
+ 2�+3

(�+3)2

�
1

3�+1 =
1

�+3

��
3

�+3

�2
+ (3�+2)

(3�+1)2
�

�
() 9�2(�+3)2+(2�+3)(3�+1)2

3�+1 = 9(3�+1)2+(3�+2)(�+3)2�
�+3

() 4� (�� 1)
�
9 (�� 1)2 + 16�

�
= 0

() � = 1:

Proof of Lemma 2 . Recalling (NOT ), p(0;1)X and p(1;0)X in (11) and (12) are B and C described
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in (33) and (34). If �(0;1) = �(1;0) = �2, (33) and (34) read as

B =
1

1 + 1
�2

1�D
1+D

, C =
1

1 + 1
�2

2�D
D

:

Solving these two displayed equalities for �2 and matching solutions gives

B = C
(1 +D) (2�D)
2C �D (1�D) : (42)

Using (NOT ) ; (42) establishes (16) :

Proof of Lemma 3. To see that problem (P ) admits a solution, note that the �relaxed problem�

where
n
p
(0;0)
X ; p

(1;0)
X ; p

(0;1)
X ; p

(1;1)
X

o
2 [0; 1]4 admits a solution by Weierstrass�theorem. Therefore, if

the solution of the relaxed problem is interior, (P ) and the relaxed problem have the same solution.

Recall the notation in (NOT ). Note that the optimal A 2 (0; 1). Indeed,

� (0; B; C;D) = DC (2�D � C) � 2

3

2

3

�
2� 2

3
� 2
3

�
=
8

27
<
25

76
< ��;

and

� (1; B; C;D) = (1�B) (1�D) (B +D) �
�
1� 1

3

��
1� 1

3

��
1

3
+
1

3

�
=
8

27
<
25

76
< ��:

Similarly, we can establish that the optimal D 2 (0; 1). Fix now any (A;D) 2 (0; 1)2. We now
show that (B;C) 2 (0; 1)2. First, note that by the constraint of problem (P ), which by (NOT ) is

(16), B = 1, C = 1 and B = 0, C = 0. Second, � (A; 1; 1; D) = (1�A) (1�D) (A+D), which
is maximized by A = D = 1

3 for a value of
�
2
3

�3
. Third, � (A; 0; 0; D) = AD (2�A�D), which

is maximized by A = D = 2
3 for a value of

�
2
3

�3
. Therefore, since �� > 25

76 >
�
2
3

�3
(see (17)), the

optimal solution of the relaxed problem is in the interior of [0; 1]4, so a solution to (P ) exists.

From here, we show that (A;D) 2 (1=5; 4=5)2. Recall the quantities de�ned in the Proof of
Proposition 1, and in particular ~� (A;D), T1 (A;D) and T2 (A;D) , as de�ned in (37), (38) and

(39), respectively. Then, consider a subset S of [0; 1]2 : As � (A;B;C;D) � ~� (A;D), if we show

that for any (A;D) 2 S we have ~� (A;D) � 25
76 , then by (17) the optimal solution of (P ) must be

such that (A;D) =2 S.
We now show that, if A � 4

5 and A+D � 1, then ~� (A;D) � 25
76 . First, note that by A �

4
5 >

1
2 ,

we have @T1(A;D)
@A < 0: Second, we now establish that

@T2 (A;D)

@A
= 2

T2 (A;D)

A+D � 1 + (A+D � 1)
2 @

@A

�
A(1�D)

1�D (1�A) +
D (1�A)

1�A (1�D) � 1
�

< 0:
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Recall that A+D � 1 and, as established in the Proof of Proposition 1, T2 (A;D) � 0. If we also
have D > 1

2 , we can write

@

@A

�
A(1�D)

1�D (1�A) +
D (1�A)

1�A (1�D) � 1
�

= �

�
1�A (1�A)� (A�D)2

��
A
�
D2 + (1�D)2

�
� (1�D)2

�
(1�D (1�A))2 (1�A (1�D))2

� �

�
1� 4

25 �
�
1� 1

2

�2�� 4
5

�
D2 + (1�D)2

�
� (1�D)2

�
(1�D (1�A))2 (1�A (1�D))2

= �
59
100 �

1
5 (1 +D) (3D � 1)

(1�D (1�A))2 (1�A (1�D))2

< 0;

therefore we obtain @T2(A;D)
@A < 0: To analyze the region where 1 � A � D � 1

2 , one can calculate

that
@T2 (A;D)

@A
= �(A+D � 1) w (A;D)

(1�D (1�A))2 (1�A (1�D))2
;

where

w (A;D) � 3 (1�A)3 �D
�
9� 16A+ 2A2

�
(1�A)2 + 2D2 (1�A)

�
4� 18A+ 19A2 � 4A3

�
+2D3A (2�A)

�
6A2 � 10A+ 5

�
�D4

�
12A3 � 10A2 �A� 6A4 + 3

�
�D5 (2A� 1) :

We now show w (A;D) > 0. Note that

@5w (A;D)

@D5
= � (2A� 1) < 0,

therefore @3w(A;D)
@D3 is concave in D for �xed A. As

@3w (A;D)

@D3

����
D=1�A

= 12 (2A� 1)
�
1 + 4A (1�A)� 6A2 (1�A)2

�
> 0;

and
@3w (A;D)

@D3

����
D= 1

2

= 3 (2A� 1) (7� 20A (1�A)) > 0;

then @3w(A;D)
@D3 > 0 for any (A;D) with A � 4

5 and 1� A � D � 1
2 . So

@2w(A;D)
@D2 is increasing in D

for �xed A. Since

@2w (A;D)

@D2

����
D=1�A

= 8A (1�A)
�
2� 2A (1�A)� 9 (A (1�A))2

�
> 0;
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then @2w(A;D)
@D2 > 0 for any (A;D) with A � 4

5 and 1 � A � D � 1
2 . So

@w(A;D)
@D is increasing in D

for �xed A. Now note that

@w (A;D)

@D

����
D=1�A

= 3(1�A)2A2 (2A� 1) (5 + 4A (1�A)) > 0;

therefore @w(A;D)
@D > 0 for any (A;D) with A � 4

5 and 1�A � D � 1
2 . So w (A;D) is increasing in

D for �xed A. Since

w (A; 1�A) = 6A3 (A+ 1) (2�A) (1�A)3 > 0;

we have established that w (A;D) > 0 for any (A;D) with A � 4
5 and 1�A � D � 1

2 , and therefore

also in this region we have @T2(A;D)
@A < 0, thus concluding the proof that if A � 4

5 and A+D � 1,
then ~� (A;D) is decreasing in A.

Now note that, if A � 4
5 and

1
5 � D � 1, we have

~� (A;D) � ~�
�
4

5
; D

�
� 25
76
= �389� 361D � 4476D

2 + 5909D3 + 4883D4

1900(5�D)(1 + 4D) ;

and one can show the numerator of the fraction displayed above is strictly positive, so ~�
�
4
5 ; D

�
< 25

76

for any D � 1
5 . Finally, we show that for 1�A � D < 1

5 , we also obtain ~� (A;D) <
25
76 : Indeed, we

have
~� (A;D) � ~� (1�D;D) (by @T1=@A < 0)

= 1
4T1 (1�D;D) (by T2 (1�D;D) = 0)

= 1
4

�
1 + 2D (1�D)� 2 (D (1�D))2

�
;

which is a quadratic in D (1�D), strictly increasing in D (1�D) < 1
4 and therefore strictly

increasing in D for D � 1
5 ; furthermore we have ~�

�
4
5 ;

1
5

�
= 793

500 <
25
76 . To sum up, if A � 4

5 and

A+D � 1, then we have shown that ~� (A;D) < 25
76 .

We now extend the result to other regions of the space [0; 1]2 using symmetry of ~� . By ~� (x; y) =

~� (y; x), the above argument also implies that if D � 4
5 and A + D � 1, then ~� (A;D) < 25

76 . By

~� (x; y) = ~� (1� x; 1� y), we obtain that if A � 1
5 and A+D � 1, then ~� (A;D) < 25

76 . And �nally by

~� (x; y) = ~� (1� y; 1� x), we conclude that, if D � 1
5 and A+D � 1, then ~� (A;D) < 25

76 . All in all,

we see that if (A;D) 2 S = [0; 1]2 n
�
1
5 ;

4
5

�2
, then ~� (A;D) < 25

76 : Since � (A;B;C;D) � ~� (A;D) for
any (A;B;C;D), we conclude by (17) that the optimal solution to (P ) must have (A;D) 2

�
1
5 ;

4
5

�2
.

Recalling (NOT ), this is (18) :
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Proof of Lemma 4. Recall (NOT ). By (18), (A;D) 2
�
1
5 ;

4
5

�2
.

To see part 1), note that

@�

@A
=

�
D (1�D)B2 +D2C (1� C) +D (1� C)2 +B (1�D)2

�
(1� 2A)

+ (1�D)B (1�B)�DC (1� C) + (1�B � C)D (1�D) ;

so @�
@A = 0 solved for A gives

A =
1

2

(1�D)2B (1�B) + (1� C)2D (1�D) +D (1� C)2 +B (1�D)2

D (1�D)B2 +D2C (1� C) +D (1� C)2 +B (1�D)2
; (43)

which using (NOT ) is (19).

To see parts 2) and 3), recall the de�nitions of � and  in (36) and note that, using (NOT ), part

2) is B � � (A;D) and part 3) is C �  (A;D). We now prove that either one of C >  (A;D) or
B < � (A;D) makes it impossible to solve the FOC of (P ) for B and C. To do so, we �rst require

a little more notation. Using the constraint of problem (P ), which by (NOT ) is (42), we see that

B T � (A;D)() C T l � 1

2

D (1�D)2 (2�A)
D (1�D)2 +A (1 +D +D2 (1�D))

; (44)

C T  (A;D)() B T �h � 1

2

(2�D)2 (1 +D) (1�A)
2�D2 �A (D3 � 2D2 + 2)

:

In other words, the values for �h and l are derived from  (A;D) and � (A;D) using (42) : Letting

the Lagrangean of (P ) be

L � � (A;B;C;D)� �
�
B � C (1 +D) (2�D)

2C +D �D2

�
; (45)

then the FOC for B and C are

0 =
@L

@B
() @�

@B
� � = 0; and 0 = @L

@C
() @�

@C
+ �

(1 +D) (2�D) (1�D)D
(2C +D �D2)

2 = 0:

Clearly, the above displayed equations imply that @�
@B and @�

@C must have di¤erent signs. Since

@�

@C
=
�
D2 (1� 2C)� 2D (1� C)

�
A (1�A) + (1�A)D (1� 2C) + (1�A)D (1�D) ;

@2�

@C2
= �2D (1�A) (1�A (1�D)) < 0; and @�

@C
(A;B;  (A;D) ; D) = 0;
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we obtain

C T  (A;D)) @�

@C
S 0: (46)

Similarly, since

@�

@B
=

�
2D (1�D)B + (1�D)2

�
A (1�A) +A (1�D) (1� 2B)�AD (1�D) ;

@2�

@B2
= �2A (1�D) (1�D (1�A)) < 0; and @�

@B
(A; � (A;D) ; C;D) = 0;

we obtain

B T � (A;D)) @�

@B
S 0: (47)

Finally, note that we can establish  (A;D) > l because it is equivalent to

2A (1�A) (1 +D (1�D))�D2 (1�D)2 > 0;

which is true since, using (A;D) 2
�
1
5 ;

4
5

�2
from (18) and (NOT ), we obtain

2A (1�A) (1 +D (1�D))�D2 (1�D)2 > 21 � 4
52

�
1 +

1 � 4
52

�
�
�
1

4

�2
> 0:

Therefore, if by contradiction we have C >  (A;D) ; then C > l, and thus by (44) we have

B > � (A;D) : But then (46) and (47) imply both @�
@C and

@�
@B are negative, which is a contradiction.

Therefore, at the optimal solution C �  (A;D). Similarly, ifB < � (A;D) ; then C < l <  (A;D).
But then (46) and (47) imply that both @�

@C and
@�
@B are positive, which is a contradiction. Therefore,

at the optimal solution of (P ) we must have B � � (A;D). Using (NOT ) and (36), this establishes
parts 2) and 3).

To establish part 4) of the lemma, note that the multiplier � in (45) must be negative by (47),

the previously established � (A;D) � B; and the �rst-order condition @�
@B = �: Consider now the

FOC for D calculated from (45). We have

0 =
@L

@D
() @�

@D
= �

@
�
B � C (1+D)(2�D)

2C+D�D2

�
@D

=
4 (1� C)C

(2C +D �D2)
2�

�
1

2
�D

�
:

As � < 0, @�@D and D� 1
2 have the same sign. Using (NOT ), this establishes part 4) of the lemma.
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Proof of Lemma 5. To see part 1), recall that in equilibrium p
(0;0)
X is given in (13). Using

(NOT ) ; this is (35). Recalling that �1 = �(1;1), we obtain

A =
1

1 + 1
�1

�
D(2�D)(1�C)2+B(2�B)(1�D)2

B2(1�D2)+D2(1�C2)

� :
Matching with the optimal value of A in (43), the optimal �1 is

�1 =

 
1�D (2�D)C (2� C)� (1�B)2 (1�D)2

D2 (1� C2) +B2 (1�D2)

!2
: (48)

Note that the numerator of the right-hand side of (48) is positive. Indeed, for �xed B and C; its

derivative with respect to D is

2
�
B2 � 2C � 2B + C2 + 1

�
(1�D) ;

whose sign does not depend on D; so the numerator is monotone in D. Therefore, for any D 2 (0; 1),
we have

1�D (2�D)C (2� C)� (1�B)2 (1�D)2 � min
n
1� (1�B)2 ; 1� C (2� C)

o
> 0:

So, using (48), �1 � 1 if and only if

D2
�
1� C2

�
+D (2�D)C (2� C) +B2

�
1�D2

�
+ (1�B)2 (1�D)2 � 1 � 0: (49)

From (43) ; we see that A � 1
2 if and only if

(1�D)B (1�B)�DC (1� C) + (1�B � C)D (1�D) � 0:

Part 1) then follows because this last displayed inequality is the same as (49), as one can calculate

that

(1�D)B (1�B)�DC (1� C) + (1�B � C)D (1�D)
D2 (1� C2) +D (2�D)C (2� C) +B2 (1�D2) + (1�B)2 (1�D)2 � 1

= �1
2
: (50)

So numerator and denominator of (50) have opposite signs for any (C;D).

To see parts 2), 3), and 4), note that they follow immediately from (NOT ), (32)-(34) ; �1 =

�(1;0) = �(0;1); and �2 = �(1;1).

Proof of Proposition 4. Without loss of generality, let �1 > 1 and suppose by contradiction

that �2 � 1 at the optimal solution. By Lemma 5, we have p(0;0)X > 1
2 , p

(1;0)
X � 1+p

(1;1)
X

2 , and
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p
(0;1)
X � p

(1;1)
X

2 . We also recall that p(1;1)X > 1
5 by (18) in Lemma 3.

We proceed with two claims, the proofs of which are immediately below the current proof. The

�rst claim further restricts the possible values of p(0;1)X and p(1;1)X at the optimal solution.

Claim 1. Suppose the optimal solution to (P ) has �1 > 1 and �2 � 1. Then, the optimal

solution must have p(0;1)X < 1
4 and p

(1;1)
X < �D where

�D � 0:458426: (51)

Now we know that since p(1;1)X < 1
2 , by part 4) of Lemma 4 we must have @�=@p

(1;1)
X < 0, which

can be rewritten as

p
(1;1)
X >

1

2

p
(0;0)
X

�
p
(1;0)
Y

�2 �
1 + p

(0;0)
Y

�
+ p

(0;1)
X

�
p
(0;0)
Y

�2 �
1 + p

(0;1)
Y

�
p
(0;0)
X p

(1;0)
Y

�
1� p(1;0)X p

(0;0)
Y

�
+ p

(0;1)
X p

(0;0)
Y

�
1� p(0;0)X p

(0;1)
Y

� : (52)

But (52) is impossible as the second claim shows.

Claim 2. Consider condition (52) in which the value of p(0;0)X is given in (19) and the value

of p(1;0)X is given by the constraint (16). There is no pair
�
p
(0;1)
X ; p

(1;1)
X

�
that solves (52) for 1

5 <

p
(1;1)
X < �D and 1

2p
(1;1)
X � p(0;1)X < 1

4 .

Proof of Claim 1 in the Proof of Proposition 4.
Recall (NOT ). An equivalent expression for the objective function in (P ) is

� (A;B;C;D) =
1

2
� 1
2
D2C2 � 1

2
(1�D)2 (1�B)2 � 1

2

�
B2
�
1�D2

�
+D2

�
1� C2

��
A2

�1
2

�
D (2�D) (1� C)2 +B (2�B) (1�D)2

�
(1�A)2 :

By part 1) of Lemma 4, at the optimal solution @�
@A = 0; which can be rewritten as�

B2
�
1�D2

�
+D2

�
1� C2

��
A = k =

�
D (2�D) (1� C)2 +B (2�B) (1�D)2

�
(1�A) ;

where k simply indicates the common value of the left and right extremes of the above displayed

inequality. Therefore,

�� =
1

2

�
1�D2C2 � (1�D)2 (1�B)2 � kA� k (1�A)

�
=

1

2

�
1�D2C2 � (1�D)2 (1�B)2 �

�
B2
�
1�D2

�
+D2

�
1� C2

��
A
�
;
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where the above is evaluated at the optimal (A;B;C;D) for (P ). Hence, we obtain

�� �
�

max
(A;B;C;D)2[0;1]4

� (A;B;C;D) s.t. B = C (1+D)(2�D)
2C+D�D2

�
; (53)

where

� (A;B;C;D) � 1

2

�
1�D2C2 � (1�D)2 (1�B)2 �

�
B2
�
1�D2

�
+D2

�
1� C2

��
A
�
; (54)

because we obtain the value �� if we evaluate � (A;B;C;D) at the optimal solution for (P ).

Next, we show that if �1 > 1 and �2 � 1, then C < 1
4 at the optimal solution for (P ) by showing

that, if C � 1
4 , then � (A;B;C;D) �

25
76 < �

� (recall (17)), and a contradiction to (53) arises.

It is immediate to show that @
@A� (A;B;C;D) < 0. Also,

@

@C
� (A;B;C;D) = D2C2A�D2C < 0:

We now show that if �1 > 1 and �2 � 1, then @
@B � (A;B;C;D) < 0: Indeed,

@

@B
� (A;B;C;D) = 2 (1�D) (1�D �B (1 +A�D (1�A))) ;

which is negative if

B >
1�D

1 +A�D (1�A) ;

and this last condition is true by �1 > 1 (i.e., A > 1
2 , see part 1) of Lemma 5) and �2 � 1 (i.e.,

B � 1+D
2 , see part 2) of Lemma 5) since we have

1�D
1 +A�D (1�A) �B � 1�D

1 +A�D (1�A) �
1 +D

2

� 1�D
1 + 1

2 �D
�
1� 1

2

� � 1 +D
2

=
D2 � 6D + 1
2 (3�D)

< 0;

as D 2
�
1
5 ;

4
5

�
(recall (18)). By the constraint of problem (P ), if C increases, then B increases.

Therefore, if C � 1
4 , then

B � 1

4
� (1 +D) (2�D)
2
�
1
4

�
+D �D2

=
1

2

(1 +D) (2�D)
1 + 2D (1�D) :
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Thus,

� (A;B;C;D)� 25
76

� �

�
1

2
;
1

2

(1 +D) (2�D)
1 + 2D (1�D) ;

1

4
; D

�
� 25
76

= �96� 528D + 1159D
2 � 2972D3 + 7680D4 � 7904D5 + 2584D6

1216 (1 + 2D (1�D))2
;

and one can show this function is negative for D 2
�
1
5 ;

4
5

�
(recall (18)): Therefore, if C � 1

4 , then

� (A;B;C;D) � 25
76 , which is the desired contradiction.

We now show, if �1 > 1 and �2 � 1, then D cannot be larger than �D: Indeed, by �2 � 1 we

know that C � D
2 and B �

1+D
2 (see parts 2) and 3) of Lemma 5), so with the same procedure as

above we have

� (A;B;C;D)� 25
76

� �

�
1

2
;
1 +D

2
;
D

2
; D

�
� 25
76

= �5� 114D + 304D
2 � 190D3 + 38D4

304
;

and one can show this is strictly negative for D > �D, thus reaching the desired conclusion.

Proof of Claim 2 in the Proof of Proposition 4.
Recall (NOT ). For ease of exposition, restate condition (52) as � > 0, where

� (A;B;C;D) � D � 1
2

(1�B)2A (2�A) + C (1�A)2 (2� C)
A (1�B) (1�B (1�A)) + C (1�A) (1�A (1� C)) :

We begin by �rst considering the interval 15 < D � 1
3 . Note �rst that

@�

@A
=

1

2

A2 (1 +B) (1�B)3 + C3 (1�A)2 (2� C) + C (1�B) (2A (1�A) (1 +B (1� C))� C (1�B))
(A (1�B) (1�B (1�A)) + C (1�A) (1�A (1� C)))2

> 0;

since, by C < 1
4 (Claim 1); B > 1

2 (�2 � 1, Lemma 5 and D > 1
5 );

1
5 < A <

4
5 (18) ; we have

2A (1�A) (1 +B (1� C))� C (1�B) > 24 � 1
52

� 1
4

�
1� 1

2

�
> 0:
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Therefore, if A > 65
100 , then, proceeding along the lines of Claim 1, we have

2

�
� (A;B;C;D)� 25

76

�
� 1� 65

100

 �
1 +D

2

�2 �
1�D2

�
+D2

 
1�

�
D

2

�2!!

�D2

�
D

2

�2
� (1�D)2

�
1�

�
1 +D

2

��2
� 25
38

= �3268D
2 � 1026D � 2014D3 + 266D4 + 107

1520
;

and one can show this is negative for D 2
�
1
5 ;

1
2

�
. Therefore, to avoid violating (17), at the optimal

solution A < 65
100 :

Since @�
@A > 0; we have

� (A;B;C;D) < �

�
65

100
; B;C;D

�
< D � 1

2

98C � 49C2 � 702B + 351B2 + 351
49C + 91C2 � 351B + 91B2 + 260 ;

and further substituting B with the constraint of problem (P ), straightforward algebra shows that

D � 1
2

98C � 702B + 351B2 � 49C2 + 351
49C � 351B + 91B2 + 91C2 + 260 < 0

if and only if

�196C3 (2� C) + 28C2
�
21C + 26C2 � 14

�
D (55)

+(�351 + 1280C � 194C2 + 532C3)D2 + (1222� 2488C + 1252C2 � 728C3)D3

+(�1391 + 1812C � 1030C2)D4 + 4
�
91C2 � 151C + 130

�
D5 < 0:

We now proceed to show that condition (55) is true, and therefore � < 0 for D � 3
10 : In the following

paragraph, by �derivative,�we mean �partial derivative with respect to D of the left-hand side of

(55),�by �increasing�and �decreasing�, we mean �increasing in D�and �decreasing in D�for �xed

C, and by �quasi-concave�we mean �quasi-concave in D�for �xed C:

Note that for C 2
�
1
10 ;

1
4

�
, the 5th derivative with respect to D is positive (recall C � D

2 �
1
2 �

1
5 ).

Therefore, the fourth derivative is increasing. Evaluating it at the upper bound D = 3
10 , it equals,

24
�
�611 + 906C � 484C2

�
< 0:

Therefore, the third derivative is decreasing. Evaluating it at the upper bound D = 3
10 the third

derivative is
12

5
(52� 2143C + 859C2 � 1820C3);
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which is negative for C � 1
10 . Therefore, the second derivative is either �rst increasing and then

decreasing, or always decreasing. Therefore, the second derivative is strictly quasi-concave. Evalu-

ating the second derivative at the lower bound D = 1
5 , we obtain it is equal to

2

25
(2249 + 4344C + 8478C2 + 2380C3) > 0

and at the upper bound D = 3
10 it is equal to

6903� 7190C + 23744C2 � 6160C3
25

> 0:

Therefore, the second derivative is always positive. Hence, the left-hand side of (55) is convex in D

for �xed C. Evaluating the left-hand side of (55) at D = 1
5 we obtain

4

3125
(�4940 + 26564C � 60684C2 � 202300C3 + 266875C4) < 0;

and at D = 3
10 we obtain

7

50000
(�61425 + 437382C � 776532C2 � 1338400C3 + 2960000C4) < 0:

Hence, by convexity we conclude that the left-hand side of (55) is always negative, which concludes

the proof that � < 0 for D � 3
10 .

We now considerD > 3
10 . After tedious but straightforward algebra, one can show that condition

(52) in which the value of A is given in (43) and the value of B is given by the constraint of problem
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(P ) is satis�ed if and only if PL (C;D) > 0; where

PL (C;D) � �64C12D4 (3� 2D)� 64C11D4
�
11D � 15D2 + 6D3 � 6

�
+32C10D2

�
58D3 � 17D2 � 4D � 88D4 + 90D5 � 65D6 + 18D7 + 4

�
�64C9D2

�
68D3 � 19D2 � 122D4 + 144D5 � 120D6 + 79D7 � 38D8 + 8D9 + 4

�
+C8

 
288D13 � 1712D12 + 4864D11 � 10272D10 + 17560D9 � 23420D8 + 24352D7

�19320D6 + 10824D5 � 2076D4 � 1312D3 + 96D2 + 256D + 64

!

�4C7 (1�D) (2�D)
 

32D � 40D2 � 304D3 � 31D4 + 1174D5 � 2278D6 + 2404D7

�2119D8 + 1430D9 � 784D10 + 304D11 � 100D12 + 24D13 + 16

!

�2C6D (1�D)

0B@ 112D + 432D2 � 2272D3 + 412D4 + 8813D5

�19 393D6 + 23 868D7 � 20 794D8 + 14 193D9 � 7785D10

+3442D11 � 1180D12 + 300D13 � 60D14 + 8D15 + 64

1CA

+4C5D2 (1�D)

0B@ 1676D3 � 696D2 � 16D � 100D4 � 5372D5

+11 365D6 � 13 588D7 + 11 466D8 � 7348D9

+3717D10 � 1496D11 + 468D12 � 104D13 + 12D14 + 32

1CA
+C4D2 (1�D)2

 
288D + 312D2 � 2920D3 + 3573D4 + 3668D5 � 15 342D6 + 22 220D7

�20 403D8 + 13 768D9 � 7032D10 + 2640D11 � 660D12 + 80D13 � 48

!

+4C3D3 (1�D)3
 

32D + 128D2 � 328D3 + 59D4 + 791D5 � 1490D6

+1549D7 � 1071D8 + 510D9 � 152D10 + 20D11 � 16

!

+2C2D4 (1�D)4
 
106D2 � 8D � 76D3 � 205D4 + 550D5

�602D6 + 390D7 � 137D8 + 18D9 � 8

!
+4CD6 (1�D)5

�
6D + 14D2 � 35D3 + 33D4 � 12D5 +D6 � 4

�
�D8 (2� 3D) (2�D) (1�D)6

In what follows, by �derivative,�we mean �partial derivative with respect to C�, by �proportional�

we mean �directly proportional�, and by �increasing�and �decreasing�, we mean �increasing in C�

and �decreasing in C�for �xed D. Similarly to the proof of Proposition 6, we analyze the condition

PL (C;D) > 0 by focusing on the proof of the sign of bivariate polynomials (in both C and D).

The more standard proofs of the sign of univariate polynomials (either in C, or in D) are omitted

for brevity.

The 12th derivative of PL is proportional to 2D � 3 < 0, therefore, the 11th derivative of PL is
decreasing. Evaluating at the lower bound C = D

2 the 11
th derivative, we obtain it is proportional

to

2� 9D + 6D2;
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which is strictly negative for D > 3
10 . Therefore, the 11

th derivative is negative, and hence the 10th

derivative is decreasing, in the relevant range.

Evaluating at the upper bound C = 1
4 (see Claim 1) the 10th derivative, we obtain a positive

polynomial in D. Hence, the 9th derivative is increasing, in the relevant range. Evaluating at the

upper bound C = 1
4 the 9

th derivative, we obtain a univariate polynomial in D which is strictly

negative for D > 3
10 . Hence the 8

th derivative is decreasing, in the relevant range. Evaluating

at the upper bound C = 1
4 the 8

th derivative, we obtain a positive polynomial in D, and hence

the 7th derivative is increasing, in the relevant range. Evaluating at the lower bound C = D
2 the

7th derivative, we obtain a polynomial in D;which is strictly positive for D > 3
10 . Hence the 5

th

derivative is convex.

We now skip over the 6th derivative and determine the behavior of the 5th derivative. Evaluating

it at the upper bound C = 1=4, the 5th derivative is a polynomial in D, which is negative by D < �D

(see (51)). Evaluating the 5th derivative at the lower bound C = D=2, the 5th derivative is also

negative by D < �D (see (51)). Therefore, the 5th derivative is negative in the relevant range because

it is convex and it starts and ends negative. So the 4th derivative is decreasing.

Evaluating the 4th derivative at the lower bound C = D
2 , it is negative for D > 3

10 . Therefore,

the 4th derivative is always negative. Evaluating at the lower bound C = D
2 the 3

rd derivative, we

obtain a negative polynomial in D. Therefore the 3rd derivative is always negative. Evaluating at

the lower bound C = D
2 the 2

nd derivative, we obtain a negative polynomial in D. Therefore the

2nd derivative is always negative. Evaluating at the lower bound C = D=2 the 1st derivative, we

obtain a negative polynomial in D. Therefore the 1st derivative is always negative.

Evaluating PL at the lower bound C = D
2 , we obtain it is proportional to

�3 + 6D + 12D2 � 40D3 + 30D4 � 12D5 + 4D6;

which is strictly negative, so PL is always negative. This concludes the proof that � < 0 for D > 3
10 .

Hence, the proof of the claim is complete.

Proof of Proposition 5. Recall (NOT ) and the de�nition of � in (15). From part 4) of Lemma

(5), �3 = 1, which by (32) is equivalent to D = 1
2 , implies

@�
@D = 0; which gives

A+ C � 2AB � 2AC �A2 � C2 +AB2 +A2B +AC2 +A2C = 0: (56)

By D = 1
2 , Lemma (2) gives

B =
9C

1 + 8C
: (57)
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Part 1) of Lemma (5) gives

A =
1

2

�
1� 1

2

�2
B (1�B) + (1� C)2

�
1
2

� �
1�

�
1
2

��
+
�
1
2

�
(1� C)2 +B

�
1�

�
1
2

��2�
1
2

� �
1�

�
1
2

��
B2 +

�
1
2

�2
C (1� C) +

�
1
2

�
(1� C)2 +B

�
1�

�
1
2

��2
=

1

2

�
B � 3C +B2 + C2 + 2

��1 �
2B � 6C �B2 + 3C2 + 3

�
: (58)

Substituting (57) and (58) into (56) gives

(2C + 1)P (C) (4C � 1)
16 (19C + 117C2 � 88C3 + 32C4 + 1)2

= 0; (59)

where

P (C) � �3� 28C + 1208C2 + 22 264C3 + 145 428C4 + 149 024C5

�797 120C6 + 420 864C7 � 53 248C8 � 131 072C9 + 65 536C10:

One solution to (59) is C = 1
4 . To see that this is the only solution, note that by Lemma 3 and

parts 2) and 3) of Lemma (4) we obtain

C � 3
2
1�A
2�A (by part 3) of Lemma (4) and D = 1

2 )

< 3
2

1� 1
5

2� 1
5

(by A 2
�
1
5 ;

4
5

�
and monotonicity)

= 2
3

and
B � 1

2
2�A
1+A (by part 2) of Lemma (4) and D = 1

2 )

� 1
2

2� 4
5

1+ 4
5

(by A 2
�
1
5 ;

4
5

�
and monotonicity)

= 1
3

which by (57) implies

C � 1

19
:

One can show that P (C) > 0 if 1
19 � C �

2
3 . Therefore, C =

1
4 is the only solution to (59).

Proof of Proposition 6. Recall (NOT ). Suppose by contradiction that at the optimal solution

of (P ) it just happens that AB + A (1�B)D + (1�A)CD = 1=2, i.e., the ex-ante probability of

victory for the two players is 1=2. By the same logic in the Proof of Claim 1, it then follows that

�� �
 

max
(A;B;C;D)2[0;1]4

� (A;B;C;D) s.t.

(
B = C (1+D)(2�D)

2C+D�D2

AB +A (1�B)D + (1�A)CD = 1
2

!
;
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where � (A;B;C;D) is de�ned in (54) in the Proof of Claim 1. Next, we show that 
max

(A;B;C;D)2[0;1]4
� (A;B;C;D) s.t.

(
B = C (1+D)(2�D)

2C+D�D2

AB +A (1�B)D + (1�A)CD = 1
2

!
� 25

76
; (60)

thus obtaining �� � 25
76 , which is a contradiction to (17), under the extra constraint of identical

ex-ante probabilities of victory across players. We prove (60) in the remaining of this proof. Note

that we can focus on A > 1=2, as this simply renames who player X is. By Proposition 4 and

Lemma 5, this implies �2 < 1; and so C < D
2 :

We can solve the constraints for A and B in the maximization problem in (60) as

A = (2CD�1)(2C+D(1�D))
4C2D�2C(2D3�3D2+D+2)�2(1�D)D2

B = C (1+D)(2�D)
2C+D�D2 ;

(61)

therefore A > 1
2 is equivalent to

2(2CD � 1) (2C +D (1�D)) < 4C2D � 2C
�
2D3 � 3D2 +D + 2

�
� 2(1�D)D2;

or

1�D � 2C > 0:

From this, along with C � D
2 and Lemma 3, we obtain the restrictions on C and D:

C < min

�
D

2
;
1�D
2

�
; D 2

�
1

5
;
4

5

�
. (62)

Straightforward but tedious algebra shows that, using the values of A and B from (61),

�

�
(2CD � 1) (2C +D (1�D))

4C2D � 2C (2D3 � 3D2 +D + 2)� 2(1�D)D2
; C
(1 +D) (2�D)
2C +D �D2

; C;D

�
� 25

76

is equivalent to
C � n3 (C;D) + l1

76 (2C �D2 +D)
2
l2
� 0; (63)

where

l1 � C5
�
152D2(1 + (1�D)2D)

�
+(1� 2C)2((1� 8C)2 + 8C2) (1�D)3D4

�
(5� 6D)2 + 2D2 + 3D

�
> 0;
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l2 � (1� 2CD)C + C (1�D (1�D) (2D � 1)) + (1�D)D2

>
�
1�D2

�
C + C (1�D (1�D) (2D � 1)) + (1�D)D2 (by (62))

> 0

where we used (62) ; and n3 (C;D) � a3C3 + b3C2 + c3C + d3 with

a3 � �4D
�
50 +D (1�D)

�
76 + 19D + 1572D2 � 7590D3 + 12706D4 � 9576D5 + 2736D6

��
b3 � 2

�
24 +D (1�D)

�
50 + 85D � 190D2 + 4039D3 � 18129D4 + 30563D5 � 23218D6 + 6650D7

��
c3 � �D (1�D)

�
28 + 180D � 581D2 + 3478D3 � 13517D4 + 22918D5 � 17670D6 + 5092D7

�
d3 � (1�D)2D2

�
50� 179D + 463D2 � 1096D3 + 1368D4 � 570D5

�
:

Thus, to establish (63) ; in the remaining of the proof, we prove that n3 (C;D) > 0. In doing so,

similarly to the proof of Claim 2, we focus on the proof of the sign of bivariate polynomials (in
both C and D). The more standard proofs of the sign of univariate polynomials (either in C, or in

D) are omitted for brevity. In what follows, we �rst show that n3 (C;D) > 0 when C � 1=8 and
then when 1=8 < C < 1=2.

When C � 1=8, consider the polynomial d3 (1� 8C)
�
365C2 � 54C + 2

�
=2 which is positive as

d3 � 0, 1� 8C � 0 and 365C2 � 54C + 2 > 0 as its discriminant is (54)2 � 4 � 2 � 365 < 0. We have

n3 (C;D)� d3 (1� 8C)
�
365C2 � 54C + 2

�
2

=
1

2
C � nC�1=82 (C;D) ;

where nC�1=82 (C;D) � a2C2 + b2C + c2, with

a2 � �8D(50�D (1�D)
�
18174� 83604D + 232758D2 � 561445D3 + 886654D4 � 697794D5 + 205314D6

�
);

b2 � 96 + (D � 1)D(�200 + 39510D � 181753D2 + 495518D3 � 1170007D4)

+(D � 1)D6(1841556� 1451714D + 427690D2);

c2 � 4D (1�D) (�14 + 785D � 3717D2 + 9496D3 � 20524D4 + 31661D5 � 25080D6 + 7429D7):

Therefore, if nC�1=82 (C;D) > 0, then we have established n3 (C;D) > 0 and in turn (63) for C � 1
8 :

The discriminant of nC�1=82 is b22� 4a2c2, which is a univariate polynomial in D, and one can show
it is negative for 1

5 � D � 4
5 . Therefore, as n

C�1=8
2 (0; D) > 0, we proved that nC�1=82 (C;D) > 0,

thus concluding the proof for C � 1=8.
When C > 1=8, consider the polynomial d3 (1� 2C) (6C � 1)2, which is positive as d3 � 0 and

C 2 [1=8; 1=2]. We subtract such a polynomial from n3 (C;D) and show that what is left is still
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positive. In particular, what is left is C
�
â2C

2 + b̂2C + ĉ2

�
where

â2 � �4D
�
50� (1�D)D

�
824� 4141D + 9984D2 � 20472D3 + 31646D4 � 25308D5 + 7524D6

��
b̂2 � 2

�
24� (1�D)D

�
�50 + 1415D � 6680D2 + 15221D3 � 28641D4 + 43357D5 � 34922D6 + 10450D7

��
ĉ2 � D (1�D)

�
�28 + 520D � 2625D2 + 5510D3 � 8309D4 + 11578D5 � 9462D6 + 2888D7

�
:

As C is positive, we focus on the sign of nC>1=82 (C;D) � â2C2 + b̂2C + ĉ2. Note that â2 < 0 and
hence nC>1=82 (C;D) is concave in C. As nC>1=82 (C;D) is also positive at all its bounds (namely,

when C = min
�
D
2 ;

1�D
2

	
and C = 1=8, see (62)), then nC>1=82 (C;D) is positive everywhere in the

parameter region of interest. Indeed, for 1=5 � D � 1=2,

n
C>1=8
2

�
D
2 ; D

�
D

= �7524D10 + 43 282D9 � 105 214D8 + 142 747D7 � 123 494D6

+77 874D5 � 40 685D4 + 17 054D3 � 4660D2 + 598D � 4

> 0;

for 1=2 � D � 4=5,

n
C>1=8
2

�
1�D
2 ; D

�
1�D = 7524D10 � 29906D9 + 47302D8 � 40255D7 + 22154D6

�9028D5 + 2699D4 � 319D3 � 71D2 � 28D + 24

> 0;

and for 1=5 � D � 4=5,

16 � nC>1=82

�
1

8
; D

�
= �11932D9 + 48944D8 � 80478D7 + 82318D6

�76112D5 + 56681D4 � 22905D3 + 3732D2 � 298D + 96

> 0:

This shows that nC>1=82 (C;D) > 0, and thus it concludes the proof that n3 (C;D) > 0 for any

C such that 0 � C � min
�
D
2 ;

1�D
2

	
and therefore (63) holds, thus establishing that adding the

constraint AB +A (1�B)D+ (1�A)CD = 1
2 strictly reduces the value of the objective function

in (P ).
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B Appendix B: Proofs of results in Section 6

We begin by extending the preliminaries of Section 3 to r 2 (0; 1) following Nti (1999). When
r 2 (0; 1), the equilibrium probabilities of victory in (5) and (6) are generalized by

pX =
� (�uX)

r

� (�uX)
r
+ (�uY )

r ; (64)

pY =
(�uY )

r

� (�uX)
r
+ (�uY )

r ; (65)

the equilibrium payo¤s (7) and (8) by

uX = �uXpX (1� rpY ) + uLX ; (66)

uY = �uY pY (1� rpX) + uLY ; (67)

and (9) by

x+ y = r (�uX +�uY ) � pXpY : (68)

With the above equations one can generalize Lemma 1 as follows:

Lemma 6 Consider the best-of-three generalized Tullock contest between two ex-ante symmetric
players described. The equilibrium probabilities of victory for X in each node are recursively deter-

mined as function of the vector of biases f�(0;0); �(1;0); �(0;1); �(1;1)g as follows:

p
(1;1)
X =

�
1 +

1

�(1;1)

��1
; (69)

p
(0;1)
X =

 
1 +

1

�(0;1)

 
1 + rp

(1;1)
Y

1� rp(1;1)Y

!r!�1
; (70)

p
(1;0)
X =

 
1 +

1

�(1;0)

 
1� rp(1;1)X

1 + rp
(1;1)
X

!r!�1
; (71)

and p(0;0)X solves

1

p
(0;0)
X

= 1+
1

�(0;0)

0@p(0;1)Y

�
1� rp(0;1)X

�
p
(1;1)
X

�
1 + rp

(1;1)
Y

�
+ p

(1;0)
X p

(1;1)
Y

�
1� rp(1;1)X

��
1 + rp

(1;0)
Y

�
p
(1;0)
X

�
1� rp(1;0)Y

�
p
(1;1)
Y

�
1 + rp

(1;1)
X

�
+ p

(1;1)
X p

(0;1)
Y

�
1 + rp

(0;1)
X

��
1� rp(1;1)Y

�
1Ar

;

(72)

where p(i;j)Y = 1� p(i;j)X for any (i; j) 2 f0; 1g2.
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Furthermore, in equilibrium TE in (2) satis�es

TE

2rV
=

�
p
(1;0)
X p

(1;1)
Y + p

(1;1)
X p

(0;1)
Y � r2p(1;1)X p

(1;1)
Y

�
p
(0;1)
X p

(0;1)
Y + p

(1;0)
X p

(1;0)
Y

��
� p(0;0)X p

(0;0)
Y

+p
(0;0)
X p

(1;1)
Y p

(1;0)
X p

(1;0)
Y +

�
1� p(0;0)X

�
p
(0;1)
X p

(0;1)
Y p

(1;1)
X (73)

+
�
p
(0;0)
X p

(1;0)
Y + p

(0;0)
Y p

(0;1)
X

�
p
(1;1)
X p

(1;1)
Y :

Proof. Straightforward from the Proof of Lemma 1.

Proof of Proposition 7. This is the generalized proof of Proposition 1. For the general case of

r < 1, the objective function must be modi�ed with respect to (15). In particular, using (73) and

letting � r � TE
2rV we obtain that maximizing TE is equivalent to solving

max
A;B;C;D

� r (A;B;C;D) ,

where

� r (A;B;C;D) =
�
B (1�D) +D (1� C)� r2D (1�D) (C (1� C) +B (1�B))

�
A (1�A) (74)

+A (1�D)B (1�B) + (1�A)C (1� C)D + (A (1�B) + (1�A)C)D (1�D) ;

and the choice variables are fA;B;C;Dg 2 (0; 1)4. In fact, as it can be seen in (64) and (65), the
designer cannot induce, with her choice of biases, an equilibrium probability of victory in a match

which is 0 or 1 because �uX ;�uY > 0 in every match. Since � r (A;B;C;D) is a polynomial, the

�relaxed problem� in which fA;B;C;Dg 2 [0; 1]4 admits a solution by Weierstrass�theorem. We
now show that the solution of the relaxed problem is interior, so the original and relaxed problems

have the same solution.

Note also that

� r

�
1

2
;
1

2
;
1

2
;
1

2

�
=
3

8
� r2

32
:

We show that the optimal A 2 (0; 1). Indeed,

� r (0; B;C;D) = DC (2�D � C) �
2

3

2

3

�
2� 2

3
� 2
3

�
=
8

27
<
3

8
� r2

32
;

and

� r (1; B; C;D) = (1�B) (1�D) (B +D) �
�
1� 1

3

��
1� 1

3

��
1

3
+
1

3

�
=
8

27
<
3

8
� r2

32
:

Similarly, we can establish that the optimal D 2 (0; 1). Fix now any (A;D) 2 (0; 1)
2 and
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consider now � r only as a function of B and C, a function we denote with �ADr (B;C). This

function is strictly concave for fA;Dg 2 (0; 1)2. Indeed, the Hessian matrix of �AD(B;C) is the
following negative de�nite matrix:"

�2A(1�D)(1� (1�A)Dr2) 0

0 �2(1�A)D(1�A(1�D)r2)

#
:

Therefore, setting the gradient of �ADr (B;C) to zero, we see that �ADr (B;C) is maximized at8<: B = �r (A;D) � 1
2

(2�A)(1�D)+(1�A)D(1�r2)
1�D(1�A)r2 2 (0; 1) ;

C = r (A;D) � 1
2

(1�A)(2�D)+A(1�D)(1�r2)
1�A(1�D)r2 2 (0; 1) :

(75)

Note that �r (A;D) > 0. To see that �r (A;D) < 1, note that this inequality reduces to A +D �
r2D (1�A) > 0. As r < 1; this is true, as A+D�r2D (1�A) � A+D�D (1�A) = A+AD > 0:

Similar calculations apply to show that r (A;D) 2 (0; 1). Therefore, the optimal solution to the
relaxed problem is interior.

We de�ne

~� r (A;D) � �ADr (�r (A;D) ; r (A;D)) = � r (A; �r (A;D) ; r (A;D) ; D) :

By concavity of �ADr , we see that � r (A;B;C;D) � ~� r (A;D). Simple algebra then shows

~� r (A;D) =
1

4
(T1r (A;D) + T2r (A;D)) ; (76)

where

T1r (A;D) � A (1�A) +D (1�D) + 1� 2(1�A)A(1�D)Dr2; (77)

T2r (A;D) � (A+D � 1)2
�

A(1�D)
1�D (1�A) r2 +

D (1�A)
1�A (1�D) r2 � 1

�
:

Note now that T2r (A;D) � 0 in any interior solution, as both A(1�D)
1�D(1�A)r2 and

D(1�A)
1�A(1�D)r2 are

increasing in r2 and r2 � 1; so we obtain

A(1�D)
1�D (1�A) r2 +

D (1�A)
1�A (1�D) r2 � 1 � A(1�D)

1�D (1�A) +
D (1�A)

1�A (1�D) � 1

= (A)
1�D

1�D +AD + (1�A) D

1�A+AD � 1

� A+ (1�A)� 1

= 0:
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Using the change of variable x � A (1�A) and y � D (1�D), we can rewrite the RHS of
(77) as x + y � 2xyr2 + 1, which is strictly increasing in x and y, as both x � 1

4 and y �
1
4 .

Therefore, A = D = 1
2 is a strict unique maximum for T1r (A;D) and, since T2r (A;D) � 0

and T2r
�
1
2 ;

1
2

�
= 0, A = D = 1

2 is a maximum for T2r (A;D) : Therefore, A = D = 1
2 is the

unique maximum of ~� r (A;D). Since �r (1=2; 1=2) = r (1=2; 1=2) = 1=2, there is a unique global

maximum for � r (A;B;C;D) at fA�; B�; C�; D�g = f1=2; 1=2; 1=2; 1=2g. Recalling (NOT ), this
implies p(i;j)X = 1=2 for any i; j 2 f0; 1g. The values of � in the statement of this proposition then
immediately obtain from (69)� (72) :

Proof of Proposition 8. We show that f1; 1; 1g is not optimal by proving that, if we �x �3 = 1,
and view TE as a function of �1 and �2, then �1 = �2 = 1 is a saddle point, where the de�nition

of saddle point we adopt is the one in Simon and Blume (1994, p. 399): �A critical point x� of F

for which the Hessian D2F (x�) is inde�nite is called saddle point of F . A saddle point x� is a

min of F in some directions and a max of F in other directions.�In particular, we do not require

the directions to be orthogonal.

Recall (NOT ). If we set �3 = 1, from (69) we obtain D = 1
2 , from (71) we obtain

B

�
2� r
2 + r

�r
= �2 (1�B) ; (78)

and from (70) we obtain

C

�
2 + r

2� r

�r
= �2 (1� C) : (79)

Note that further assuming �2 = 1 implies B + C = 1. Indeed, if �2 = 1, then

B + C =
1

1 +
�
2�r
2+r

�r + 1

1 +
�
2+r
2�r

�r = 2 +
�
2�r
2+r

�r
+
�
2+r
2�r

�r
�
1 +

�
2�r
2+r

�r��
1 +

�
2+r
2�r

�r� = 1
Furthermore, A then simpli�es as

A =

�
1 +

1

�1

��1
:

Note now that, by appropriately choosing �1, any A 2 (0; 1] can be induced. Therefore, choosing
�1 and �2 to maximize TE is equivalent to choosing A; B; C, and �2 to maximize � r

�
A;B;C; 12

�
,
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de�ned in (74) subject to the constraints (78) and (79) :The Lagrangean is

L =
1

2

�
B + (1� C)� r2 1

2
(C (1� C) +B (1�B))

�
A (1�A)

+A
1

2
B (1�B) + (1�A)C (1� C) 1

2
+ (A (1�B) + (1�A)C) 1

4

��B
�
B

�
2� r
2 + r

�r
� �2 (1�B)

�
� �C

�
C

�
2 + r

2� r

�r
� �2 (1� C)

�
:

The FOC are

(A) (1� 2A) 12
�
B + (1� C)� r2 12 (C (1� C) +B (1�B))

�
+ 1
2B (1�B)�

1
2C (1� C) +

1
4 (1�B � C) = 0

(B) 1
2

�
1� r2 12 (1� 2B)

�
A (1�A) + A

2 (1� 2B)�
A
4 � �B

��
2�r
2+r

�r
+ �2

�
= 0

(C) 1
2

�
�1� r2 12 (1� 2C)

�
A (1�A) + 1�A

2 (1� 2C) + 1�A
4 � �C

��
2+r
2�r

�r
+ �2

�
= 0

(�2) �B (1�B) + �C (1� C) = 0:

(80)

We now show that the point A = 1
2 , �2 = 1; and B and C that satisfy the constraints is a critical

point of the Lagrangean. (This implies that �1 = 1 and �2 = 1 is a critical point if we view total

e¤ort as function of �1 and �2.)

Recall that �2 = 1 implies B + C = 1. So A = 1
2 solves the �rst FOC. The second becomes

(1� 2B)
�
4� r2

�
16

� �B
��

2� r
2 + r

�r
+ 1

�
= 0;

which gives us �B , since B is determined by (78) as

B =
1

1 +
�
2�r
2+r

�r ;
so

�B =
(1� 2B)B

�
4� r2

�
16

:

Similarly, the third FOC becomes

(1� 2C)
�
4� r2

�
16

� �C
��

2 + r

2� r

�r
+ 1

�
= 0
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which gives us �C , since C is determined by (79) as

C =
1

1 +
�
2+r
2�r

�r :
Therefore,

�C =
(1� 2C)C

�
4� r2

�
16

The last FOC is then automatically satis�ed at �2 = 1 by B + C = 1; indeed we have

�B (1�B) + �C (1� C) =
(1� 2B)

�
4� r2

�
16

B (1�B) +
(1� 2C)

�
4� r2

�
16

C (1� C)

= (1� 2B + 1� 2C)
�
4� r2

�
16

B (1�B)

= 2 (1�B � C)
�
4� r2

�
16

B (1�B)

= 0:

We now check the second-order condition by building the Hessian matrix of the Lagrangean. We

have

@2L

@A2
= �

�
B + 1� C � r2 1

2
(C (1� C) +B (1�B))

�
;

@2L

@A@B
= (1� 2A) 1

2

�
1� r2 1

2
(1� 2B)

�
+
1

2
(1� 2B)� 1

4
;

@2L

@A@C
= (1� 2A) 1

2

�
�1� r2 1

2
(1� 2C)

�
� 1
2
(1� 2C)� 1

4
;

@2L

@B2
=

1

2
r2A (1�A)�A; (81)

@2L

@C2
=

1

2
r2 �A (1�A)� (1�A) ;

@2L

@B@�2
= ��B ;

@2L

@C@�2
= ��C ;

@2L

@A@�2
=

@2L

@B@C
= 0:

Furthermore, we need the Jacobian of the constraints, which is24 0
�
2�r
2+r

�r
+ �2 0 � (1�B)

0 0
�
2+r
2�r

�r
+ �2 � (1� C)

35 :
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At �2 = 1; B + C = 1, and A = 1
2 ; we have that the Hessian becomes2666664

�
�
2� r2 (1�B)

�
B 1

4 �B
1
4 �B 0

1
2 (1� 2B)�

1
4

r2

8 �
1
2 0 � (1�2B)B(4�r2)

16

1
4 �B 0 r2

8 �
1
2 � (1�B)(2B�1)(4�r2)

16

0 � (1�2B)B(4�r2)
16 � (1�B)(2B�1)(4�r2)

16 0

3777775 ;

and the Jacobian; using the de�nition of B and C, simpli�es as"
0 1

B 0 � (1�B)
0 0 1

C � (1� C)

#
:

We now use Theorem 16.4 in Simon and Blume (1994), with four variables and two constraints.

The Bordered Hessian is

H =

266666666664

0 0 0 1
B 0 � (1�B)

0 0 0 0 1
C � (1� C)

0 0 �
�
2� r2 (1�B)

�
B 1

2 (1� 2B)�
1
4 � 1

2 (1� 2C)�
1
4 0

1
B 0 1

2 (1� 2B)�
1
4

r2

8 �
1
2 0 � (1�2B)B(4�r2)

16

0 1
C � 1

2 (1� 2C)�
1
4 0 r2

8 �
1
2 � (1�2C)C(4�r2)

16

� (1�B) � (1� C) 0 � (1�2B)B(4�r2)
16 � (1�2C)C(4�r2)

16 0

377777777775
;

with determinant

�1
8

nD (B; r)

1�B ;

where

nD (B; r) � 96B2�66B�32B3�6r2+r4+40Br2�7Br4�60B2r2+24B3r2+12B2r4�6B3r4+10:

Finally, moving to next leading principal minor, i.e., In this case, let�s continue with the next leading

principal minor. 26666664
0 0 0 1

B 0

0 0 0 0 1
1�B

0 0 �
�
2� r2 (1�B)

�
B 1

4 �B
1
4 �B

1
B 0 1

2 (1� 2B)�
1
4

r2

8 �
1
2 0

0 1
1�B

1
4 �B 0 r2

8 �
1
2

37777775 ;

we note that its determinant is
r2 (1�B)� 2
B (1�B)2

< 0:
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Therefore, the pattern of signs of the determinant is such that if nD (B (r) ; r) > 0 then we have

that the Hessian Matrix is inde�nite in the constraints (recall Theorem 16.4 in Simon and Blume;

1994). Note that, with r = 1; we have B = 3
4 and n

D (B; r) = 43
32 > 0 and we have an inde�nite

Hessian Matrix, and thus �1 = �2 = �3 = 1 does not maximize TE.

We next show that nD starts negative for low values of r, then it becomes positive right after

r̂ = 0:826581; and it stays positive past r = 1.

The �rst step is to note that B is a strictly increasing function of r 2 (0; 1], which can be see
with routine algebra. The second step is to show that, for any given r 2 (0; 1], nD (B; r) is an
increasing function of B when B 2 [1=2; 1]. In fact,

@nD (B; r)

@B
= 192B � 120Br2 + 24Br4 + 72B2r2 � 18B2r4 � 96B2 + 40r2 � 7r4 � 66;

which is always positive as it starts positive by

@nD (B; r)

@B

����
B=1=2

= 6� 2r2 + r
4

2
> 0;

and it is strictly increasing in B

@2nD (B; r)

@B2
= 24(8� 5r2 + r4)� 12B(16� 12r2 + 3r4)

> 24(8� 5r2 + r4)� 12(16� 12r2 + 3r4)

= 12r2
�
2� r2

�
> 0:

Therefore, nD (B (r) ; r) is an increasing function of r. Furthermore, with r = 1; we have nD (B (1) ; 1) =
43
32 > 0 and with r ! 0 we have lim

r!0
nD (B (r) ; r) = �3. Therefore, all in all, nD (B (r) ; r) is an

increasing function of r which starts negative, takes value 0 for r̂ � 0:826581 only, and is then

positive till r = 1.

Therefore, Theorem 16.4 in Simon and Blume (1994) part (c) applies, and we have an inde�nite

Hessian on the constraint set for r > r̂. Therefore, �1 = �2 = �3 = 1 fails the necessary second

order condition for a constrained maximum for r > r̂ (see Theorem 19.6 in Simon and Blume (1994),

and the note on necessary condition on page 468).

Proof of Proposition 9. Recall (NOT ) and (74). Let B (�2) be the solution of (78) and

C (�2) that of (79). Let A (�2) = A
�
1
�2
; B (�2) ; C (�2)

�
be the solution of (72) where �(0;0) =

1
�2
,

p
(1;0)
X = B (�2) and p

(0;1)
X = C (�2). As we are focusing on alternating contest, we �x D = 1

2 .
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First, note that

d� r
�
A (�2) ; B (�2) ; C (�2) ;

1
2

�
d�2

=
@� r
@A

�A0 (�2) +
@� r
@B

B0 (�2) +
@� r
@C

C 0 (�2) :

This will equal zero at �2 = 1. Indeed,

@� r
@A

= (1� 2A) 1
2

�
B + (1� C)� r2 1

2
(C (1� C) +B (1�B))

�
+
1

2
B (1�B)�1

2
C (1� C)+1

4
(1�B � C) = 0

as calculated in (80) in the Proof of Proposition 8. Moreover,

@� r
@B

=
1

2

�
1� r2 1

2
(1� 2B)

�
A (1�A) + A

2
(1� 2B)� A

4
=
1

16
(r � 2) (r + 2) (2B � 1) ;

@� r
@C

=
1

2

�
�1� r2 1

2
(1� 2C)

�
A (1�A) + 1�A

2
(1� 2C) + 1�A

4
=
1

16
(r � 2) (r + 2) (2C � 1) ;

and by B + C = 1;
@� r
@B

= �@� r
@C

:

Finally, note that from the constraints, B =
h
1 + 1

�2

�
2�r
2+r

�ri�1
, so B0 (�2) =

B(1�B)
�2

. Similarly,

C 0 (�2) =
C(1�C)
�2

. Therefore, with �2 = 1; B0 (�2) = C 0 (�2) = B (1�B) as B + C = 1. And

d� r
�
A (�2) ; B (�2) ; C (�2) ;

1
2

�
d�2

= 0

then follows.

Moving on to the second derivative, we have

d2�r(A(�2);B(�2);C(�2); 12 )
(d�2)

2 =
d( @�r@A )
d�2

�A0 (�2) +
d( @�r@B )
d�2

B0 (�2) +
d( @�r@C )
d�2

C 0 (�2)

+@�r
@A �A00 (�2) + @�r

@B B
00 (�2) +

@�r
@C C

00 (�2) :
(82)

Several of the terms in (82) can be found in (80) and (81) in the Proof of Proposition 8. Moreover,

B0 (�2) and C 0 (�2) are calculated above. The missing terms are A00 (�2) ; B00 (�2) ; C 00 (�2) ; and

A0 (�2).

Since @�r
@A = 0 as calculated above when �2 = 1, we do not need an expression for A00 (�2).

Proceeding with the calculations of (82), from (78) and (79),

B00 (�2) = �
2B2 (1�B)
(�2)

2 ; C 00 (�2) = �
2C2 (1� C)
(�2)

2 ;
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which, evaluated at �2 = 1, yields

B00 (�2) = �2B2 (1�B) ; C 00 (�2) = �2 (1�B)B (1�B) :

The last missing term is A0 (�2). With �1 = 1
�2
and D = 1

2 ; we can write from (72),

A (�2) =

�
1 + �2

�
nA (B (�2) ; C (�2))

dA (B (�2) ; C (�2))

�r��1
;

where

nA (B;C) �
�
1 +

r

2

�
(1� C) (1� rC) +

�
1� r

2

�
B (1 + r (1�B)) ;

dA (B;C) �
�
1 +

r

2

�
B (1� r (1�B)) +

�
1� r

2

�
(1� C) (1 + rC) :

Therefore, suppressing for convenience the dependence of B and C from �2 when clear, we have

A0 (�2) = �

��
nA

dA

�r
+ �2r

�
nA

dA

�r�1 � @nA

@B B0(�2)+
@nA

@C C0(�2)
�
dA�

�
@dA

@B B0(�2)+
@dA

@C C0(�2)
�
nA

(dA)2

�
�
1 + �2

�
nA

dA

�r�2
= �A2

�
1

�2

�
1�A
A

��

�A2�2r
�
1

�2

�
1�A
A

��
dA

nA

�
@nA

@B B
0 (�2) +

@nA

@C C
0 (�2)

�
dA �

�
@dA

@B B
0 (�2) +

@dA

@C C
0 (�2)

�
nA

(dA)
2 :

Note now that

@nA

@B
=

�
1� r

2

�
(1 + r (1� 2B)) , @n

A

@C
= �

�
1 +

r

2

�
(1 + r (1� 2C)) ;

@dA

@B
=

�
1 +

r

2

�
(1� r (1� 2B)) ; @d

A

@C
=
�
1� r

2

�
(�1 + r (1� 2C)) :

Therefore, when �2 = 1, we have nA (B;C) = dA (B;C) = B
�
2� r2 (1�B)

�
; B0 (�2) = C

0 (�2),
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and we obtain

A0 (�2)j�2=1 = �A2 +A2rB (1�B)
�2

2r (2B � 2C + 1)
B (2� r2 (1�B))

= �1
4
+
1

2
r (1�B) r (2B � 2C + 1)

2� r2 (1�B)

= �1
4
+
1

2
rC
r (3� 4C)
2� r2C

=
8C2r2 � 7Cr2 + 2

4Cr2 � 8 ;

where we used A = 1=2 and B + C = 1.

We are now ready to compute the second derivative of � r. From (82), straightforward but

tedious algebra, using C = 1�B, shows:

d2� r
�
A (�2) ; B (�2) ; C (�2) ;

1
2

�
(d�2)

2

�����
�2=1

= B
nS (B; r)

32 + 16(B � 1)r2 ; (83)

where

nS (B; r) = 4�8B(9+4B(�5+3B))�4(�1+B)(�5+B(41�74B+44B2))r2�(�1+B)2(�1�4B+52B2)r4:

As the denominator of (83) is positive, we only analyze the sign of nS (B; r) in what follows. Using

the de�nition of B, for r 2 [0; 1], we have that B 2 [1=2; 3=4].
We conclude the proof by showing that nS (B; r) is increasing in r when B 2 [1=2; 3=4], so that

there is a unique ~r 2 (0; 1] such that if r > ~r then the fully unbiased contest is a minimum, and if
r < ~r, it is not.

We write
@nS (B (r) ; r)

@r
=
@nS

@B

@B

@r
+
@nS

@r
;

where we obtain

@nS

@B = 8(40B � 36B2 � 9) + 8(23� 115B + 177B2 � 88B3)r2

�2(B � 1)(104B2 � 58B + 1)r4;
(84)

@nS

@r
= �8(B � 1)(44B3 � 74B2 + 41B � 5)r � 4(B � 1)2(52B2 � 4B � 1)r3: (85)

In what follows we show that @nS=@B > 0 in Step 1 and @B (r) =@r > 2r=5 in Step 2, while Step

3 uses these two results to conclude the proof.

Step 1. The term @nS=@B is a polynomial of degree two in r2. One can show that the two

roots solving @nS=@B = 0 are not in the range r 2 [0; 1], and for r = 0 we have that @nS=@B > 0
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(recall that B 2 [1=2; 3=4]). Thus, @nS=@B > 0 8r 2 [0; 1] and 8B 2 [1=2; 3=4].
Step 2. We show that

@B (r)

@r
>

2r

5
() �

�
�1 + 4

2+r

�r h
4r + (�4 + r2)Log

�
�1 + 4

2+r

�i
(�4 + r2)

h
1 + (�1 + 4

2+r )
r
i2 >

2r

5

() 5

�
2� r
2 + r

�r �
2

(2� r) (2 + r) �
1

2r
Log

�
2� r
2 + r

��
>

�
1 +

�
2� r
2 + r

�r�2
(86)

We use the following logarithmic inequality from the second row of Table 1 of Topsøe (2006):

log (1 + x) � x (6 + x)

6 + 4x
8x > �1,

so that we obtain

� 1

2r
Log

�
2� r
2 + r

�
= � 1

2r
Log

�
1� 2r

2 + r

�
> � 1

2r

� 2r
2+r

�
6� 2r

2+r

�
6 + 4

�
� 2r
2+r

� =
2r + 6

(2 + r) (6� r) : (87)

Now, using (87) into (86) we obtain the following su¢ cient condition for @B (r) =@r > 2r=5:

5

�
2� r
2 + r

�r �
2

(2� r) (2 + r) +
2r + 6

(2 + r) (6� r)

�
>

�
1 +

�
2� r
2 + r

�r�2
10

�
1

(2� r) (2 + r) +
r + 3

(2 + r) (6� r)

�
>

�
2 + r

2� r

�r
+ 2 +

�
2� r
2 + r

�r
;

and as �
2 + r

2� r

�r
+ 2 +

�
2� r
2 + r

�r
<

�
2 + 1

2� 1

�r
+ 2 +

�
2� 0
2 + 0

�r
= 3r + 3;

it su¢ ces to show that

10

�
1

(2� r) (2 + r) +
r + 3

(2 + r) (6� r)

�
> 3r + 3: (88)

Finally, the LHS of (88) is greater than 5� r+ 2r2, which is in turn greater than the RHS of (88).
In fact, the former condition is equivalent to

(r � 6)(r � 2)(r � 1)r(r + 2)(24� 8r � 11r2 + 2r3) < 0;

which holds true as the polynomial of degree three of the last factor is positive in r 2 (0; 1]. The

71



latter condition is equivalent to

5� r + 2r2 > 3r + 3

() 2� r > 3r � 2r2;

where at r = 0 the LHS equals 2 and the RHS equals 0, at r = 1 both the LHS and RHS equal

0, and the �rst derivative of the LHS is always smaller than that of the RHS. It follows that

@B (r) =@r > 2r=5.

Step 3. Hence, from @nS=@B > 0 (Step 1) and @B (r) =@r > 2r=5 (Step 2), using the expressions
(84) and (85), we obtain

@nS (B (r) ; r)

@r
>

@nS

@B
� 2r
5
+
@nS

@r

=
r

5

264 �344 + 2480B � 5176B2 + 4720B3 � 1760B4

+
�
388� 1800B + 1652B2 + 752B3 � 1040B4

�
r2

�4(B � 1)(1� 58B + 104B2)r4

375 : (89)

Hence, in order to show that there is a unique ~r 2 (0; 1] such that if r > ~r then the fully unbiased
contest is a minimum, and if r < ~r, it is not, we will show that the term in the square bracket of

(89) is positive.

First, we show that the term in square bracket of (89) is decreasing in r2 2 (0; 1]. Its derivative
with respect to r2 equals

�
388� 1800B + 1652B2 + 752B3 � 1040B4

�
+ 8(B � 1)(1� 58B + 104B2)r2: (90)

Now, the �rst bracket is always negative as 8B 2 [1=2; 3=4] we have

388� 1800B + 1652B2| {z }
�30

+ 752B3 � 1040B4| {z }
��30

: (91)

The coe¢ cient of r2 in (90) could be positive or negative. If it is negative, we are done proving that

the term in square bracket of (89) is decreasing in r2. If it is positive, (90) is convex in r, and it

takes negative values both at r = 0 and r = 1. At r = 0 it follows by (91). At r = 1 its negativity

is equivalent to

�95 + 332B � 89B2 � 396B3 + 260B4 > 0; (92)

where the LHS is concave in B for B 2 [1=2; 3=4] and takes value 31=2 and 1225=64 at B = 1=2 and
B = 3=4, respectively. Hence, (92) follows, and thus the term in square bracket of (89) is decreasing

in r2.
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As the term in the square bracket of (89) is decreasing in r2, it is greater than its value at r = 0,

which is

�344 + 2480B � 5176B2 + 4720B3 � 1760B4 = �344 + 2480B � 5176B2 + 3400B3 + 1320B3 � 1760B4

> �344 + 2480B � 5176B2 + 3400B3;

which, in the range B 2 [1=2; 3=4] has a unique minimum at (647 +
p
23359)=1275, where it takes

positive value.

Proof of propositions 10 and 11. The proofs of propositions 10 and 11 are very similar,

and hence we merge them in what follows. Both rely on the same equilibrium characterization in

Proposition 1 of Ewerhart (2017). We begin by adapting Proposition 1 in Ewerhart (2017) to our

setting with bias �. Consider a generic match where the payo¤s of player X and Y, respectively,

are
�xr

�xr + yr
�uX � x+ uLX and

yr

�xr + yr
�uY � y + uLY ;

where �uk = uWk � uLk , for k 2 fX;Y g is the e¤ective prize of the match. To match Proposition 1
in Ewerhart (2017), we work with the notation ~x � � 1

r x; and y. Hence, the payo¤ of player X can

be rewritten as

~xr

~xr + yr
�uX �

~x

�
1
r

+ uLX =
1

�
1
r

�
~xr

~xr + yr
�

1
r�uX � ~x+ �

1
r uLX

�
:

Similarly, for player Y the payo¤ is

yr

~xr + yr
�uY � y + uLY :

To apply Proposition 1 in Ewerhart, we need to de�ne two cases that distinguish who is the �strong�

player (i.e., the one with the largest prize valuation). This depends on whether �
1
r�uX is larger

or smaller than �uY :36 In particular, we have two cases:

Case I: �
1
r�uX � �uY ; so player X is player 1 in Ewerhart�s notation. Then we know there

are no pure-strategy equilibria and Proposition 1 in Ewerhart (2017) implies that, in any mixed-

strategy equilibrium with r 2 (2;1), player X bids in expectation E [~x] = �uY =2, so that, using

36 If �
1
r�uX = �uY the two cases merge. For technical convenience, this possibility is included in both cases

below.
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the same notation of Section 3, where we omit the expectation operator for simplicity, we obtain

x =
�uY

2�
1
r

; y =
�u2Y

2�
1
r�uX

;

pX = 1� �uY

2�
1
r�uX

; pY =
�uY

2�
1
r�uX

;

uX =
1

�
1
r

h
�

1
r�uX ��uY + �

1
r uLX

i
= uWX � �uY

�
1
r

; uY = u
L
Y :

Case II: �
1
r�uX � �uY , so player Y is player 1 in Ewerhart�s notation. As above, there are

no pure-strategy equilibria. Proposition 1 in Ewerhart (2017) implies that, in any mixed strategy

equilibrium with r 2 (2;1), we obtain

x =
�

1
r�u2X
2�uY

; y =
�

1
r�uX
2

;

pX =
�

1
r�uX
2�uY

; pY = 1�
�

1
r�uX
2�uY

;

uX = uLX ; uY = u
W
Y � � 1

r�uX :

We can now use the above results to �nd the TE-maximizing vector of biases. For convenience of

exposition, we start the analysis proving Proposition 11, with victory-independent biases. We start

with the equilibrium analysis node-by-node for a given vector f�1; �2; �3g. We normalize the prize
to 1. We begin with �3 2 (0; 1); that is, player Y has the advantage in the tie-break. (The case

�3 > 1 is symmetric, and the case �3 = 1 is discussed separately.)

In node (1; 1) we are in Case II above, as both players have a winning payo¤ of 1 and a losing

payo¤ of 0. Hence, in equilibrium player X expected bid is
�
�
1=r
3

�
=2, X wins with probability�

�
1=r
3

�
=2, and has a payo¤ of 0, while player Y bids in expectation

�
�
1=r
3

�
=2, wins with probability

1�
�
�
1=r
3

�
=2, and has a payo¤ of 1� �1=r3 .

In node (0; 1), as X has both a winning and losing payo¤ of 0 whereas Y �s e¤ective prize is

strictly positive, by assumption (A) both players bid 0, player Y wins for sure and has a payo¤ of

1, and player X loses for sure and has a payo¤ of 0.

In node (1; 0) X is �ghting for 1 and Y is �ghting for 1��1=r3 : Thus, the analysis distinguishes two

possibilities: we are in Case I if �1=r2 �1 � 1��1=r3 , or �1=r2 +�
1=r
3 � 1 and Case II if �1=r2 +�

1=r
3 � 1.

We now show that �1=r2 + �
1=r
3 < 1 always implies TE = 0, and hence the optimum has to

comply with Case I. In node (1; 0), under Case II, the payo¤ of Y is 1��1=r3 ��1=r2 and that of X is

0. Then, in node (0; 0) X is �ghting for 0 and Y is �ghting for 1�
�
1� �1=r3 � �1=r2

�
= �

1=r
3 +�

1=r
2 .

Hence, Y wins for sure the �rst match with no e¤ort by assumption (A). All in all, Y wins for sure

also the �rst two matches with no e¤ort, and thus TE = 0. This result is intuitive. As we assumed
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�3 < 1, the case of �
1=r
2 + �

1=r
3 < 1 gives too large an advantage to player Y, who wins the entire

contest with no e¤ort; player X anticipates in node (0; 0) that even a victory would give her an

expected payo¤ of 0 because of the future advantages given to player Y in second and third match.

Having ruled out �1=r2 +�
1=r
3 < 1, we henceforth consider �1=r2 +�

1=r
3 � 1. Then, in node (1; 0),

we obtain

x(1;0) =
1� �1=r3

2�
1=r
2

; y(1;0) =

�
1� �1=r3

�2
2�

1=r
2

;

p
(1;0)
X = 1� 1� �

1=r
3

2�
1=r
2

; p
(1;0)
Y =

1� �1=r3

2�
1=r
2

;

u
(1;0)
X = 1� 1� �

1=r
3

�
1=r
2

; u
(1;0)
Y = 0:

Finally, in node (0; 0), X is �ghting for �uX = 1 � 1��1=r3

�
1=r
2

and Y is �ghting for �uY = 1. As

�
1=r
2 +�

1=r
3 = 1 would imply as before that Y wins for sure with no e¤ort and TE = 0, we can now

focus on �1=r2 +�
1=r
3 > 1: To know whether node (0; 0) complies with Case I or Case II, we need to

check whether

�
1=r
1 �ux � �uY

() �
1=r
1

 
1� 1� �

1=r
3

�
1=r
2

!
� 1

() 1� �1=r3

�
1=r
2

� 1� 1

�
1=r
1

: (93)

Under the previously imposed �1=r2 +�
1=r
3 > 1, inequality (93) remains undecided, so we study both

cases separately in the remainder of the proof.

Case I: 1��
1=r
3

�
1=r
2

� 1� 1

�
1=r
1

. Then node (0; 0) follows Case I. So, we obtain

x(0;0) =
1

2�
1=r
1

; y(0;0) =
1

2�
1=r
1

�
1� 1��1=r3

�
1=r
2

� ;
p
(0;0)
X = 1� 1

2�
1=r
1

�
1� 1��1=r3

�
1=r
2

� ; p(0;0)Y =
1

2�
1=r
1

�
1� 1��1=r3

�
1=r
2

� ;
u
(0;0)
X =

 
1� 1� �

1=r
3

�
1=r
2

!
� 1

�
1=r
1

; u
(0;0)
Y = 0:
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Using (2), we can now characterize the optimal TE if �3 2 (0; 1). As e¤orts in node (0; 1) are
zero, we obtain

TE =
1

2�
1=r
1

+
1

2�
1=r
1

�
1� 1��1=r3

�
1=r
2

�

+

0BB@1� 1

2�
1=r
1

�
1� 1��1=r3

�
1=r
2

�
1CCA
0B@1� �1=r3

2�
1=r
2

+

�
1� �1=r3

�2
2�

1=r
2

+
1� �1=r3

2�
1=r
2

�
1=r
3

1CA
=

1

�
1=r
1

+
1� �1=r3

�
1=r
2

: (94)

Now, the problem is to maximize TE choosing the vector of ��s given these �ve constraints

�1 > 0; �2 > 0; 0 < �3 < 1;

�
1=r
2 + �

1=r
3 > 1;

1� �1=r3

�
1=r
2

� 1� 1

�
1=r
1

:

The constraint �1=r2 + �
1=r
3 > 1 can be written as 1��1=r3

�
1=r
2

< 1, and it is thus implied by the last

constraint. Hence, we are left with the following four constraints

�1 > 0; �2 > 0; 0 < �3 < 1;

1

�
1=r
1

� 1� 1� �
1=r
3

�
1=r
2

:

Hence, given (94), it is clear that the last constraint has to be binding in the optimum. And,

if so, by substituting into (94) the binding constraint, we obtain full-rent extraction TE = 1.

Rearranging the last constraint, which derives from (93), and imposing equality, we obtain that

there is a continuum of maximizers satisfying (22) with ��3 2 (0; 1) and ��1 � 1.

Case II: 1��
1
r
3

�
1
r
2

� 1� 1

�
1
r
1

, then node (0; 0) follows Case II, with �uX = 1� 1��1=r3

�
1=r
2

and �uY = 1.
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We obtain

x(0;0) =
�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!2
; y(0;0) =

�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!
;

p
(0;0)
X =

�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!
; p

(0;0)
Y = 1� �

1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!
;

u
(0;0)
X = 0; u

(0;0)
Y = 1� �1=r1

 
1� 1� �

1=r
3

�
1=r
2

!
:

We can �nally analyze TE in this case. As e¤orts in node (0; 1) are zero, we can write

TE =
�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!
+
�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!2

+
�
1=r
1

2

 
1� 1� �

1=r
3

�
1=r
2

!0B@1� �1=r3

2�
1=r
2

+

�
1� �1=r3

�2
2�

1=r
2

+
1� �1=r3

2�
1=r
2

�
1=r
3

1CA
= �

1=r
1 � �1=r1

1� �1=r3

�
1=r
2

:

Now, the constraints under which to maximize TE are

�1 > 0; �2 > 0; 0 < �3 < 1;

�
1=r
2 + �

1=r
3 > 1;

1� �1=r3

�
1=r
2

� 1� 1

�
1=r
1

;

and merging the last two constraints, the problem boils down to

max
�1>0;�2>0;�32(0;1]

 
�
1=r
1 � �1=r1

1� �1=r3

�
1=r
2

!
such that 1� 1

�
1=r
1

� 1� �1=r3

�
1=r
2

< 1;

and thus, once again, inequality (93) must be binding in the optimum. And, if so, we obtain full-

rent extraction TE = 1. Therefore, we obtain the same continuum of maximizers as in (22) with

��3 2 (0; 1) and ��1 � 1.
The next step of the proof is to note that the case �3 > 1 is symmetric to that of �3 2 (0; 1),

and thus we can drop the condition ��3 2 (0; 1) and ��1 � 1 in the optimum (22). To �nish the

proof, consider now �3 = 1. In node (1; 1) both players have a winning payo¤ of 1 and a losing

payo¤ of 0. Hence, in equilibrium both player�s expected bid is 1=2, X wins with probability 1=2,

and both players have payo¤ 0. In node (0; 1), as X has both a winning and losing payo¤ of 0
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whereas Y �s e¤ective prize is strictly positive, by assumption (A) both players bid 0, player Y wins

for sure and has a payo¤ of 1, and player X loses for sure and has a payo¤ of 0. In node (1; 0) X

is �ghting for 1 and Y is �ghting for 0: Therefore, by assumption (A) both players bid 0, player X

wins for sure and has a payo¤ of 1, and player Y loses for sure and has a payo¤ of 0. In node (0; 0)

both players have a winning payo¤ of 1 and a losing payo¤ of 0. Therefore, the unique maximum

for TE is obtained for �1 = 1. This concludes the proof of Proposition 11.

We now move to the proof of Proposition 10. We consider only �(1;1) 2 (0; 1) as the other
cases are similar. Note that in the proof of Proposition 11, �2 enters TE only through e¤orts

and probabilities in node (1; 0), as e¤orts in node (0; 1) are zero for any �2 2 (0;1). Hence, the
fact that e¤orts in node (0; 1) are zero carries over to the setup of victory-dependent biases with

�(1;1) 2 (0; 1), and the proof of Proposition 11 carries over to the case of victory-dependent biases by
just replacing �1 with �(0;0), �2 with �(1;0), and �3 with �(1;1). The continuum of TE-maximizing

vectors in (22) remains valid 8��(0;1) > 0. And this concludes the proof of Proposition 10.

Proof of Proposition 12. First, we prove that p(i;j)X = 1=2 for any i; j 2 f0; 1g is optimal if
r < �r. Note that setting p(i;j)X = 1=2 for any i; j 2 f0; 1g ensures that a pure-strategy equilibrium
exists for any r 2 (1; 2]: Therefore, the level of total e¤ort that is achieved by setting p(i;j)X = 1=2

for any i; j 2 f0; 1g remains feasible even if r 2 (1; 2]: But, when r 2 (1; 2], the strategy of proof
of Proposition 1 has an additional layer of complexity to consider: the values of p(1;0)X and p(0;1)X

in (75) do not necessarily lie in the interval
�
1� 1

r ;
1
r

�
: This happens for choices of p(0;0)X or p(1;1)X

that are su¢ ciently far away from 1
2 . It is intuitive that it is nodes (1; 0) and (0; 1) that fail �rst

to deliver the pure-strategy equilibrium, rather than nodes (0; 0) and (1; 1), as in nodes (1; 0) and

(0; 1) one player is one-match ahead. For instance, one can show that if r � 1:1; then �r (A;D)

and r (A;D) do not lie in the interval
�
1� 1

r ;
1
r

�
only if A and D do not lie in [0:2; 0:8].

Recall from Proposition 7 that p(i;j)X = 1=2 for any i; j 2 f0; 1g is the unique global maximum for
r � 1 and that expected e¤ort changes continuously as we switch from a pure-strategy equilibrium

to a semi-mixed one, as it can be seen by comparing (68) and (24) with the threshold value of

pX = 1=r. Therefore, by continuity, there exists some �r > 1 such that, if r 2 (1; �r), then p(i;j)X = 1=2

for any i; j 2 f0; 1g remains a strict global maximum for TE. This is because the semi-mixed

candidates not considered in the Proof of Proposition 1 are relevant only for p(0;0)X and p(1;1)X that

at a discrete distance from 1
2 (in the example r � 1:1, this requires p(0;0)X 2 [0; 0:2] [ [0:8; 1]

and p(1;1)X 2 [0; 0:2] [ [0:8; 1]), and hence these candidates cannot be optimal because e¤orts are
continuous in r and p(i;j)X = 1=2 for any i; j 2 f0; 1g is the unique global maximum if r < r̂.

Second, we prove that p(i;j)X = 1=2 for any i; j 2 f0; 1g is not optimal if r > 2
�p
3� 1

�
. In

fact, we show that the point p(0;0)X = p
(1;0)
X = p

(0;1)
X = p

(1;1)
X = 1

2 is outperformed by the point

p
(0;0)
X = 1

r ; p
(1;0)
X = 1=2; p

(0;1)
X = 0; and p(1;1)X = 1� 1

r . Consider this last point, and starting in node
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(1; 1). We obtain

�u
(1;1)
X = �u

(1;1)
Y = V;�u

(1;1)
X +�u

(1;1)
Y = 2V:

If we set �(1;1) = r � 1 we are in Case II, and hence using (25) and (27), we obtain

p
(1;1)
X = 1� 1

r
; u

(1;1)
X = 0; u

(1;1)
Y = V

�
2

r
� 1
�
:

In node (0; 1), �u(0;1)X = u
(1;1)
X � 0 = 0, but �u(0;1)Y > 0. So, by assumption A, it does not matter

what is assumed for the kind of equilibrium: Y wins for sure with zero e¤ort. Therefore, p(0;1)X = 0.

In node (1; 0), we have

�u
(1;0)
X = V � u(1;1)X = V;�u

(1;0)
Y = u

(1;1)
Y = V

�
2

r
� 1
�
; �u

(1;0)
X +�u

(1;0)
Y =

2

r
V:

If we set �(1;0) =
�
2�r
r

�r
we are neither in Case I nor in Case II, so players play the pure-strategy

equilibrium which generates formulas (64), (66) ; and (67). We then have

p
(1;0)
X =

1

2
; u

(1;0)
X = V

1

2

�
1� r

2

�
; u

(1;0)
Y = V

�
2

r
� 1
�
1

2

�
1� r

2

�
:

In node (0; 0), the above implies

�u
(0;0)
X = V

1

2

�
1� r

2

�
, �u(0;0)Y = V � V

�
2

r
� 1
�
1

2

�
1� r

2

�
;

�u
(0;0)
X +�u

(0;0)
Y = V

5r � 2� r2
2r

:

If we set

�(0;0) =

 
1�

�
2
r � 1

�
1
2

�
1� r

2

�
1
2

�
1� r

2

� !r
1

(r � 1)

we are in Case I, hence using (23), we obtain

p
(0;0)
X =

1

r
:

79



Thus, using (24) ; (26), and (68), we obtain

TE =
h
x(0;0) + y(0;0)

i
+ p

(0;0)
X

h
x(1;0) + y(1;0)

i
+
�
1� p(0;0)X

� h
x(0;1) + y(0;1)

i
+
�
p
(0;0)
X �

�
1� p(1;0)X

�
+
�
1� p(0;0)X

�
p
(0;1)
X

� h
x(1;1) + y(1;1)

i
=

�
2V
5r � 2� r2

4r

�
1� 1

r

��
+
1

r

�
2

r
V r
1

2

�
1� 1

2

��
+ 0

+

�
1

r
� 1
2
+ 0

��
2V

�
1� 1

r

��
=

V

2r

�
6r � r2 � 4

�
:

If we compare this value with what we obtain by setting p(0;0)X = p
(1;0)
X = p

(0;1)
X = p

(1;1)
X = 1

2 , which

is V
r(12�r2)

16 , we see that

V
1

2r

�
6r � r2 � 4

�
� V

r
�
12� r2

�
16

() 3� 2
r
� 5r
4
+
r3

16
� 0

() r � 2
�p
3� 1

�
� 1:4641.

Proof of Proposition 13. We show that if r � r0, then, after �xing �3 = 1, �1 = �2 = 1 is a
saddle point for TE in R2>0. Fix D = 1

2 ; A =
1
2 , and let C;B be what comes out of setting �2 = 1

in (71) and (70). We obtain

B =
1

1 +
�
2�r
2+r

�r ; C = 1

1 +
�
2+r
2�r

�r :
Note that r0 is de�ned to ensure that, if r � r0, then the above values of B and C are in the interval
[1� 1=r; 1=r], hence implying a pure-strategy equilibrium, so that the proof in Proposition 8 carries
over and the �nal statement of the proposition is proved.

Proof of Proposition 14. Recall (NOT ). Using (28) and recalling that in an alternating contest

�(0;0) = �1 = �, �(1;0) = �(0;1) = �2 = 1=�, and �(1;1) = �3 = 1, we can calculate the analogous
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expressions to (32) ; (33), (34) ; and (35) as

D (�) =

�
1 +

1

�

��1
;

C (�; �) =

�
1 +

�(2�D (�))
�D (�)

��1
;

B (�; �) =

�
1 +

�(1�D (�))
� (1 +D (�))

��1
;

A (�; �) =

 
1 +

1

��

((1� C (�; �))2D (�) (2�D (�)) +B (�; �) (1�D (�))2(2�B (�; �)))
((B (�; �))

2
(1�D (�))(1 +D (�)) + (D (�))2 (1� C (�; �))(1 + C (�; �)))

!�1
:

Then, using � in (15), we can de�ne total e¤ort as a function of (�; �) as

TE (�; �) � 2V � (A (�; �) ; B (�; �) ; C (�; �) ; D (�)) :

We obtain

@TE (�; �)

@�

����
(�;1)

=
4V (1� �)�2P� (�)

(�+ 1)3(�+ 3)3(3�+ 1)3 (3�4 + 26�3 + 166�2 + 26�+ 3)
3 ;

where

P� (�) � 729�16 � 15066�15 � 474228�14 � 7696998�13 � 53893404�12 � 196576690�11

�139964940�10 + 453592818�9 + 866279814�8 + 453592818�7 � 139964940�6

�196576690�5 � 53893404�4 � 7696998�3 � 474228�2 � 15066�+ 729:

Simple algebra shows that

P� (�) = �
16P�

�
1

�

�
: (95)

Hence, using (95) we conclude that

@TE (�; �)

@�

����
(�;1)

=
4V (1� �)�18P�

�
1
�

�
(�+ 1)3(�+ 3)3(3�+ 1)3 (3�4 + 26�3 + 166�2 + 26�+ 3)

3

= �
4V (1� 1

� )
1
�2P�

�
1
�

�
(1 + 1

� )
3(1 + 3

� )
3(3 + 1

� )
3
�
3
�
1
�

�4
+ 26

�
1
�

�3
+ 166

�
1
�

�2
+ 26

�
1
�

�
+ 3
�3

= � @TE (�; �)

@�

����
(1=�;1)

:

Furthermore, note that, by Descartes�rule of signs, P� (�) = 0 has at most �ve positive solutions.
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As

P� (0) > 0, P�

�
1

4:3

�
< 0;

P�

�
1

4:2

�
< 0; P� (1) > 0;

P� (1) > 0; P� (2) < 0;

P� (42) < 0; P� (43) > 0;

by continuity we derive four such solutions: one between 0 and 1
4:3 (i.e., smaller than 1=�

�), one

between 1
4:2 and 1 (i.e., larger than 1=�

�), one between 1 and 2 (i.e., smaller than ��), and one

between 42 and 43 (i.e., larger than ��). It then follows that P� (�) < 0 for any � 2 (4:2; 4:3),
otherwise we would have at least six positive solutions to P� (�) = 0 by (95). Therefore, at

�� 2 (4:2; 4:3), P� (��) < 0 and
@TE (�; �)

@�

����
(��;1)

> 0;

thus completing the proof of (29) : To see the rest of the proof, consider � 2
�
1; ��
�
. (The case

� 2
�
�̂; 1
�
is specular.) Recall that, by Proposition 3, �� and 1=�� are the unique global maximizers

of TE (�; 1). By the envelope theorem and (29) ; the objective function increases in � for � = ��,

and it decreases in � for � = 1=��. Therefore, argmax� TE (�; �) belongs to a neighborhood of

��, by the maximum theorem. To see uniqueness of argmax� TE (�; �) for � 2
�
1; ��
�
, recall that,

for � = 1 there is a unique maximizer of TE (�; 1) in a neighborhood of ��, by Proposition 3: To

see that uniqueness of argmax� TE (�; �) is maintained for � 2
�
1; ��
�
, note that

@2TE (�; �)

@�2

����
(��;1)

< 0;

as one can calculate from 40; therefore argmax� TE (�; �) does not bifurcate from �� as we increase

� from 1, by the implicit function theorem.
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Proof of Proposition 15. A simple extensions of the Proof of Lemma 1 shows that

D =

�
1 +

1

�(1;1)

VY
VX

cX
cY

��1
;

C =

�
1 +

1

�(0;1)

VY
VX

cX
cY

2�D
D

��1
;

B =

�
1 +

1

�(1;0)

VY
VX

cX
cY

1�D
1 +D

��1
;

A =

 
1 +

1

�(0;0)

VY
VX

cX
cY

(1� C)2D (2�D) +B (1�D)2 (2�B)
B2 (1�D) (1 +D) +D2 (1� C) (1 + C)

!�1
:

Hence, TE reads

TE = VX
cX

�
B2
�
1�D2

�
+D2

�
1� C2

��
A (1�A)

+VY
cY

�
(1� C)2D (2�D) +B (1�D)2 (2�B)

�
A (1�A)

+A
�
VX
cX

�
1�D2

�
+ VY

cY
(1�D)2

�
B (1�B)

+ (1�A)
�
VX
cX
D2 + VY

cY
D (2�D)

�
C (1� C)

+ (A (1�B) + (1�A)C)
�
VX
cX
+ VY

cY

�
D (1�D) :

(96)

Now consider TE where A = B = C = D = w 2 [0; 1]. Then, from (96), we obtain

TE = � (w) � w2 (1� w)2
��
3 + 4w + 2w2

� VX
cX

+
�
9� 8w + 2w2

� VY
cY

�
:

Since

� (w)
0��
w=1=2

=
3

8

�
VX
cX

� VY
cY

�
6= 0;

then it is not optimal to set A = B = C = D = 1=2.

Proof of Proposition 16. Set �j = 1 for any j � 3. Let TE(i;k) be the expected total e¤ort

conditional on reaching node (i; k) of all matches from the third onwards. We then have

u
(2;0)
X + u

(2;0)
Y � V H, TE(2;0) = V (1�H) ;

u
(1;1)
X + u

(1;1)
Y � V L, TE(1;1) = V (1� L) ;

u
(0;2)
X + u

(0;2)
Y = V H; TE(0;2) = V (1�H) :
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We also know that

u
(1;1)
X = u

(1;1)
Y =

1

2
V L;

u
(0;2)
X = u

(2;0)
Y = "V H;

u
(2;0)
X = u

(0;2)
Y = (1� ")V H;

with " < 1
2 ; and

1
2L > "H as established in (i) and (ii) in the Proof of Proposition 3 of Klumpp

and Polborn (2006). Applying (3)� (9) we obtain:

�u
(1;0)
X +�u

(1;0)
Y =

�
u
(2;0)
X � u(1;1)X

�
+
�
u
(1;1)
Y � u(2;0)Y

�
= (1� 2")V H

u
(1;0)
X =

�
u
(2;0)
X � u(1;1)X

�
B2 + u

(1;1)
X = V

��
(1� ")H � 1

2
L

�
B2 +

1

2
L

�
u
(1;0)
Y =

�
u
(1;1)
Y � u(2;0)Y

�
(1�B)2 + u(2;0)Y = V

��
1

2
L� "H

�
(1�B)2 + "H

�

�u
(0;1)
X +�u

(0;1)
Y =

�
u
(1;1)
X � u(0;2)X

�
+
�
u
(0;2)
Y � u(1;1)Y

�
= (1� 2")V H

u
(0;1)
X =

�
u
(1;1)
X � u(0;2)X

�
C2 + u

(0;2)
X = V

��
1

2
L� "H

�
C2 + "H

�
u
(0;1)
Y =

�
u
(0;2)
Y � u(1;1)Y

�
(1� C)2 + u(1;1)Y = V

��
(1� ")H � 1

2
L

�
(1� C)2 + 1

2
L

�

�u
(0;0)
X =

�
u
(2;0)
X � u(1;1)X

�
B2 + u

(1;1)
X �

��
u
(1;1)
X � u(0;2)X

�
C2 + u

(0;2)
X

�
=

�
u
(2;0)
X � u(1;1)X

�
B2 +

�
u
(1;1)
X � u(0;2)X

� �
1� C2

�
= V

��
(1� ")H � 1

2
L

�
B2 +

�
1

2
L� "H

��
1� C2

��
�u

(0;0)
Y =

�
u
(0;2)
Y � u(1;1)Y

�
(1� C)2 + u(1;1)Y �

��
u
(1;1)
Y � u(2;0)Y

�
(1�B)2 + u(2;0)Y

�
=

�
u
(0;2)
Y � u(1;1)Y

�
(1� C)2 +

�
u
(1;1)
Y � u(2;0)Y

��
1� (1�B)2

�
= V

��
(1� ")H � 1

2
L

�
(1� C)2 +

�
1

2
L� "H

�
B (2�B)

�
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Using the above, we have

TE =
�
�u

(0;0)
X +�u

(0;0)
Y

�
A (1�A)

+A
�
�u

(1;0)
X +�u

(1;0)
Y

�
B (1�B) + (1�A)

�
�u

(0;1)
X +�u

(0;1)
Y

�
C (1� C)

+ABV (1�H) + (A (1�B) + (1�A)C)V (1� L) + (1�A) (1� C)V (1�H)

In equilibrium, we also have

A =
1

1 + 1
�1

�u
(0;0)
Y

�u
(0;0)
X

;

B =
�2

�2 +
u
(1;1)
Y �u(2;0)Y

u
(2;0)
X �u(1;1)X

=
�2

�2 +
1
2L�"H

(1�")H� 1
2L

;

C =
�2

�2 +
u
(0;2)
Y �u(1;1)Y

u
(1;1)
X �u(0;2)X

=
�2

�2 +
(1�")H� 1

2L
1
2L�"H

:

As �u(0;0)Y 6= 0, by appropriately choosing �1, any A 2 (0; 1] can be induced. Therefore, choosing
�1 and �2 to maximize TE is equivalent to choosing A;B; and C, and �2, to maximize TE. Using

the above results, we obtain:

TE

V
=

��
(1� ")H � 1

2
L

��
B2 + (1� C)2

�
+

�
1

2
L� "H

��
1� C2 +B (2�B)

��
A (1�A)

+ (1� 2")H (AB (1�B) + (1�A)C (1� C))

+AB (1�H) + (A (1�B) + (1�A)C) (1� L) + (1�A) (1� C) (1�H)

subject to the constraints,

B

�
�2 +

1
2L� "H

(1� ")H � 1
2L

�
= �2; and C

�
�2 +

(1� ")H � 1
2L

1
2L� "H

�
= �2:

The Lagrangean is

L (A;B;C; �2) =
TE

V
��B

�
B

�
�2 +

1
2L� "H

(1� ")H � 1
2L

�
� �2

�
��C

�
C

�
�2 +

(1� ")H � 1
2L

1
2L� "H

�
� �2

�
:
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The FOC are:

(A):
��
(1� ")H � 1

2L
� �
B2 + (1� C)2

�
+
�
1
2L� "H

� �
1� C2 +B (2�B)

��
(1� 2A)

+ (1� 2")H (B (1�B)� C (1� C)) + (L�H) (B + C � 1) = 0

(B):
��
(1� ")H � 1

2L
�
2B +

�
1
2L� "H

�
2 (1�B)

�
A (1�A)

+ (1� 2")HA (1� 2B) +A (L�H)� �B
�
�2 +

1
2L�"H

(1�")H� 1
2L

�
= 0

(C): �
��
(1� ")H � 1

2L
�
2 (1� C) +

�
1
2L� "H

�
2C
�
A (1�A)

+ (1� 2")H (1�A) (1� 2C) + (L�H) (A� 1)� �C
�
�2 +

(1�")H� 1
2L

1
2L�"H

�
= 0

(�2): �B (1�B) + �C (1� C) = 0

We now show that the point A = 1=2, �2 = 1; and B and C that satisfy the constraints is a critical

point of the Lagrangean. (This implies that �1 = 1 and �2 = 1 is a critical point if we view total

e¤ort as function of �1 and �2.)

Setting �2 = 1 implies

B =
1

1 +
1
2L�"H

(1�")H� 1
2L

=
(1� ")H � 1

2L

H (1� 2") ;

C =
1

1 +
(1�")H� 1

2L
1
2L�"H

=
1
2L� "H
H (1� 2")

and B + C = 1: Therefore

�u
(0;0)
X = V

��
(1� ")H � 1

2
L

�
B2 +

�
1

2
L� "H

��
1� C2

��
= V

��
(1� ")H � 1

2
L

�
(1� C)2 +

�
1

2
L� "H

��
1� (1�B)2

��
= �u

(0;0)
Y ;

so �1 = 1 is equivalent to A = 1
2 . Thus, the FOC for A is satis�ed. The FOC for B becomes

�B =

�
(1� ")H � 1

2
L

� �
(1� ")H � 1

2L
�2
+
�
1
2L� "H

�2
(H (1� 2"))2

1

2
+ (L�H)

(1� ")H � 1
2L

(1� 2")H :

The FOC for C becomes

�C = �
�
1

2
L� "H

� �
(1� ")H � 1

2L
�2
+
�
1
2L� "H

�2
(H (1� 2"))2

1

2
+ (H � L)

1
2L� "H
(1� 2")H :

86



And the FOC for �2 is satis�ed, as we have

�B (1�B) + �C (1� C) =

�
(1� ")H � 1

2L
�2
+
�
1
2L� "H

�2
H (1� 2")

1

2
B (1�B) + (L�H)B (1�B)

�
�
(1� ")H � 1

2L
�2
+
�
1
2L� "H

�2
H (1� 2")

1

2
C (1� C) + (H � L)C (1� C)

= 0:

We now check the second-order condition by building the bordered Hessian matrix of the La-

grangean, evaluated at the critical point above. We have the following second derivatives, all

evaluated at A = 1=2 for the sake of space,

@2L

@A2
= �2

��
(1� ")H � 1

2
L

��
B2 + (1� C)2

�
+

�
1

2
L� "H

��
1� C2 +B (2�B)

��
;

@2L

@A@B
= (1� 2")H (1� 2B) + (L�H) ;

@2L

@A@C
= � (1� 2")H (1� 2C) + (L�H) ;

@2L

@B2
= (H � L) 1

2
� (1� 2")H;

@2L

@C2
= (H � L) 1

2
� (1� 2")H;

@2L

@B@�2
= ��B ;

@2L

@C@�2
= ��C ;

@2L

@A@�2
=

@2L

@B@C
= 0:

The Jacobian of the constraints is "
0 1

B 0 � (1�B)
0 0 1

C � (1� C)

#
:

Substituting the values for B, C; �B , and �C , one can show that the sign of the determinant of the

bordered Hessian is negative if and only if

8x5 � 4y5 � 20xy4 + 32x4y � 5x2y3 + 32x3y2 > 0; (97)

where we de�ned x � H � L and y � L � 2H". Assuming x � y > 0, the left-hand side of (97)

takes value 43y5 > 0 at x = y, and is increasing in x as its derivative has the same sign as

20x3 + 24x2y � 5y3 � 20x3 + 24x2y � 5x3 > 0:

87



Hence, we showed that x � y > 0 is a su¢ cient condition for (97). Condition x � y is equivalent to

H (1 + 2") � 2L;

which is implied by H � 2L.
The next leading principal minor evaluates to

� (1� 2")
4
�
1�B (1�B) + (1�B)2

�
H

(1�B)2B
< 0:

Therefore, applying part (c) of Theorem 16.4 and Theorem 19.6 in Simon and Blume (1994), we

conclude that we have a saddle point, and therefore that �1 = �2 = 1 does not maximize TE.

Proof of Proposition 17. We follow a similar structure to the proof of Proposition 3. Recall

(NOT ). From (31) with (32)-(35), and using the de�nitions of �0s in an alternating contest (i.e.,

�(0;0) = �, �(1;0) = �(0;1) = 1=�, and �(1;1) = 1), then we can characterize

WE (�)

V
=

3�PWE
1 (�)

(�+ 1)2(�+ 3)3(3�+ 1)3 (3�4 + 26�3 + 166�2 + 26�+ 3)
3 +

1

4
;

where

PWE
1 (�) � 729 + 22842�+ 379485�2 + 4034448�3 + 29814840�4 + 156934872�5 + 588302512�6

+1522678000�7 + 2610776546�8 + 3121927900�9 + 2610776546�10 + 1522678000�11

+588302512�12 + 156934872�13 + 29814840�14 + 4034448�15 + 379485�16 + 22842�17

+729�18:

As WE (1) = 91=256 and lim
�!1

WE (�) = lim
�!0

WE (�) = 1=4 < 91=256, then WE (�) admits a

global maximum in the interval � 2 (0;1). The critical points of WE (�) are characterized by
@WE(�)

@� = 0, with

@WE (�)

@�
=

3(1� �)PWE (�)

2(�+ 1)3(�+ 3)4(3�+ 1)4 (3�4 + 26�3 + 166�2 + 26�+ 3)
4 ;
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where

PWE (�) � 6561�24 + 253692�23 + 4922208�22 + 61592724�21 + 541561626�20 + 3489394788�19

+16794128160�18 + 59042042604�17 + 136263542639�16 + 123266598488�15

�351013150336�14 � 1294426619192�13 � 1807569895508�12 � 1294426619192�11

�351013150336�10 + 123266598488�9 + 136263542639�8 + 59042042604�7 + 16794128160�6

+3489394788�5 + 541561626�4 + 61592724�3 + 4922208�2 + 253692�+ 6561:

As PWE is continuous and PWE (1) < 0, then � = 1 is a local minimum for WE (�), as
@WE(�)

@� < 0 in a left neighborhood of � = 1, and @WE(�)
@� > 0 in a right neighborhood of � = 1.

Furthermore, besides � = 1, @WE(�)
@� = 0 has at most two positive roots by the Descartes�rule of

signs applied to PWE (�). One can further show that PWE (1:9) < 0 and PWE (2) > 0, and hence

��WE , which is the solution of P
WE (�) = 0 between 1:9 and 2, is a maximum since @WE(�)

@� > 0 in

a left neighborhood of ��WE and
@WE(�)

@� < 0 in a right neighborhood of ��WE (see (40)). Similar

considerations yield that 1=��WE is also a maximum. As WE (�) = WE (1=�), both ��WE and

1=��WE are global maxima. The proof that the probability of victory is identical across players if

and only if � = 1 is unchanged with respect to that in Proposition 3.

C Appendix C: Comparing � = 1 and � = 2 in alternating

contests

Here, we compare alternating contests with � = 1 in Figure 4 and � = 2 in Figure 5, where we

normalize V = 1. The formulae of Section 3 help the reader follow the algebra. The values of

�u
(1;0)
X and �u(1;0)Y are the di¤erences in utilities at nodes (2,0) and (1,1), while the values of p(1;0)X ,

u
(1;0)
X and u(1;0)Y are computed using (5), (7) and (8). The values at all the other nodes are similarly

computed. In Figure 5, we approximated the values in the �rst and second matches, without losing

the qualitative features of any comparisons. At the bottom of each �gure, the total e¤ort at node

(0,0) is calculated using (9), and labeled ��rst e¤ect.�The label �third e¤ect�describes the total

e¤ort at node (1,1) weighted by the probability of reaching node (1,1).37

37This probability is denoted by Pr f9 (1; 1)g.
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Figure 4: Fully unbiased contest with � = 1 and V = 1.

Figure 5: Alternating contest with � = 2 and V = 1.
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