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Abstract

How do departures of individual beliefs from Bayesian rationality impact welfare

and informational efficiency in financial markets? We allow agents posterior beliefs to

depart from the rational expectations hypothesis and to over/under-react to news (i.e.

to changes in fundamentals and/or prices). We find that both in a financial market with

sequential trading and unit demand and supply, as well as in a financial market with

simultaneous trading, with volume and unbounded signals, over-reaction has a positive

informational externality, while under-reaction exacerbates any informational friction.

Over-reaction mitigates individual losses due non-Bayesian beliefs. Because agents

over-react to news, prices aggregate more efficiently private information, relative to the

rational case. As a consequence, over-reaction decreases the likelihood of informational

cascades, increases the informational content of prices, and it increases welfare.

∗We wish to thank for useful comments Nicola Gennaioli, Philip Matejka, Filippo Massari, Alex Teytel-
boym, Fernando Vega-Redondo, and seminar participants in Bocconi.
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1 Introduction

Traders in financial markets constantly update their beliefs about valuations of financial as-

sets, as a consequence of changes in market prices, fundamentals and/or investment choices of

other traders. Bayesian rationality prescribes a certain law of motion for the dynamics of such

beliefs, which, however, has been found at odds with reality (Benjamin (2019)). Individual

departures from Bayesian rationality in the forms of under/over-reaction to information have

been documented empirically (Bordalo et al. (2018)). Moreover, such departures explains

several facts about macro-financial variables, such as credit cycles (Bordalo et al. (2018)),

stock returns (Bouchaud et al. (2019), Bordalo et al. (2018)), interest rates (d’Arienzo (2020))

and even the likelihood of a financial crisis (Maxted (2019)). How do departures of individ-

ual beliefs from Bayesian rationality impact welfare and informational efficiency in financial

markets?

To answer this question, we follow the diagnostic expectations model (Bordalo et al. (2016)

and Bordalo et al. (2018)), and we define over/under-reaction in beliefs as a one-parameter

deviation from Bayesian updating. The model is parsimonious, tractable and beliefs are

forward looking. Biased beliefs depart from Bayesian rationality by under/over-reacting

to recent information. Our model applies the same logic of the diagnostic expectations

model of (Bordalo et al. (2018)) to a learning setting.1 Diagnostic learning converges to true

fundamentals, as in the Bayesian case, but beliefs over/under-react to recent data.

Then, we embed diagnostic learning into two classic workhorse models of trade under

asymmetric information: the sequential trading model (Glosten and Milgrom (1985)), and

the simultaneous linear quadratic Gaussian trading model (used e.g. in Grossman and Stiglitz

(1980)).

In the former setting, agents enter sequentially the market, observe past trades of other

agents, receive a binary informative signal about fundamentals, take a buy or sell action (for

the single unit of the traded asset) and finally exit the market. A competitive market-maker

efficiently sets prices as expected values of fundamentals given public information. Under

asymmetric information between the market maker and the traders, such a model features

1A different application of diagnostic learning in financial markets is investigated by (Santosh (2020)).
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an informational inefficiency. When traders are ex-ante much more informed about asset

valuations relative to the market maker, then all agents agents buy, regardless of receiving

a good or bad private signal about the fundamentals. As a consequence, the market maker

cannot discriminate private information from trades, and private information is not efficiently

incorporated into prices. We show that over-reaction mitigates the phenomenon. When

agents over-react, those who received are overly pessimistic, their valuation is below the

valuation of the market maker, hence they sell. Then, the market maker infers their private

bad signal from this trade, and next period’s market price efficiently adjusts accordingly.

In the long run, the price get closer to the fundamental, relative to a market populated by

Bayesian agents.

We also allow also the market maker to depart from rationality and to under/over-react.

In this case, the market informational efficiency depends on the relative mis-reaction between

traders and the market maker, and it is time dependent.

The limit case where the market maker has the maximum level of under-reaction possible

is interesting in itself, because in this setting prices are fixed over time, and so, from the

perspective of future agents, buy and sell orders have a purely informational content. Hence,

we recover a pure social learning setting, analogous to (Bikhchandani et al. (1992)) and

(Banerjee (1992)). We show in this case there is a finite level of over-reaction that maximizes

the probability that the society learns the fundamental, that in this setting can roughly be

translated as “there is a cascade on buy if the asset is good, a cascade on sell if the asset is

bad”.

Crucially, the informational role of over-reaction does not rely on the presence of cascades.

Indeed, we show that the same force applies in a simultaneous trading model, with mean-

variance preferences (Glosten and Milgrom (1985)). In such a model, in equilibrium, the

price can be seen as a signal of the fundamental and the precision of such signal is increasing

in the degree of over-reaction, as first shown in (Bordalo et al. (2020)). We show that with

over-reaction, agents trade more aggressively for the same signal, hence they increase the

informativeness of the price, which, in turn, makes agents better off. At the same time,

larger trades penalizes individual utilities of traders, due the risk aversion. We find the

first effect markedly dominates. Social welfare is increasing in the level of over-reaction,
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whose socially optimal value is therefore arbitrarily large: in this scenario, beliefs of traders

concentrate of their observed private and price signals. Agents aggressively trade based on

those signals, which, in turn, generates high price informativeness.

Literature Review

This work contributes to two streams of literature: the literature on herding and cascades in

financial markets, and the literature on under/over-reaction of beliefs in financial markets.

The literature on herding and informational cascades (Banerjee (1992) and Bikhchandani

et al. (1992)) in financial markets study studies weather market prices can ameliorate such

informational frictions. (Avery and Zemsky (1998)) shows that in a binary state space herding

and informational cascades occur where there sufficiently many sources of uncertainty; (Park

and Sabourian (2011)) shows that cascades can happen if the state space is more complex.

We depart from these papers in two dimensions: first, we explore the consequences of non-

Bayesian agents that display under/over-reaction. Second, in a model with no cascades, to

generate cascades, we take a simpler road than the aforementioned papers: we depart from

the common prior assumption by assuming sufficiently high ex-ante asymmetric information.

The literature on diagnostic expectations explains various macro-financial regularities:

Bordalo et al. (2018), Bordalo et al. (2018), Bordalo et al. (2019), Bordalo et al. (2020).

While these papers matches empirical regularities, we investigate the welfare properties of

the same departure from Bayesian rationality. Walther (2020) explores macro-prudential

policy implications with extrapolative beliefs.

Our work is also connected to the literature on non Bayesian learning: examples that

study social learning problems are Bohren and Hauser (2021), Molavi et al. (2018), Frick et al.

(2020). All these papers focus on long run convergence properties of beliefs, not informational

efficiency of markets. The closest to ours is Santosh (2020) that studies Kalman filtering and

stochastic volatility under learning analog of diagnostic expectations similar to ours. Finally,

our work is connected to the literature exploring the informational efficiency of markets, a

large body of literature whose full review is beyond our scopes. Here we limit to note the

recent work by Vives (2017), exploring the inefficiencies in information transmission in a

linear quadratic setting similar to the model we explore in Section 4.
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The paper is organized as follows: Section 2 lays out the definition of the diagnostic

updating we use throughout the paper as long as a few basic properties. Section 3 presents

the analysis of a sequential trading model under diagnostic learning, as well as the particular

case in which the market maker features extreme under-reaction and the model becomes

analogous to a pure social learning setting. Section 4 makes the point that the possibility of

cascades is not the driving force of our results, by showing that over-reaction is still welfare

improving in a classic linear quadratic model of trade with unbounded signals. All proofs

are in the Appendix.

2 A non Bayesian learning model

In this section we introduce a learning model based on diagnostic expectations. Consider an

agent that has to learn the state of the world ω, on which she has a prior belief, with density

p0(ω). The agent observes a signal X, whose likelihood is known to be l(X|ω). The standard

Bayesian updating operator takes as inputs the prior density, the likelihood function and

the observed signal, and it prescribes to update beliefs about ω from p0(ω) to the Bayesian

posterior:

BU(l, p0)(ω) :=
l(X|ω)p0(ω)∫
l(X|ω′)p0(ω′)dω′

. (1)

Following Bordalo et al. (2018), we assume that agent’s updating rule departs from the

standard Bayes rule, as follows:

BU θ(l, p0)(ω) =
1

Z
BU(l, p0)(ω)

(
BU(l, p0)(ω)

p0(ω)

)θ
, (2)

where Z is a normalization constant. This rule can be founded on the representativeness

heuristics (Tversky and Kahneman (1974)): current information is exaggerated when for

representative states ω, which are those whose the likelihood ratio relative past assessment,

BU(l,p0)(ω)
p0(ω)

, increased. The scalar parameter θ > −1 controls the departure from the Bayesian

case. When θ > 0 the model delivers over-reaction to information. Specifically, the previous
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formula says that states ω which are more likely under BU(l, p0)(ω) than under p0(ω), i.e.

representative states, are over-weighted. On the contrary, states ω which are less likely under

BU(l, p0)(ω) than under p0(ω), are under-weighted. Thus, we say that for θ > 0 posterior

beliefs over-react to information. On the contrary, for −1 < θ < 0, posterior beliefs under-

react to information.

The next proposition sums up two general properties of diagnostic updating that are

useful to keep in mind in the following. First, consistency : when facing multiple observations,

X1, . . . , Xt, agents can update their beliefs in one round, or sequentially; in this latter case,

at each step, the prior belief is the previous step distorted posterior belief:

BU θt (l, p0)(ω) =
l(X1, . . . Xt|ω)1+θp0(ω)∫
l(X1, . . . Xt|ω′)1+θp0(ω′)dω′

.

Consistency states that the posterior distribution after observing many signals is the same

if we perform the updating once simultaneously, or sequentially (hence, also independent of

the order). This is a convenient property when we study the dynamics. Second: diagnostic

updating does not affect long-run learning by an agent in isolation.

Theorem 1. Diagnostic updating satisfies the following properties:

1. Consistency For k ∈ {1, . . . , t− 1}:

BU θt (l, p0)(ω) = BU θt−k(l,BU θk(l, p0))(ω)

2. Asymptotic learning (in isolation) Consider i.i.d. signals Xt, with likelihood l(Xt|ω),

such that l(X|ω) 6= l(X|ω′) if ω 6= ω′, and consider a prior p0 on ω. Consider the cases

where the prior is discrete or both signals and prior are continuous (for now).

Call l∞ω the measure on the space of realizations X = (X1, X2, . . .) defined by the product

measure of the likelihoods l(·|ω). Then for p0-almost every ω the diagnostic learning

converges a.s., that is:

P θ(ω ∈ B|X1, . . . , Xt)→ 1ω∗∈B l∞ω∗ − a.s.
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3 Sequential Learning and Market Efficiency

How does over-reaction impact informational efficiency in financial markets? Even in ratio-

nal financial markets, informational efficiency may be constrained by herding, namely the

phenomenon where traders temporarily neglect private information and copy actions of other

traders. (Lakonishok et al. (1992)) and (Nofsinger and Sias (1999)) document herding using

trading data of institutional investors; Cipriani and Guarino (2014) find herding an experi-

mental setting with sequential trading. Theoretically, (Avery and Zemsky (1998)) builds on

the financial market model of (Glosten and Milgrom (1985)) and show that rational herding

occurs when there are multiple dimensions of uncertainty about the true fundamental value

of the single asset traded in the market. (Park and Sabourian (2011)) consider rich structures

of signals and state spaces, and characterize the occurrence of rational herding in financial

markets with sequential trading depending on the shape of the signals. Both the papers

also characterize the occurrence of informational cascades, which are defined as permanent

herding. Informational cascades have broader implications than financial markets: they can

occur also in the purely sequential social learning settings, such as (Banerjee (1992)) and

(Bikhchandani et al. (1992)).

Here, we consider a simple model of financial market with sequential trading and we

show that over-reaction may increase market informational efficiency, as opposed to Bayesian

rationality. Because traders over-react to their signals, we show that with over-reaction

they inject more information into prices, and it is therefore less likely to get stuck into

informational cascades, relative to Bayesian rationality. Traders’ valuation of the asset is

more extreme with over-reaction, hence buy trade is more likely to signal positive information

about the asset. On the contrary, under-reaction shrink traders’ valuation toward the public

valuation, and with under-reaction it is less likely to escape an informational cascade, relative

to Bayesian rationality. This is also true in the case of purely social learning, which is the limit

of our model when prices are infinitely sticky. When traders react differently to information

relative to the market maker, the model has richer predictions: over-reaction exaggerate

private signals, yet differential reactions across traders and the marker makers also distorts

the weight attached to public information. The balance between the two forces depends on
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the details of the market and determines the actual features of the price process.

3.1 The Model

A single asset with binary fundamental value V ∈ {0, 1} is traded. Time is discrete. At

each time t ≥ 1, a risk-neutral market maker (e.g. a broker or the stock exchange) sets the

price of single traded unit of the asset as the expected value of the fundamental, given public

information and given his beliefs. Public information is defined as the history of past trades:

Ht = (a1, . . . , at), where at = B (Buy) or at = S (Sell). Therefore, the price of the asset at

time t reads:

pt = EMM [V |Ht] = PrMM(V = 1|Ht), (3)

where the label ”MM” denotes the expectation is taken using the beliefs of the market maker.

At each time t ≥ 1, a risk-neutral trader enters the market, she trades and the she exits the

market forever. She observes both public information, Ht, and an informative binary private

signal st ∈ {−1, 1} about the fundamental. She buys if and only if:

ETR[V |Ht, st] ≥ pt, (4)

otherwise she sells. ”TR” denotes the expectation is taken using the beliefs of the trader.

The model features asymmetric information: traders observe private signals, while the market

maker does not. Indeed the goal the seminal paper of (Glosten and Milgrom (1985)), which

started the sequential trading literature, is to study the effects of asymmetric information

in financial markets. We assume further that such asymmetry in information occurs also

time t = 0: the market maker has no information about the fundamental value, namely

PrMM(V = 1) = 1
2
; traders, on the contrary, have some prior information, PrTR(V = 1) =

p > 1
2

(with no loss of generality about the direction of the inequality). As we shall show,

such ex-ante asymmetric information generates the possibility of informational cascades in

the rational version of the model, while at the same time this specification keeps the model

extremely tractable. Different ways of generating herding and cascades include: additional
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sources of uncertainty about the fundamental value of the asset (Avery and Zemsky (1998)),

richer action-state space structures (Park and Sabourian (2011)), and risk-aversion (Decamps

and Lovo (2006)).

A rational and risk-neutral trader at time t, on top of the public information Ht, has

private information: she receives a signal st, which is informative about the fundamental

value of the asset: Pr(st = ±1|2V − 1 = ±1) = q and Pr(st = ±1|2V − 1 = ∓1) = 1 − q,

with q > 1
2
. Consider the valuation problem of the trader. If she receives bad news, st = −1,

then her valuation of the asset reads:

ETR [V |Ht, st = −1] = PrTR(V = 1|Ht, st = −1) (5)

=
PrTR(V = 1|Ht)Pr(st = −1|V = 1, Ht)

PrTR(st = −1|Ht)
=

1

πt + (1− πt) q
1−q

πt, (6)

where 1−q = Pr(st = −1|V = 1, Ht) = Pr(st = −1|V = 1) because signals are conditionally

i.i.d., and πt := ETR[V |Ht]. Similarly, If she receives good news, st = 1, then her valuation

of the asset is:

E[V |Ht, st = 1] =
1

πt + (1− πt)1−q
q

πt. (7)

On the contrary the market maker evaluates the asset as:

E[V |Ht] = pt =
1

1 + Pr(Ht|V=0)
Pr(Ht|V=1)

. (8)

Pr(Ht|V = 1) and Pr(Ht|V = 0) have no labels ”MM” because the likelihood of a stream

of trades Ht is independent of the prior of the market maker. Following (Avery and Zemsky

(1998)), we say there is no herding at time t if ETR[V |Ht, st = 1] > pt > ETR[V |Ht, st = −1].

Without herding, a trader who receives a good signal buys, a trader who receives a bad signal

sells: observed trades are then informative about private signals, and the learning process of

the market maker incorporate them into prices. Prices efficiently adjust in the rational case

to prevent herding.
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Does herding occur under diagnostic expectations? Herding does not occur if and only if:

E[V |Ht, st] > pt > E[V |Ht, s = −1] (9)

⇐⇒ PrTR(V |Ht, st = 1)

1− PrTR(V |Ht, st = 1)
>

pt
1− pt

>
PrTR(V |Ht, st = −1)

1− PrTR(V |Ht, st = −1)
(10)

⇐⇒ Pr(Ht|V = 1)

Pr(Ht|V = 0)

p

1− p
q

1− q
>
Pr(Ht|V = 1)

Pr(Ht|V = 0)
>
Pr(Ht|V = 1)

Pr(Ht|V = 0)

p

1− p
1− q
q

(11)

⇐⇒ q

1− q
>

1− p
p

>
1− q
q

. (12)

If prior beliefs of traders are not too extreme, then for all trading histories Ht, herding does

not occur and prices are perfectly informative about private information. On the contrary,

there is a buy(sell)-cascade starting from time t = 1 if p is close enough to zero (one): then,

prices are completely uninformative about private information.

While in this setting price informativeness can either be full or completely absent, our

results do not depend on the sequential nature of the trading, as discussed in Section 4.

How does diagnostic learning impact price informativeness? We call θ the distortion

parameter of traders and θ̄ the distortion parameter of the market maker. Consider first the

homogeneous case θ = θ̄. There is no herding if and only if:

EθTR[V |Ht, st = 1] > pθ,t := EθMM [V |Ht] > EθTR[V |Ht, st = −1] (13)

⇐⇒
(

q

1− q

)1+θ

>
1− p
p

>

(
1− q
q

)1+θ

. (14)

over-reaction (θ > 0) prevents herding, relative to the Bayesian-rational case (θ = 0), in

the sense that the condition to avoid herding is less stringent. On the contrary, with under-

reaction (θ < 0) the condition to avoid herding is more stringent.

Second, consider the case where θ is the distortion of the traders, while θ̄ is the distortion

of the market maker. The following results characterizes the occurrence of herding.

Proposition 3.1. There is no herding in the model at time t, if and only if over-reaction of

traders to the private signal st dominates on the relative mis-reaction of traders with respect
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to the market maker to public information Ht:

(
q

1− q

)1+θ (
Pr(Ht|V = 1)

Pr(Ht|V = 0)

)θ−θ̄
>

1− p
p

>

(
1− q
q

)1+θ (
Pr(Ht|V = 1)

Pr(Ht|V = 0)

)θ−θ̄
. (15)

The proof simply follows from traders’ and market maker valutation formulas. Distorted

learning has three effects. First, traders distortions θ over-weight the private signal st, exactly

as in the case θ = θ̄. Second, learning from public information Ht is distorted because the

frequency of actions Ht differs relative to the rational case: with over-reaction buying is more

likely after good news. Third, learning from public information is distorted. If traders have

sufficiently high θ relative to the market maker, namely if θ − θ̄ > 0, then traders over-react

also to public information, relative to the market maker. If θ− θ̄ < 0 instead, traders under-

react to public information. The latter condition can happen even in a world where both

traders and the market maker over-reacts, because what matters for distorted learning from

public information is the difference between the distortion of traders and that of the market

maker. If signals are sufficiently informative, or if θ is sufficiently high, then over-reaction

prevents herding. The dynamics of the system, in terms of price dynamics is rich, and a full

characterization of it is beyond the scope of this paper. Our focus is instead on informational

efficiency, and we shall consider two benchmark cases: a rational market-maker (θ̄ = 0) and

a perfectly rigid market-maker (θ̄ = −1), where the latter maps our model into the purely

social learning setting of (Banerjee (1992)) and (Bikhchandani et al. (1992)).

3.2 Rational Market Maker

The dynamics of the model is characterized as follows.

Theorem 2. Assume θ̄ = 0 and θ > θ∗ :=
p

1−p
q

1−q
+1. Then: after s1 = 1, there is a buy cascade;

after s1 = s2 = −1, there is a sell cascade; finally, after s1 = −1, s2 = 1 the trader’s choice

at time t = 3 (given s3), is identical to the trader’s choice at time t = 1 (given s1 = s3).
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Moreover, the probability of a buy and sell cascades are:

Pr(Buy cascade|V = 1) = Pr(Sell cascade|V = 0) =
q

1− (1− q)q
(16)

Pr(Sell cascade|V = 1) = Pr(Buy cascade|V = 0) = 1− q

1− (1− q)q
(17)

We measure market informational inefficiency from trader’s perspective as the expected

square distance between the actual price in the long-run, p∞, and the fundamental value V :

E[(V − p∞)2]. (18)

Such loss equals p∞ = 1
4

in the case of rational traders, namely θ = 0. On the contrary, under

the hypothesis of Theorem (2), the price under a buy cascade (given V = 1) is q, while the

price under a sell cascade (given V = 0) is (1− q)2 (see the proof of theorem (2)). The case

V = 0 is symmetric. Hence the informational inefficiency reads:

E[(V − p∞)2] = (1− q)2(Pr(Buy cascade|V = 1) + (1− q)4(Pr(Sell cascade|V = 1)) <
1

4
.

(19)

Market informational efficiency improves with over-reaction (θ ≥ θ∗). Over-reaction to news

has the positive effect of partially healing negative informational externalities. While in this

stylized setting over-reaction has only a positive effect, in general sequential trading models it

may also induce herding (temporary cascades), as derived in proposition (3.1). The optimal

amount of over-reaction in a more realistic market is therefore pinned by its specific features.

Yet, the positive force of over-reaction on the diffusion of the information in financial markets,

which is the focus of the current analysis, is a general effect. We now move to the social

learning case.
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3.3 Sequential Learning and Efficiency: the case of pure social

learning

In this section, we apply our behavioral model of learning to the special case where ¯theta =

−1: the is no market, and the price of the asset is fixed and equal to 1
2
. This recovers the

models of social learning models (Banerjee (1992)) and (Bikhchandani et al. (1992)). We

now analyze the dynamics of the model.

Exactly as in the previous section, actions are perfectly revealing at time t = 1. To

understand what are the implications of the distortion θ for cascades and learning, let us

start with the following definition.

Definition 3.1. The Informational efficient region (IE) is the set of parameters given by

the union of:

θ + 1 ≥
ln p

1−p

ln 1−q
q

p ≥ 1

2
, (20)

and

θ + 1 ≤
ln p

1−p

ln q
1−q

p <
1

2
. (21)

The Informational efficient region is the region of parameters such that time t = 1 traders

buy if and only if s1 = 1 and therefore ”communicate” her private signal to future agents.

Outside the efficient region, the trader instead chooses the action consistent with his prior

regardless of her the signal. This is crucial in characterizing the behavior of the model. The

following proposition describes such behavior.

Proposition 3.2. If the parameters are in the Informational efficient region, then:

If p ≥ 1
2

If the first signal is 1, there is a cascade on 1. If the first two signals are (0, 0) there

is a cascade on 0. If the first two signals are (0, 1), then the third agent faces the same

problem of agent 1. The probability of learning is Pr(a∞ = V ) = pq+(1−p)q2
1−q(1−q) .

If p < 1
2

There is a cascade on 1 if the first signals are (1, 1), there is a cascade on 0 if the
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first signal is 0. If the first two signals are (1, 0), then the third agent faces the same

problem of agent 1. The probability of learning is Pr(a∞ = V ) = pq2+(1−p)q
1−q(1−q) .

If the parameters are outside of the Informational efficient region, then:

1. If 1
2
> p, then all agents play 0 with probability 1 and the probability of learning is 1−p.

2. If 1
2
≤ p, then then all agents play 1 with probability 1, and the probability of learning

is p.

By the form of the results, we can already see that a larger θ creates more room for

learning, by enlarging the Informational efficient region. In the following, we make this

argument formal.

A way to quantify the size of the parameter space is to think of the parameters p and q

as drawn before the process starts. from a distribution µ, with full support on (0, 1)× (1
2
, 1).

Denote a∞ = limt→∞ at. Consider regions as R1 = IE ∪ {p > 1
2
}, R2 = IE ∪ {p ≤ 1

2
},

N1 = IE ∪ {p >

frac12}, and N2 = IE ∪ {p ≤ 1
2
}. Then the ex-ante probability of learning the correct state

of the world is:

Pr(a∞ = V ) =

=

∫ (
pIN1 + (1− p)IN2 +

pq + (1− p)q2

1− q(1− q)
IR1 +

pq2 + (1− p)q
1− q(1− q)

IR2

)
dµ,

where I(·) represents the indicator function.

Let us define a level of θ ex-ante efficient if it achieves the maximum of this probability.

The following figures illustrate the situation. In figure 1 we draw the region where Mr1

playing a1 = s1 is socially efficient, and the region where (Bayesian) Mr1 playing a1 = s1 is

individually efficient (i.e. optimal). As is clear from the figure, a Bayesian updating rule does

not maximize the learning probability: there is a region where it would be socially efficient

that Mr1 plays a1 = s1, but a Bayesian agent, since he does not internalize the information

externality on other agents, does not. In figure 2, we plot instead the informational efficient

regions for different values of the parameter θ: we can see that there are moderate values
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Figure 1: The areas of the parameter space where revealing is efficient, and the area where
a Bayesian agent reveals. The figure shows that the Bayesian updating fails to be socially
efficient: there is a region where agent 1 does not reveal but it would be socially optimal to
do so.

of over-reaction that increases the probability of learning. In the following proposition, we

show that there is a value of θ that actually achieve ex-ante efficiency.

Theorem 3. If the parameters p, q are drawn from a distribution µ with full support on

(0, 1)× (1
2
, 1), the distorted updating with θ = 1 is ex-ante efficient.

Given the importance of the result, we report the proof here in the main text.

Proof. Let us focus on the subset of the parameter space where {p > 1
2
}, the reasoning for

p < 1
2

is analogous. The the ex-ante probability of learning is:

∫ pI
θ + 1 ≤

ln
(

p
1−p

)
ln q

1−q

+
pq + (1− p)q2

1− q(1− q)
I

θ + 1 >
ln
(

p
1−p

)
ln q

1−q

 dµ.

In the Informational efficient region IE, the probability of learning is pq+(1−p)q2
1−q(1−q) , while

outside is just p. The probability of learning is higher inside the Revelation region if and
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Figure 2: The areas of the parameter space where revealing is efficient, and the area where
agent with different degree of distortion reveal. It is clear that under-reaction is always worse
than Bayesian, while a moderate over-reaction can be socially better than Bayesian.

only if:

p <
pq + (1− p)q2

1− q(1− q)
,

which is equivalent to:

p <
q2

(1− q)2 + q2
.

Now we can rewrite the condition defining the IE region:

p <
qθ+1

(1− q)θ+1 + qθ+1
.

Depending on θ, q2

(1−q)2+q2
can be larger or smaller than qθ+1

(1−q)θ+1+qθ+1 , with equality for q = 1
2

q = 1, and for all q if θ = 1.

If θ < 1, it means that there is a region outside the IE region (with positive mass, because

of the full support assumption on µ) with probability of learning p, strictly smaller than the

corresponding probability if it belonged to the IE, hence by increasing θ the probability of

learning would increase. If θ > 1, on the contrary, there is a region that belongs to IE where
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the probability of learning is smaller than p. Hence, the maximum is achieved for θ = 1.

4 Simultaneous exchange and market efficiency

The cascades model is very stylized in two major dimensions:

1. signal’s likelihood ratios are bounded away from 1 and 02), which means that the

informativeness of each signal is limited. (Smith and Sørensen (2000)) identifies this as

a necessary condition for the presence of cascades.

2. the model features unit demand and supply.

The goal of this section is to show that the main insights derived in the previous sections

are independent of the two features above. Specifically, in this section we explore the impli-

cations of diagnostic expectations in a linear quadratic Gaussian model of exchange, similar

to the one used by (Bordalo et al. (2020)) or (Grossman and Stiglitz (1980)). Formally, we

assume that there is a continuum of agents indexed by i ∈ [0, 1] and represented with the

density f . Each of them can decide her position Di with respect to the only asset exchanged,

where short sales are allowed (Di can be negative). The price of the asset realized on the

market is p and the marginal value of the asset is V . We assume that the utility of an agent

i holding Di units of the asset is:

ui = (V − p)Di −
1

2
γD2

i

This functional form, coupled with normality of the variables involved, yields an equilib-

rium very similar to the one obtained via CARA preferences (as in (Bordalo et al. (2020)),

(Grossman and Stiglitz (1980)) and others), but assuming the linear quadratic functional

form directly simplifies the welfare analysis, that is what we are interested in.3

2Or simply bounded, in the terminology of (Smith and Sørensen (2000)
3This functional form has a risk aversion coefficient of rA(D) = γ

V−p−γDi
, that is naturally not constant,

but exemplifies how the parameter γ can be taken to represent a measure of the strength of risk aversion
(because rA(D) is increasing in γ for fixed Di).
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Every agent has access to a private signal si that has a distribution N (V, 1) conditional

on V . Agents have a common prior on V that is N (0, 1). Aggregate supply of the asset is

random S ∼ N (0, 1), and the realized price is the value p that clears the market, namely p

such that
∫
Di(p)f(i)di = S. As for the model in the previous section, we assume agents

have diagnostic expectations with parameter θ. This means that they distort their posterior

beliefs after observing both the private signal and the price.4 To solve the model we follow

(Bordalo et al. (2020)) in looking for a diagnostic expectations equilibrium, namely a pricing

function p(V, S), and demand functions Di(p, si), such that:

1. the demand maximizes trader i distorted expected utility given the observation of the

private signal si and the price p, formally: Di(p, si) ∈ arg max{Eθ[ui | si, p(S, V )]}. Eθ

is the expectation operator given the diagnostic posterior;

2. the price clears the market:
∫
Di(p(S, V ), si)f(i)di = S.

In particular, it is crucial that agents in equilibrium use the price as a signal for the

fundamental V , and make inference on that to form their posterior.

The model of this section thus departs in two important ways from the discrete cascades

model. First, signals are unbounded, and, second, trade volume is not fixed to 1 but is

variable. Specifically, the demand/supply of each agent is:

Di =
Eθ[V | Ii]− p

γ
(22)

As is standard, the larger the departure of the expected valuation from the price (the asym-

metry of information), the more aggressive the trading, both short or long.

The last ingredient we need is welfare. Since in this economy all agents are identical, it

is particularly simple and unambiguous.

Definition 4.1. In this economy (ex-ante) social welfare is:

W =

∫
E(ui)f(i)di = E(ui)

4Note that by Theorem 1 for the purposes of the diagnostic updating the order in which agents observe
the signal and the price is immaterial.
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The last equality follows from the fact that the only heterogeneity in this economy is after

observing signals, hence the expected utilities of all agents are identical.5

First, a calculation yields the following lemma, important for the following: the distorted

updating of a normal distribution is still normal.

Lemma 4.1. If you have a prior N (µ0, σ
2
0), and a likelihood N (µ, σ2), then the posterior

distribution after the diagnostic updating is:

N

((
µ0

σ2
0

+ (θ + 1)
s

σ2

)(
1

1
σ2
0

+ θ+1
σ2

)
,

1
1
σ2
0

+ θ+1
σ2

)

Using equation (22), the model can be solved through the classic procedure: assume a

linear pricing function p = a + bV + cS, compute the expectations of each agent, and use

the market clearing conditions to find equations for the three parameters a, b, c. The crucial

parameter to look at is the informational content of prices, namely b2/c2. This is the relevant

parameter because conditional on V the price (renormalized, p−a
b

) has distribution N
(
V, c

2

b2

)
.

Hence, b2/c2 is the precision of the price as a signal of V . The next proposition sums up the

crucial properties of the solution.

Proposition 4.1. The precision b2/c2 is increasing in θ.

Society’s welfare W is increasing in the precision b2

c2
.

Hence, society’s welfare W is increasing in θ.

The intuition for the result is the following: over-reaction causes the price to be more

informative, increasing the precision b2

c2
. This, in turn, is beneficial for the agents, because

as the equation for the demand (22) shows, agents’ choices (hence, their utility) crucially

depend on their ability to estimate V correctly.

Again, as in the previous model, we find a beneficial effect of over-reaction for society,

in a form that is even more extreme that in the cascades example: here the optimal over-

reaction would be infinite. Note that this happens even if we chose a specification of the utility

5In particular, we would obtain the same expression if we started from a more general specification for
the utilitarian social welfare: W =

∫
E(ui)λ(i)f(i)di, where λ(i) are the Pareto weights.
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function that by itself penalizes larger trades (the quadratic term is a cost convex in the trade

volume), so, absent the market mechanism, makes under -reaction more convenient (because

under-reaction generates smaller trade volume). Why is this the case? To understand the

mechanics, it is useful to start from a simplified setting in which agents fail to recognize

the informational content of the price, and base their forecast only on the private signal,

Ii = {si}.

Let us examine equation 22. Market clearing gives

p =

∫
E[V | Ii]f(i)di− γS (23)

So the price is essentially the average expectation, plus a noise term. This clarifies that,

on average, the demand is positive when the agent receives a signal larger than the average

si > V , and negative otherwise. The noise comes from the random supply: agents are not

able to distinguish which part of the price is the average expectation and what part is noise.

A larger θ means that for the same signal the trader trades more aggressively, and so the

expectations part becomes more prominent with respect to the noise. As a consequence, the

price is a more precise signal of the fundamental.

To see the mechanism in a more concrete way, consider the following modification of the

setting just described. Everything is as in the main model, but agents fail to understand

the informational content of prices. Technically, definition 4.1 is modified in the following

way: agents optimize E[ui | si]. In this setting, over-reaction still implies that the price is a

more precise signal of the fundamental, but agents do not benefit from a the precision of the

price signal. As a consequence, over-reaction is not optimal any more, indeed we find that

under-reaction is optimal instead. The formal result is in the next proposition.

Proposition 4.2. If agents neglect the informational content of prices, the precision of the

price as a signal of the fundamental, b2

c2
is still increasing in θ, but society’s welfare W is

decreasing in θ.
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5 Conclusion

We presented an analysis of the welfare implications of over-reaction, a deviation from

Bayesian learning that has recently found a lot of support in macro-financial data. Specifi-

cally, we showed through two classic settings used to study asymmetric information in mar-

kets, that over-reaction can be beneficial for society because it creates a positive information

externality. Over-reacting agents, by having beliefs that move more than bayesians, trade

in such a way to reveal more of their private information, either by switching action (in the

Glosten-Milgrom discrete setting), or by trading more aggressively (in the linear Gaussian

trading volume). A recent research line ask why over-reaction is a so pervasive. 6 Our results

suggest that in informationally complex settings, a society or a market with over-reacting

agents might have an advantage, thus suggesting an explanation through an evolutionary

channel. A further step to understand the consequences of over-reaction is more realistic

markets is to include heterogeneous beliefs as a wealth of research using survey data docu-

mented. This is anevue for future research.

6Recent works in this spirit are (? and (Afrouzi et al. (2020)).
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A Proofs

A.1 Theorem (2

)

Proof. We assumed a buy cascade in the rational cascade starting at time t = 1 (the sell

cascade case is symmetrical). Namely: q
1−q >

1−q
q
> 1−p

p
. Also: θ̄ = 0 and θ > θ∗ =

p
1−p
q

1−q
+ 1.

For θ > θ∗ in the diagnostic learning case, the first action is perfectly informative of the

private signal, because:

(
q

1− q

)1+θ

>
1− p
p

>

(
1− q
q

)1+θ

(24)

for θ > θ∗.

If s1 = 1, then at time t = 2:

(
q

1− q

)(1+θ)s2 ( q

1− q

)θ
>

1− p
p

. (25)

Hence, after s1 = 1 there is buy cascade. If s1 = −1 and s2 = −1 then:

(
q

1− q

)−(1+θ)−θ

<
1− p
p

, (26)

hence H2 = S. If instead s2 = 1, then:

(
q

1− q

)(1+θ)−θ

>
1− p
p

, (27)

hence H2 = B. Therefore, after s1 = −1, H2 is perfectly informative. Then, if s1 = −1, s2 =

−1:

(
q

1− q

)(1+θ)s3−2θ

<
1− p
p

, (28)

because we assume θ sufficiently high. Finally, after s1 = −1, s2 = 1 the trader faces the
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identical problem of t = 1.

The probabilty of a buy cascade given V = 1 is therefore:

Pr(Buy Cascade|V = 1) = q + (1− q)qPr(Pr(Buy Cascade|V = 1)). (29)

Hence: Pr(Buy Cascade|V = 1) = q
1−(1−q)q .

A.2 Theorem (1)

Proof. Consistency

The diagnostic Bayesian operator is defined for t = 1 as:

BU θ1(l, p0)(ω) =
1∫

BU1(l, p0)
(
BU1(l,p0)(ω′)

p0(ω′)

)θ
dω′
BU1(l, p0)

(
BU1(l, p0)(ω)

p0(ω)

)θ
.

For t > 1 it is defined as:

BU θt (l, p0)(ω) =
1∫

BU t(l,BU θt−1(l, p0))(ω′)
(
BUt(l,BUθt−1(l,p0))(ω′)

BUθt−1(l,p0)(ω′)

)θ
dω′
BU t(l,BU θt−1(l, p0))(ω)

(
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

)θ

.

Note that this can be rewritten as:

BU θt (l, p0)(ω) ∝ BU t(l,BU θt−1(l, p0))(ω)

(
BU t(l,BU θt−1(l, p0))(ω)

BU θt−1(l, p0)(ω)

)θ

∝ BU t(l,BU θt−1(l, p0))(ω)

(
l(Xt|X1, . . . , Xt−1, ω)θBU θt−1(l, p0)(ω)

BU θt−1(l, p0)(ω)

)θ

∝ l(Xt|X1, . . . , Xt−1, ω)1+θBU θt−1(l, p0)(ω)

∝ BU t(l1+θ, p0)(ω).

Note that for any 1 < τ < t:
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BU θt−τ (l,BU θτ (l, p0)(ω))(ω) = BU t−τ (l1+θ,BU τ (l1+θ, p0)(ω))(ω) = BU(l1+θ, p0)(ω) = BU θt (l, p0)(ω).

This says that sequential updating or ”one shot” updating are equivalent. Moreover, we

have the following simplified expression for the updating:

BU θ(l, p0)(ω) =
l(X|ω)1+θp0(ω)∫
l(X|ω′)1+θp0(ω′)dω′

. (30)

Asymptotic learning

Theorem 2.4 in Miller (2018) guarantees that the above is true if θ = 0 (Bayesian case).

In general:

P θ(ω ∈ B|X1, . . . , Xt) =

∫
B

1

Z(X1, . . . , Xt)

(
dP (·|X1, . . . , Xt)

dp0

)θ
dP (·|X1, . . . , Xt)

is that correct? I don’t know. If states are discrete:

P θ(ω|X1, . . . , Xt) =
1

Z(X1, . . . , Xt)

(
P (ω|X1, . . . , Xt)

p0(ω)

)θ
P (·|X1, . . . , Xt)

Now for every ω
(
P (ω|X1,...,Xt)

dp0(ω)

)θ
P (ω|X1, . . . , Xt) is a continuous function of the Bayesian

belief, hence by the continuous mapping theorem, and the result for the Bayesian case, for

p0-almost every ω:

(
P (ω|X1, . . . , Xt)

p0(ω)

)θ
P (ω|X1, . . . , Xt)→ 1ω=ω∗p0(ω)−θ l∞ω∗ − a.s.

Moreover:

Z(X1, . . . , Xt) =
∑
ω

(
P (ω|X1, . . . , Xt)

p0(ω)

)θ
P (ω|X1, . . . , Xt)→ p0(ω∗)−θ l∞ω∗ − a.s.
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hence we conclude:

1

Z(X1, . . . , Xt)

(
P (ω|X1, . . . , Xt)

p0(ω)

)θ
P (ω|X1, . . . , Xt)→ 1ω=ω∗ l∞ω∗ − a.s.

In the case of continuous signals we have something similar. Assume that the prior and

the likelihoods are bounded, so that all the densities are bounded. We know that:

F (ω|X1, . . . , Xt)→ 1ω≥ω∗ l∞ω∗ − a.s.

Now by definition of continuous random variable:

F (ω|X1, . . . , Xt) =

∫ ω

−∞
f(ω′|X1, . . . , Xt)dω

′

We want to prove that

∫ ω

−∞
f(ω′|X1, . . . , Xt)

(
f(ω′|X1, . . . , Xt)

f0(ω′)

)θ
dω′ → 1ω≥ω∗f0(ω∗)−θ

From the convergence of Bayesian distributions we have for any δ > 0:

lim
t→∞

∫
|ω−ω∗|>δ

f(ω′|X1, . . . , Xt)dω
′ = 0

Now we can split the integral above in:

∫
|ω′−ω∗|>δ,ω′≤ω

f(ω′|X1, . . . , Xt)

(
f(ω′|X1, . . . , Xt)

f0(ω′)

)θ
dω′+

∫
|ω′−ω∗|≤δ,ω′≤ω

f(ω′|X1, . . . , Xt)

(
f(ω′|X1, . . . , Xt)

f0(ω′)

)θ
dω′

The first integral is smaller than
∫
|ω−ω∗|>δ f(ω′|X1, . . . , Xt)dω

′max|ω′−ω∗|>δ f0 → 0 by the

property above, while the second is equal to, by the mean value theorem there exists a ω

such that:

f0(ω)−θ
∫
|ω′−ω∗|≤δ,ω′≤ω

f(ω′|X1, . . . , Xt)
θ+1dω′

where |ω∗ − ω| ≤ δ.

Now, if ω < ω∗ also this second integral goes to zero, otherwise it goes to 1, and by
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continuity of the prior we conclude:

∫ ω

−∞
f(ω′|X1, . . . , Xt)

(
f(ω′|X1, . . . , Xt)

f0(ω′)

)θ
dω′ → 1ω≥ω∗f0(ω∗)−θ

repeating the reasoning for the normalization gets rid of the prior and concludes the proof.

A.3 Proof of Proposition 3.2

Mr 1 will play action a1 = 1 after observing signal s1 = 1 if and only if his posterior is higher

than τ , that is:
pq1+θ

pq1+θ + (1− p)(1− q)1+θ
≥ τ

⇐⇒ 1 +
1− p
p

(
1− q
q

)1+θ

≤ 1

τ

⇐⇒ (1 + θ) log

(
1− q
q

)
≤ log

(
1

τ
− 1

)
p

1− p

⇐⇒ θ + 1 ≥
ln
(

p
1−p

(
1
τ
− 1
))

ln 1−q
q

=
− ln

(
p

1−p

)
+ ln

(
τ

1−τ

)
ln q

1−q
.

In the last line we used q > 1
2

to change the inequality sign. This condition is always true

if p ≥ τ , given that θ > −1. Its interpretation is that if Mr 1 is ex ante indifferent or in favor

of alternative 1, then if he observes signal s1 = 1, he plays a1 = 1 for any value of θ. On

the contrary if p < τ , meaning that the agent is ex ante in favor of alternative 0, when he

observes signal s1 = 1 he might or might not play action a1 = 1, depending on the parameter

values. The condition above says that the bigger θ is, the bigger the set of parameters under

which Mr1 revises the prior and plays action a1 = 1.

Similarly, after seeing s1 = 0, Mr 1 will play action a1 = 1 if and only if:

p(1− q)1+θ

p(1− q)1+θ + (1− p)q1+θ
≥ τ

⇐⇒ θ + 1 ≤
ln
(

p
1−p

(
1
τ
− 1
))

ln q
1−q

=
ln
(

p
1−p

)
− ln

(
τ

1−τ

)
ln q

1−q
.
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This is never the case never if p < τ , which means that if the agent is in favor of alternative 0

and then he sees the signal s1 = 0, he never revises his opinion. On the contrary, depending

on θ, the opposite case may be true. Call the above condition 2. Note that the space of

parameter such that condition two is violated increases with θ.

Summing up: if the agent sees s1 = 1, then he plays a1 = 1 the if either τ ≤ p or τ > p and

condition 1 is satisfied. If the agent sees s1 = 0, then he plays a1 = 0 if τ > p or τ ≤ p and

condition 2 is violated.

The behavior of Mr 2 will depend on which conditions are satisfied. Consider the infor-

mationally efficient region IE (for agent 1) defined as:

IE = {(p, τ) ∈ [0, 1]× R+| (τ ≤ p and condition 2 is true) or (τ > p and condition 1 is true )}.

If the parameters lie inside IE, then Mr 2 can perfectly infer Mr1 signal by observing his

action, since a1 = s1. Thus Mr 2 effectively observes two signals.

Consider first the case p > τ , namely the prior is in favor of 1. In this case if s1 = 1 than

Mr2 will do his Bayesian updating, leading him to play action a2 = 1 regardless of his signal.

Similarly for subsequent agents: a cascade therefore starts on state 1 in this case. If instead

a1 = s1 = 0, then if s2 = 0 Mr2 will do his Bayesian updating, leading him to play action

a2 = 0 regardless of his signal. Similarly for subsequent agents: a cascade therefore starts

on state 0 in this case. Finally if a1 = s1 = 0 and s2 = 1, then Mr2 will do his Bayesian

updating, leading him to play action a2 = 1. However in this case a cascade does not start

immediately, as Mr 3 faces the same problem of Mr1. Here the intuition is straightforward:

opposite signals s1 and s2 cancel out, and therefore Mr2 only relies on his prior belief. The

case p < τ is symmetric.

Resuming the dynamics is characterized as follows:

• if p > τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq + (1− p)q2

)( ∞∑
i=0

(q(1− q))i
)

;
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• if p < τ then the probability of learning is:

Pr(a∞ = ω) = pPr(a∞ = 1)+(1−p)Pr(a∞ = 0) =
(
pq2 + (1− p)q

)( ∞∑
i=0

(q(1− q))i
)

;

Resuming, if s1 = s2, then a2 = s2; if instead s1 6= s2 then M2 2 will stick to his prior

belief. In the former case Mr 3 will also play a3 = s2 regardless of his signal (if s3 = s2 = s1

this is true since IE1 ⊆ IE2 ⊆ IE3; if s3 6= s2 = s1 then Mr3 problem is the same problem

of Mr1, therefore a3 = a3); in the latter case Mr3 problem is the same problem of Mr 1,

therefore a3 = s3.

Therefore, if the parameters lie IE1, then i

plays 1 if p ≥ τ , and 0 viceversa. This means that if p ≥ τ and the first agent revealed his

signal to be 1, then the second agent will always play 1, and this will not be informative for

Mr 3, which will act as if he observed only the signal of the first agent. On the contrary, if

the first agent revealed his signal to be 0 and still p ≥ τ , the second agent reveals his signal,

and Mr 3 updates consequently. Hence, if the conditions on θ for Mr 1 are satisfied, the first

agent reveals and the second follows if observes the same, and if observes a different signal

it depends on the prior, as should be. If the conditions are satisfied for the first but not

the second agent, it means that the first agent actually does not reveal information, hence

the second agent actually behaves as the first, and it means that he will not reveal anything

either, and we have the applicable cascade (because all subsequent agents will follow).

f Mr 1 plays 1 regardless of the signal s1 observed, then Mr 2 has no updating to do, and

will act as if she were the first of the line. This happens with probability 1− q.

Hence, if agents are all homogeneous, there is a trivial cascade on 1, and the probability

of learning is p.

Mr 3 if he observes 2 identical zeros will ignore his private signals, and we have a cascade

on 0 (the conditions on θ are trivially satisfied). If he observes 3 different signals, will follow

the most frequent. Anyway, the first 2 signals are sufficient to determine which cascade we

have.
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A.4 Proof of Proposition 4.1

Taking first order conditions we obtain that the demand of agent i is:

Di =
Eθ
i (V | p, si)− p

γ

Hence, by market clearing, the equilibrium price is:

p =

∫
Eθ
i (V | p, si)f(i)di− γS

Now, let us assume that the price follows the pricing function p = a + bV + cS. Then,

the price is a signal distributed as (p− a)/b | V ∼ N (V, c2/b2). Using the updating rule for

diagnostic expectations, we find:

V | si, p ∼ N

((
(θ+1)Xi
θ+2

1
θ+2

+ (θ + 1)
p− a
b

b2

c2

)
1

θ + 2 + (θ+1)b2

c2

,
1

θ + 2 + (θ + 1) b
2

c2

)

so that, in equilibrium:

p =

∫
(θ + 1)si + (θ + 1)p−a

b
b2

c2

θ + 2 + (θ+1)b2

c2

f(i)di− γS

by the law of large numbers
∫
Xif(i)di = V and so:

p =
µ0 + (θ + 1)

(
V + p−a

b
b2

c2

)
θ + 2 + (θ+1)b2

c2

− γS

Solving for p:

p

(
1− (θ + 1)

1
b
b2

c2

θ + 2 + (θ+1)b2

c2

)
=

(θ + 1)
(
V − a

b
b2

c2

)
θ + 2 + (θ+1)b2

c2

− γS
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so we get the equations for the model parameters:

a =
−(θ + 1)a

b
b2

c2

θ + 2 + (θ+1)b2

c2

(
θ + 2 + (θ + 1)

(
1− 1

b

)
b2

c2

θ + 2 + (θ+1)b2

c2

)−1

from which it follows a = 0;

b =
(θ + 1)

θ + 2 + (θ+1)b2

c2

(
θ + 2 + (θ + 1)

(
1− 1

b

)
b2

c2

θ + 2 + (θ+1)b2

c2

)−1

=
θ + 1

θ + 2 + (θ + 1)
(
1− 1

b

)
b2

c2

c = −γ

(
θ + 2 + (θ + 1)

(
1− 1

b

)
b2

c2

θ + 2 + (θ+1)b2

c2

)−1

b and c can be further solved as:

b =
(θ + 1)b

(θ + 2)b+ (θ + 1) (b− 1) b2

c2

(θ + 2)b+ (θ + 1) (b− 1)
b2

c2
= θ + 1

b =
(θ + 1)

(
1 + b2

c2

)
θ + 2 + (θ + 1) b

2

c2

and

b =
(θ + 1)

(
1 + b2

c2

)
θ + 2 + (θ + 1) b

2

c2

=

(
1 + b2

c2

)
1
θ+1

+ 1 + b2

c2

=

(
1 +

b2

c2

)
γ
b

c

so that:

c =

(
1 +

b2

c2

)
γ

It will be useful to express everything in terms of the precision of the price signal, that

is:
b2

c2
=

1

γ2
(

1
θ+1

+
(
1 + b2

c2

))2

and by the implicit function theorem can be seen that it is increasing in θ, which is our first

thesis.
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Finally, the price is:

p =

(
1 +

b2

c2

)
γ

(
V
b

c
− S

)
and so, the demand:

Di = Eθ
i V − p =

(θ + 1)si + (θ + 1)p
b
b2

c2

θ + 2 + (θ+1)b2

c2

− p =

=
(θ + 1)si

θ + 2 + (θ+1)b2

c2

− p
θ + 2 + (θ + 1)

(
1− 1

b

)
b2

c2

θ + 2 + (θ+1)b2

c2

= −γ b
c
si −

(
1− 1

b

(θ + 1) b
2

c2

θ + 2 + (θ + 1) b
2

c2

)
p = −γ b

c
si −

(
1− 1

γ b
c

(
1 + b2

c2

)γ b3

c3

)
p

= −γ b
c
si −

1(
1 + b2

c2

)p
Welfare

We now have all the elements to calculate total welfare.

1

γ
E[(V − p)(Eθ

i V − p)−
1

2
(Eθ

i V − p)2] =
1

γ
E[E[(V − p)(Eθ

i V − p)−
1

2
(Eθ

i V − p)2 | V ]]

and

Di = Eθ
i V − p =

(θ + 1)si + (θ + 1)p
b
b2

c2

θ + 2 + (θ+1)b2

c2

− p =

=
(θ + 1)si

θ + 2 + (θ+1)b2

c2

− p
θ + 2 + (θ + 1)

(
1− 1

b

)
b2

c2

θ + 2 + (θ+1)b2

c2

=
1(

θ + 2 + (θ+1)b2

c2

) ((θ + 1)Xi − (θ + 1)V − (θ + 1)
c

b
S
)

= γ

(
−b
c
(Xi − V ) + S

)
while

V − p = (1− b)V − cS

so

E[(V − p)(Eθ
i V − p) | V ] = E[((1− b)V − cS)γ(−b

c
(si − V ) + S) | V ] =
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E[E[((1−b)V−cS)γ(−b
c
(si−V )+S) | V, S] | V ] = E[((1−b)V−cS)γE[(−b

c
(si−V )+S) | V, S] | V ]

E[((1− b)V − cS)γE[S | V, S] | V ] = E[((1− b)V − cS)γS | V ] = −γc

and:

E[(Eθ
i V − p)2 | V ] = γ2E[(−b

c
(si − V ) + S)2 | V ] = γ2

(
b2

c2
+ 1

)
so in total:

W = γ

(
−c− 1

2
γ

(
b2

c2
+ 1

))
=

1

2
γ

(
b2

c2
+ 1

)
that is increasing in θ.

A.5 Proof of Proposition 4.2

After having observed the signal si, the posterior of agent i is:

V | si ∼ N
(

((θ + 1)si)

(
1

θ + 2

)
,

1

θ + 2

)

where we maintain that the agent does not make any inference on V from the value of the

price p. So: Di =

(
(θ+1)si
θ+2

−p
)

γ
=

(θ+1)si
θ+2

−p
γ

, and the equilibrium price is:

p =

∫
((θ + 1)si)f(i)di

θ + 2
− γS =

(θ + 1)V

θ + 2
− γS

by the law of large numbers.

Welfare

The total welfare is:

1

γ
E[(V − p)(Eθ

i V − p)−
1

2
(Eθ

i V − p)2] =
1

γ
E[E[(V − p)(Eθ

i V − p)−
1

2
(Eθ

i V − p)2 | V ]]

and

Eθ
i V − p =

(θ + 1)si
θ + 2

− (θ + 1)V

θ + 2
+ γS =

(θ + 1)(si − V )

θ + 2
+ γS

V − p = V − (θ + 1)V

θ + 2
+ γS =

V

θ + 2
+ γS

35



and

E[(V − p)(Eθ
i V − p) | V ] = E[

(
V

θ + 2
+ γS

)(
(θ + 1)(si − V )

θ + 2
+ γS

)
| V ]

= E[

(
V

θ + 2
+ γS

)
(γS) | V ] = γ2

and

E[(Eθ
i V − p)2 | V ] =

(θ + 1)2

(θ + 2)2
+ γ2

so the total is:
1

2

(
γ2 − (θ + 1)2

(θ + 2)2

)
that is decreasing in θ.
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