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Abstract

We propose a hypothesis test that allows for many tested restrictions in a heteroskedas-

tic linear regression model. The test compares the conventional F statistic to a critical

value that corrects for many restrictions and conditional heteroskedasticity. The cor-

rection utilizes leave-one-out estimation to correctly center the critical value and leave-

three-out estimation to appropriately scale it. Large sample properties of the test are

established in an asymptotic framework where the number of tested restrictions may be

fixed or may grow with the sample size and can even be proportional to the number of

observations. We show that the test is asymptotically valid and has non-trivial asymp-

totic power against the same local alternatives as the exact F test when the latter is

valid. Simulations corroborate the relevance of these theoretical findings and suggest

excellent size control in moderately small samples also under strong heteroskedasticity.
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1 Introduction

One of the central tenets in modern economic research is to consider models that allow for

flexible specifications of heterogeneity and to establish whether there is the presence or ab-

sence of meaningful heterogeneity in particular empirical settings. For example, Abowd et al.

(1999) studies whether there is firm-specific heterogeneity in a linear model for individual

log-wages, Card et al. (2018) asks if this heterogeneity varies by the individual’s education,

and Lachowska et al. (2019) investigates whether the firm-specific heterogeneity is constant

over time. Other work relies on similarly flexible models to investigate the presence of het-

erogeneity in health economics (Finkelstein et al., 2016), in educational settings (Sacerdote,

2001), and to study neighborhood effects (Chetty and Hendren, 2018). In all these exam-

ples, the absence of a particular dimension of heterogeneity corresponds to a hypothesis that

imposes hundreds or thousands of restrictions on the model of interest. The present paper

provides a tool to conduct a test of such hypotheses.

We develop a test for hypotheses that impose multiple restrictions, and establishe its

asymptotic validity in a heteroskedastic linear regression model where the number of tested

restrictions may be fixed or increasing with the sample size. In particular, we allow for the

number of restrictions and the sample size to be proportional. The exact F test fails to control

size in this environment, so our proposed test instead rejects the hypothesis if the F statistic

exceeds a critical value that corrects for many restrictions and conditional heteroskedasticity.

This critical value is a recentered and rescaled quantile of what is naturally called the F-bar

distribution as it describes the distribution of a chi-bar-squared random variable divided by

an independent chi-squared random variable over its degrees of freedom. This family of dis-

tributions can approximate both the finite sample properties of the F statistic in the special

case of homoskedastic normal errors and—after recentering and rescaling—the asymptotic

distribution of the F statistic in the presence of conditional heteroskedasticity and few or

many restrictions.

The location and variance estimators used to recenter and rescale the critical value utilize

unbiased leave-one-out estimators for individual error variances and unbiased leave-three-out
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estimators for products of individual error variances. While leave-one-out estimation is used

in many other econometric contexts, introduction of leave-three-out estimation is entirely

new in the literature. Because these essential elements of the test are built on leave-out

machinery, we will at times and for brevity refer to the proposed test using the acronym LO.

The LO test has exact asymptotic size when the regression design has full rank after

leaving any combination of three observations out of the sample. This condition is, in general,

satisfied in models with many continuous regressors and only a few discrete ones. However,

the condition may fail when many discretely valued regressors are included, as occurs for

models with one or more fixed (or group) effects. To handle such cases, our proposed test

uses estimators for the products of individual error variances that are intentionally biased

upward when the unbiased leave-three-out estimator fails to exist. This construction ensures

validity in large samples but can potentially be slightly conservative when many of the

leave-three-out estimators do not exist.

Using a combination of theoretical arguments and simulations, Huber (1973) and Berndt

and Savin (1977) highlight the importance of allowing the number of regressors and poten-

tially the number of tested restrictions to increase with sample size when studying asymptotic

properties of inference procedures. The latter specifically documents conflicts among clas-

sical tests when the number of tested restrictions is somewhat large. Despite these early

cautionary tales, most inference procedures that allow for proportionality between the num-

ber of regressors, sample size, and potentially the number of restrictions, are of a more recent

vintage. Here, we survey the ones most relevant to the current paper and refer to Anatolyev

(2019) for a more extensive review of the literature.1

In homoskedastic regression models, Anatolyev (2012) and Calhoun (2011) propose var-

ious corrections to classical tests that restore asymptotic validity in the presence of many

restrictions. In heteroskedastic regression models with one tested restriction and many re-

gressors, Cattaneo et al. (2018) show that the use of conventional Eicker-White standard

1In analysis of variance contexts, which are special cases of linear regression, Akritas and Papadatos (2004)
and Zhou et al. (2017) propose heteroskedasticity robust tests for equality of means that are, however, specific
to their models. An expanding literature considers (outlier) robust estimation of linear high-dimensional
regressions (e.g., El Karoui et al., 2013) but does not provide valid tests of many restrictions.
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errors and their “almost-unbiased” variations (see MacKinnon, 2013) does not yield asymp-

totic validity. This failure may be viewed as a manifestation of the incidental parameters

problem. To overcome this problem, Cattaneo et al. (2018) and subsequently Anatolyev

(2018) propose new versions of the Eicker-White standard errors, which restore size con-

trol in large samples. However, these proposals rely on the inversion of n-by-n matrices (n

denotes sample size) that may fail to be invertible in examples of practical interest (Horn

et al., 1975; Verdier, 2020). Rao (1970)’s unbiased estimator for individual error variances

is closely related to Cattaneo et al. (2018)’s proposal and suffers from the same existence

issue.

Kline, Saggio, and Sølvsten (2020) propose instead a version of the Eicker-White stan-

dard errors that relies only on leave-one-out estimators of individual error variances and

show that its use leads to asymptotic size control when testing a single restriction.2 While

this conclusion extends to hypotheses that involve a fixed and small number of restrictions

through the use of a heteroskedasticity-robust Wald test, it can fail to hold in cases of many

restrictions. When testing many coefficients equal to zero, Kline et al. (2020) note instead

that those leave-one-out individual variance estimators can be used to center the conven-

tional F statistic3 and propose a rescaling of the statistic that relies on successive sample

splitting. However, outside of the specific model of interest in their empirical application,

sample splitting places restrictions on the data that may often fail in practice.

Here we propose a feasible scaling of the critical value that uses a leave-three-out ap-

proach, which requires less from the data than sample splitting. Additionally, we propose a

one-shot test that enables asymptotic size control both when the number of restrictions is

fixed and increasing. Finally, we provide a theoretical study of the power properties under lo-

cal and global alternatives and conduct a simulation study that documents the performance

2Jochmans (2020) additionally uses simulations to investigate the finite sample behavior of this variance
estimator.

3The use of leave-one-out estimation has a long tradition in the literature on instrumental variables
(see, e.g., Phillips and Hale, 1977), and our test shares an algebraic representation with the adjusted J test
analyzed in Chao et al. (2014) (see Kline et al., 2020, for a discussion). An attractive feature of relying
on leave-one-out is that challenging estimation of higher order error moments can be avoided, which is in
contrast to the tests of Calhoun (2011) and Anatolyev (2013).
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of our test in small and moderately sized samples.

Under local alternatives, the asymptotic power curve of the proposed LO test is parallel

to that of the exact F test when the latter is valid, e.g., under homoskedastic normal errors.

While the curves are parallel, the LO test tends to have power somewhat below the exact

F test. This loss in power stems from the estimation of individual error variances and can

be viewed as a cost of using a test that is robust to general heteroskedasticity. This cost is

largely monotone in the number of tested restrictions and disappears when the number of

restrictions is small relative to sample size.

Using a simulation study, we document that the LO test delivers a nearly exact size

control in samples as small as 100 observations in both homoskedastic and heteroskedastic

environments. On the other hand, conventional tools such as the Wald test and the exact

F test can exhibit severe size distortions and reject a true null with near certainty for some

configurations. These findings are documented using two simulation settings: one with

continuous regressors only, and one with a mix of both continuous and discrete regressors. In

the latter setting, roughly 7% of observations cause a full rank failure when leaving up to three

observations out, but the proposed test shows almost no conservatism even in this adverse

environment. When both the LO and exact F tests are valid, the simulations document

a power loss that varies between being negligible and up to roughly 15 percentage points,

depending on the type of deviation from the null and sample size. For many applications,

this range of power losses is a small cost to incur for being robust to heteroskedasticity.

The paper is organized as follows. Section 2 introduces the setup and the proposed critical

value in samples where all the leave-three-out estimators exist, while Section 3 analyzes the

asymptotic size and power of the LO test for such samples. Section 4 describes the critical

value for use in samples where the design loses full rank after leaving certain triples of

observations out. Section 5 discusses the results of simulation experiments, and Section 6

concludes. Proofs of theoretical results and some clarifying but technical details are collected

in the online supplemental Appendix. An R package (Anatolyev and Sølvsten, 2020) that

implements the proposed test is available online.
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2 Leave-out test

Consider a linear regression model

yi = x′iβ + εi, E[εi|xi] = 0,

where an intercept is included in the regression function x′iβ and the n observed random

vectors {(yi,x′i)′}ni=1 are independent across i. The dimension of the regressors xi ∈ Rm may

be large relative to sample size, and there is conditional heteroskedasticity in the unobserved

errors: E[ε2i |xi] = σ2(xi) ≡ σ2
i . The hypothesis of interest involves r ≤ m linear restrictions

H0 : Rβ = q,

where the matrix R ∈ Rr×m has full row rank r, and q ∈ Rr. Both R and q are specified

by the researcher. Specifically, they are assumed to be known and are allowed to depend on

the observed regressors. The space of alternatives is HA : Rβ 6= q.

The attention of the paper is on settings where the design matrix Sxx =
∑n

i=1 xix
′
i has

full rank so that β̂ = S−1xx
∑n

i=1 xiyi, the ordinary least squares (OLS) estimator of β, is

defined. For compact reference, we define the degrees-of-freedom adjusted residual variance

σ̂2
ε = (n − m)−1

∑n
i=1

(
yi − x′iβ̂

)2
. Unless otherwise noted, all means and variances are

conditional on the regressors x1, . . . ,xn, and the means and variances with a subscript 0 are

computed under H0.

2.1 Test statistic

Our proposed test rejects H0 for large values of Fisher’s F statistic,

F =

(
Rβ̂ − q

)′(
RS−1xxR

′)−1(Rβ̂ − q)
rσ̂2

ε

,

6



which is a monotone transformation of the likelihood ratio statistic when the regression

errors are homoskedastic normal. Since we do not impose normality, F may be viewed as a

quasi likelihood ratio statistic.

By taking this statistic as a point of departure, we are able to construct a critical value

that ensures size control in the presence of heteroskedasticity and any number of restric-

tions. An alternative approach might have taken a heteroskedasticity-robust Wald statistic

and attempted to construct a critical value that ensures validity even when r is proportional

to n. However, in such environments, any heteroskedasticity-robust Wald statistic relies on

the inverse of a high-dimensional covariance matrix estimator, a feature that presents sub-

stantial challenges when attempting to control size. For this reason, we leave the theoretical

investigation of such Wald statistics to future research, but note that typically used tests

based on Wald statistics exhibit extreme size distortions in our simulation experiments.

Our proposed critical value for the F statistic achieves asymptotic validity under two

asymptotic frameworks, one where the number of restrictions is fixed, and one where the

number of restrictions may grow as fast as proportionally to the sample size. To achieve such

uniformity with respect to the number of restrictions, we rely on an auxiliary distribution,

the F-bar distribution, that helps unite these two frameworks.

2.2 F-bar distribution

Our test rejects H0 if Fisher’s F exceeds a linearly transformed quantile of a distribution,

which we call the F-bar distribution. We define this family of distributions and discuss its

role before we turn to a description of the linear transformation mentioned above.

Definition 1 (F-bar distribution). Let w = (w1, . . . , wr) be a collection of non-negative

weights summing to one, and df be a positive real number. The F-bar distribution with

weights w and degrees of freedom df , denoted by F̄w,df , is a distribution of

∑r
`=1w`Z`
Z0/df

, (1)
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where Z0, Z1, . . . , Zr are mutually independent random variables with Z0 ∼ χ2
df and Z` ∼ χ2

1

for 1 ≤ ` ≤ r. Here, χ2
κ denotes a chi-squared distribution with κ > 0 degrees of freedom.

The name attached to this family originates from its close relationship to both the chi-

bar-squared distribution and to Snedecor’s F distribution, which we denote as χ̄2
w and Fr,df ,

respectively. Snedecor’s F is a special case when the entries of w are all equal, while χ̄2
w

is a limiting case when df → ∞. Another essential property of this family is that the

standard normal distribution, denoted Φ, is also a limiting case since, as df → ∞ and

max1≤`≤r w` → 0,

qτ (F̄w,df )− 1√
2
∑r

`=1w
2
` + 2/df

→ qτ (Φ) (2)

for τ ∈ (0, 1), where qτ (G) denotes the τ -th quantile of the distribution G. The centering and

rescaling in (2) are done according to the limiting mean and variance of the underlying ran-

dom variable from Definition 1 following the F̄w,df distribution, while asymptotic normality

results from mixing over infinitely many independent chi-squared variables.

Our reliance on the F-bar distribution is tied to its three properties described in the

previous paragraph and three closely related observations about the F statistic. These ob-

servations are: (i) the F statistic is distributed as Fr,n−m if the errors are homoskedastic

normal, (ii) the F statistic converges in distribution (after rescaling) to a χ-bar-squared if

the number of restrictions r is fixed, and (iii) the F statistic converges in distribution (after

centering and rescaling) to a standard normal as r grows. Therefore, the class of F-bar

distributions serves as a roof designed both to match the finite sample distribution of the

F statistic in an important special case and to approximate each of the possible limiting

distributions after a suitable linear transformation.
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2.3 Critical value

The proposed critical value at a nominal size α ∈ (0, 1) is a linear transformation of

q1−α
(
F̄ŵ,n−m

)
given by

cα =
1

rσ̂2
ε

ÊF + V̂
1/2
F

q1−α(F̄ŵ,n−m)− 1√
2
∑r

`=1 ŵ
2
` + 2/(n−m)

.
The data-dependent quantities ÊF and V̂F are related to the numerator of the F statis-

tic, which we denote by F . In particular, ÊF is an unbiased estimator of the conditional

mean E0[F ], while V̂F is either an unbiased or positively biased estimator of the conditional

variance V0[F − ÊF ] as explained further below. The estimated weights ŵ = (ŵ1, . . . , ŵr)

are constructed to be consistent for weights wF in those cases where F/E0[F ] converges in

distribution to χ̄2
wF

.

The critical value cα ensures asymptotic size control irrespective of whether r is viewed

as fixed or growing with the sample size n. To explain why cα provides such uniformity, we

consider first the case where r grows. In this case, it is illuminating to rewrite the rejection

rule as an equivalent event

V̂
−1/2
F (F − ÊF) >

q1−α(F̄ŵ,n−m)− 1√
2
∑r

`=1 ŵ
2
` + 2/(n−m)

.

Since V̂
−1/2
F (F − ÊF) is asymptotically normal under the null, the validity in large samples

follows from the relationship between the F-bar and standard normal distributions given

in (2).

When instead r is viewed as asymptotically fixed, it is more informative to express the

rejection region through the inequality

F
ÊF

> q1−α(F̄ŵ,n−m) +
(
q1−α(F̄ŵ,n−m)− 1

) V̂
1/2
F /ÊF√

2
∑r

`=1 ŵ
2
` + 2/(n−m)

− 1

. (3)
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Note that rejecting when F/ÊF exceeds the quantile q1−α(F̄ŵ,n−m) suffices for validity; for

the case of a single restriction such an approach corresponds to the standard practice of

comparing squares of a heteroskedasticity robust t statistic and the (1 − α)-th quantile of

Student’s t distribution with n −m degrees of freedom.4 The last term on the right hand

side of (3) can then be viewed as a finite sample correction that adjusts the critical value up

or down depending on the relative size of the variance estimator for the ratio F/ÊF , which

is V̂F/Ê
2
F , and the variance of the approximating distribution F̄ŵ,n−m, which is roughly

2
∑r

`=1 ŵ
2
` + 2/(n−m). As the ratio of these variances converges to unity when the number

of restrictions is fixed, this term does not affect first order asymptotic validity.

Finally, note that if one is willing to rest on the assumption that the restrictions are

numerous and the few restriction framework is superfluous, one might use the following

simplified critical value not robust to few restrictions:5

čα =
1

rσ̂2
ε

(
ÊF + V̂

1/2
F

q1−α(Fr,n−m)− 1√
2/r + 2/(n−m)

)
.

To complete the description of the proposed critical value, definitions of the quantities

ÊF , V̂F and ŵ are needed. Section 2.5 describes how we rely on leave-one-out OLS estimators

to construct ÊF and ŵ. For V̂F , Section 2.6 provides the corresponding definition when it is

possible to rely on leave-three-out OLS estimators, while Section 4 introduces the form of V̂F

for settings where some of the leave-three-out estimators cease to exist. In the former case, it

is possible to ensure that V̂F is unbiased, while the latter introduces a (small) positive bias.

We initially consider the former case, a framework where the design matrix has full rank

when any three observations are left out of the sample, and relax this condition in Section 4.

Assumption 1.
∑

` 6=i,j,k x`x
′
` is invertible for every i, j, k ∈ {1, . . . , n}.

When xi is identically and continuously distributed with unconditional second moment

4When testing a single restriction, ŵ must equal unity so that F̄ŵ,n−m = F1,n−m = t2n−m, and in this

case F/ÊF is the square of the t statistic studied in Kline et al. (2020, Theorem 1).
5Such settings occur, for example, if the null of interest involves thousands of restrictions, in which case

the two critical values cα and čα are essentially equivalent but čα is computationally simpler to construct as
it circumvents computation of ŵ.
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E[xix
′
i] of full rank, Assumption 1 holds with probability one whenever n − m ≥ 3. The

asymptotic framework considers a setting where n−m diverges so that Assumption 1 must

hold in sufficiently large samples with continuous regressors. This conclusion also applies

when xi includes a few discrete regressors and, in particular, an intercept. In settings with

many discrete regressors, Assumption 1 may fail to hold, even in large samples. For that

reason, Section 4 introduces the version of V̂F for empirical settings where the full rank

condition is satisfied when any one observation is left out, but not necessarily when leaving

two or three observations out.

2.4 Leave-out algebra

Before describing ÊF , V̂F , and ŵ in detail, we will reformulate Assumption 1 using leave-

out algebra. That is, we will derive an equivalent way of expressing this assumption while

introducing notation that is essential for the construction of the critical value and for stating

the asymptotic regularity conditions.

When Sxx has full rank, a direct implication of the Sherman-Morrison-Woodbury identity

(Sherman and Morrison, 1950; Woodbury, 1949, SMW) is that the leave-one-out design

matrix
∑

j 6=i xjx
′
j is invertible if and only if the statistical leverage of the i-th observation

Pii = x′iS
−1
xx xi is less than one. Letting Mij = 1{i = j} − x′iS−1xx xj be elements of the

residual projection matrix M associated with the regressor matrix, this condition on the

leverage is equivalently stated as Mii being greater than zero. When Mii > 0 holds, we can

additionally use SMW to represent the inverse of
∑

j 6=i xjx
′
j as

(∑
j 6=i
xjx

′
j

)−1
= S−1xx +

S−1xx xix
′
iS
−1
xx

Mii

, (4)

which highlights the role of a non-zero Mii.

The representation in (4) can also be used to understand when the leave-two-out design

matrix
∑

k 6=i,j xkx
′
k has full rank, since (4) can be used to compute leverages in a sample

that excludes i. After leaving observation i out, the leverage of a different observation j is
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x′j
(∑

k 6=i xkx
′
k

)−1
xj. To see when this leverage is less than one, note that (4) yields

1− x′j
(∑

k 6=i
xkx

′
k

)−1
xj = Mjj −

M2
ij

Mii

,

so that a necessary and sufficient condition for a full rank of
∑

k 6=i,j xkx
′
k is that Dij > 0,

where

Dij =

∣∣∣∣∣∣Mii Mij

Mij Mjj

∣∣∣∣∣∣ = MiiMjj −M2
ij,

and |·| denotes the determinant. Extending the previous argument to the case of leaving

three observations out, we find that the invertibility of
∑

`6=i,j,k x`x
′
` for i, j, and k, all of

which are different, is equivalent to Dijk > 0, where

Dijk =

∣∣∣∣∣∣∣∣∣
Mii Mij Mik

Mij Mjj Mjk

Mik Mjk Mkk

∣∣∣∣∣∣∣∣∣ = MiiDjk −
(
MjjM

2
ik +MkkM

2
ij − 2MjkMijMik

)
.

This discussion reveals that Assumption 1 can equivalently be stated as requiring full

rank of Sxx and

Dijk > 0 for every i, j, k ∈ {1, . . . , n} with i 6= j 6= k 6= i. (5)

In addition to facilitating an algebraic description of Assumption 1, the quantities Mii, Dij,

and Dijk also play a role in the computation of the proposed critical value. Specifically,

they can be used to avoid explicitly computing the OLS estimates after leaving one, two, or

three observations out. Additionally, since construction of ÊF , V̂F , and ŵ relies on dividing

by Mii, Dij, and Dijk, the study of the asymptotic size of the proposed testing procedure

imposes a slight strengthening of (5), which bounds the smallest Dijk away from zero.
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2.5 Location estimator

Recall that the numerator of the F statistic is

F =
(
Rβ̂ − q

)′(
RS−1xxR

′)−1(Rβ̂ − q).
A virtue of this statistic is that its expectation is minimized under H0, so that large values

of the statistic can be taken as evidence against the hypothesized value of β. However, the

distribution of F depends on the unknown error variances {σ2
i }ni=1, which complicates the

construction of a critical value. Specifically, the conditional mean of F under H0 is

E0[F ] =
n∑
i=1

Biiσ
2
i ,

where the values Bij = x′iS
−1
xxR

′(RS−1xxR′)−1RS−1xx xj are observed and satisfy
∑n

i=1Bii =

r. Furthermore, the exact null distribution of F/E0[F ], under the additional condition of

normally distributed regression errors, is χ̄2
wF

, with wF containing the eigenvalues of the

matrix6

Ω
(
σ2
1, . . . , σ

2
n

)
=

1

E0[F ]

(
RS−1xxR

′)−1V[Rβ̂]
=

1∑n
i=1Biiσ

2
i

(
RS−1xxR

′)−1RS−1xx
(

n∑
i=1

xix
′
iσ

2
i

)
S−1xxR

′.

Both E0[F ] and wF are thus functions of {σ2
i }ni=1, and the relevance of the vector wF for

asymptotic size control transcends the normality assumption on the errors that we used in

order to introduce it.

As shown in Kline et al. (2020), the individual specific error variances can be estimated

without bias for any value of β using leave-one-out estimators. Let the leave-i-out OLS

6The eigenvalues of Ω(σ2
1 , . . . , σ

2
n) are all real and non-negative as they can be expressed as the eigenvalues

of the symmetric and positive semidefinite matrix (RS−1xxR
′)−1/2V

[
Rβ̂
]
(RS−1xxR

′)−1/2/E0[F ]. Furthermore,

the entries of wF sum to one as E0[F ] is the trace of (RS−1xxR
′)−1V

[
Rβ̂
]
.
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estimator of β be β̂−i =
(∑

j 6=i xjx
′
j

)−1∑
j 6=i xjyj, and construct

σ̂2
i = yi

(
yi − x′iβ̂−i

)
.

With these leave-one-out estimators, we can estimate the null mean of F using

ÊF =
n∑
i=1

Biiσ̂
2
i ,

which ensures that the first moment of F−ÊF is zero under the null. Since σ̂2
i is unbiased for

any value of β, this centered statistic still has its expectation minimized under H0, so that

large values of the statistic can be taken as evidence against the null. Following the same

approach, we can estimate wF using the sample analog w̌ = (w̌1, . . . , w̌n)′, where w̌` is the

`-th eigenvalue of Ω
(
σ̂2
1, . . . , σ̂

2
n

)
. However, w̌ may not have non-negative entries summing

to one, so we ensure that these conditions hold by letting ŵ = (ŵ1, . . . , ŵn)′, where

ŵ` =
w̌` ∨ 0∑r

`=1(w̌` ∨ 0)
.

While our construction of ÊF implies that the first moment of F − ÊF is known when

H0 holds, its second moment still depends heavily on unknown parameters. Under H0,

V0

[
F − ÊF

]
=

n∑
i=1

∑
j 6=i

Uijσ
2
i σ

2
j +

n∑
i=1

(∑
j 6=i

Vijx
′
jβ
)2
σ2
i , (6)

where Uij = 2
(
Bij −Mij

(
Bii/Mii +Bjj/Mjj

)
/2
)2

and Vij = Mij

(
Bii/Mii −Bjj/Mjj

)
are

known quantities. This representation of the null-variance stems from writing F − ÊF as a

second order U -statistic with squared kernel weights of Uij/2 plus a linear term with weights∑
j 6=i Vijx

′
jβ (see the Appendix for details).
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2.6 Variance estimator

This subsection describes the construction of an unbiased estimator of the conditional vari-

ance V0

[
F − ÊF

]
. As is evident from the representation in (6), this variance depends on

products of second moments such as the product σ2
i σ

2
j . While σ̂2

i and σ̂2
j are unbiased for σ2

i

and σ2
j , their product is not unbiased, as the estimation error is correlated across the two

estimators. Some of this dependence can be removed by leaving both i and j out, but a

bias remains as the remaining sample is used in estimating both σ2
i and σ2

j . We therefore

propose a leave-three-out estimator of the variance product σ2
i σ

2
j . The product x′jβ x

′
kβ σ

2
i

appearing in the second component of V0

[
F − ÊF

]
can similarly be estimated without bias

using leave-three-out estimators.

Towards this end, let β̂−ijk =
(∑

`6=i,j,k x`x
′
`

)−1∑
`6=i,j,k x`y` denote the OLS estimator

of β applied to the sample that leaves observations i, j, and k out. Then, define a leave-

three-out estimator of σ2
i as

σ̂2
i,−jk = yi(yi − x′iβ̂−ijk).

When j and k are identical, only two observations are left out, and we also write β̂−ij and

σ̂2
i,−j. To construct an estimator of σ2

i σ
2
j , we first write the leave-two-out variance estimator

σ̂2
i,−j as a weighted sum (see Section 2.7 for details)

σ̂2
i,−j = yi

∑
k 6=j

M̌ik,−ijyk where M̌ik,−ij =
MjjMik −MijMjk

Dij

. (7)

Then we multiply each summand above by a leave-three-out variance estimator σ̂2
j,−ik, which

leads to an unbiased estimator of σ2
i σ

2
j :

σ̂2
i σ

2
j = yi

∑
k 6=j

M̌ik,−ijyk · σ̂2
j,−ik. (8)

While this construction appears to treat i and j in an asymmetric fashion, we show to the

contrary that (8) is invariant to a permutation of the indices; σ̂2
i σ

2
j = σ̂2

jσ
2
i .
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To understand why this proposal is unbiased for σ2
i σ

2
j , it is useful to highlight that σ̂2

j,−ik

is conditionally independent of (yi, yk) and unbiased for σ2
j , which, when coupled with (7),

leads to unbiasedness immediately:

E
[
σ̂2
i σ

2
j

]
=
∑
k 6=j

E
[
yiM̌ik,−ijyk

]
· E
[
σ̂2
j,−ik

]
= E

[
σ̂2
i,−j
]
σ2
j = σ2

i σ
2
j .

An unbiased estimator of the variance expression in (6) that utilizes the variance product

estimator in (8) is

V̂F =
n∑
i=1

∑
j 6=i

(
Uij − V 2

ij

)
· σ̂2

i σ
2
j +

n∑
i=1

∑
j 6=i

∑
k 6=i

Vijyj · Vikyk · σ̂2
i,−jk.

Note that the product of the (j = k)-th terms in the second component generate, for each

i, a term not present in (6) and whose non-zero expectation contains V 2
ijσ

2
i σ

2
j ; hence the use

of Uij − V 2
ij instead of Uij in the first component.

Remark 1. In the process of establishing the asymptotic validity of the proposed test, we

show that the variance estimator V̂F is close to the null variance V0

[
F − ÊF

]
. In particular,

this property implies that the variance estimator is positive with probability approaching one

in large samples. However, negative values may still emerge in small samples. In such cases,

we propose to replace the variance estimator with an upward biased alternative that uses

squared outcomes as estimators of all the error variances. This replacement is guaranteed

positive, as is detailed in the Appendix, and therefore ensures that the critical value is

always defined. Relatedly, Section 4 considers settings where the design matrix may turn

rank deficient after leaving certain triples of observations out of the sample. There, we

similarly propose to use squared outcomes as estimators of some error variances, namely

those whose observations cause rank deficiency when left out of the sample.
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2.7 Computational remarks

While the previous subsections introduced the location estimator ÊF , variance estimator

V̂F , and empirical weights ŵ using leave-out estimators of β, we note here that direct com-

putation of β̂−i, β̂−ij, and β̂−ijk can be avoided by using the Sherman-Morrison-Woodbury

(SMW) identity. Specifically, (4) implies that

yi − x′iβ̂−i =
yi − x′iβ̂
Mii

,

so that computation of β̂−i can be avoided when constructing the leave-one-out variance

estimator σ̂2
i = yi(yi − x′iβ̂−i). Similarly, it is possible to show that for i and j not equal,

yi − x′iβ̂−ij =
Mjj(yi − x′iβ̂)−Mij(yj − x′jβ̂)

Dij

,

which leads to (7), and, for i, j, and k, all of which are different,

yi − x′iβ̂−ijk =
(yi − x′iβ̂)−Mij(yj − x′jβ̂−jk)−Mik(yk − x′kβ̂−jk)

Dijk/Djk

.

These relationships allow for recursive computation of the leave-out residuals and there-

fore for simple construction of the variance estimators σ̂2
i , σ̂

2
i,−j, and σ̂2

i,−jk needed to compute

the components of the critical value cα. In particular, the location estimator ÊF and em-

pirical weights ŵ, which require only the leave-one-out residuals, can be computed without

explicit loops, by relying instead on elementary matrix operations applied to the matrices

containing Mij and Bij as well as the data matrices. Similarly, all doubly indexed objects

entering the variance estimator V̂F can be computed by elementary matrix operations. Those

objects are Dij, Vij, Uij, and the leave-two-out residuals. The remaining objects entering V̂F

can be computed by a single loop across i with matrices containing Dijk and leave-three-out

residuals renewed at each iteration.

Additionally, the above representations of leave-out residuals demonstrate how M−1
ii , D−1ij

and D−1ijk enter the critical value, and thus highlight the need for bounding Dijk away from
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zero when analyzing the large sample properties of the proposed test.

Remark 2. The quantile q1−α(F̄ŵ,n−m) can easily be constructed by simulating the distribu-

tion of the random variable in (1) conditional on the realized value of ŵ.

3 Asymptotic size and power

This section studies the asymptotic properties of the proposed test. Specifically, we provide

a set of regularity conditions under which the test has a correct asymptotic size and non-

trivial power against local alternatives. All limits are taken as the sample size n approaches

infinity. In studying asymptotic size, we allow for the number of restrictions r and/or number

of regressors m to be fixed or diverging with n, but the ordering r ≤ m < n−3 is maintained

throughout the analysis. When studying asymptotic power, we focus on the case of many

restrictions, i.e. r diverging with n.

3.1 Asymptotic size

In order to establish asymptotic validity of the proposed test, we impose tail restrictions on

the data in addition to a Lindeberg condition that ensures convergence in distribution. When

the number of tested restrictions is fixed, the Lindeberg condition implies that the estimator

of the tested contrasts Rβ̂ − q is asymptotically normal. When the number of restrictions

is growing, the Lindeberg condition is weaker and involves only a high-level transformation

of the regressors
∑

j 6=i Vijx
′
jβ, which enters the centered statistic F − ÊF as a weight on the

i-th error term εi. To ensure that the asymptotic distribution of F − ÊF does not depend

on the unknown distribution of any one error term, we therefore require that no squared∑
j 6=i Vijx

′
jβ dominates the variance V0

[
F − ÊF

]
, which in turn is proportional to r.

Assumption 2. (i) max1≤i≤n
(
E[ε4i |xi] +σ−2i

)
= Op(1), and there exists a sequence {εn}∞n=1

with εn → 0 such that (ii) ε1/3n max1≤i≤n(x′iβ)2 = Op(1) and (iii) at least one of the following

two conditions is satisfied:

(a) max1≤i≤nBii = op(εn),
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(b) max1≤i≤n (
∑

j 6=i Vijx
′
jβ)2/r = op(1) and εnr →∞.

Part (i) of Assumption 2 limits the thickness of the tails in the error distribution, which is

typically required for analysis of OLS estimators (see, e.g., Cattaneo et al., 2018, p.10). Part

(ii), which places bounds on x′iβ, is used to control the variance of the leave-out estimators

σ̂2
i and σ̂2

i,−jk. This condition is used to establish both size control and local power properties,

so we stress that it pertains to the actual data generating process, not just the hypothesized

value of β. Note that x′iβ may have an unbounded support and the maximum over i may be

slowly diverging with n. Part (iii) is a Lindeberg condition as discussed above and can be

verified in particular applications of interest. For example, the Appendix shows that (iii)(b)

holds in models characterized by group specific regressors.

The next assumption imposes the previously discussed regularity condition that the de-

terminant Dijk is bounded away from zero for any i, j, and k, all of which are different. This

condition will be relaxed in Section 4, where such a version of V̂F is introduced that exists

even when leaving two or three observations out leads to rank deficiency of the design.

Assumption 3. maxi 6=j 6=k 6=iD
−1
ijk = Op(1).

Under the regularity conditions in Assumptions 2 and 3, the following theorem establishes

the asymptotic validity of the proposed testing procedure.

Theorem 3.1. If Assumptions 1, 2, and 3 hold, then, under H0,

lim
n→∞

P (F > cα) = α.

3.2 Asymptotic power

To describe the power of the proposed test, we introduce a drifting sequence of local alterna-

tives indexed by a deviation δ from the null times (RS−1xxR
′)1/2, which specifies the precision

the tested linear restrictions can be estimated with in the given sample. Thus, we consider
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alternatives of the form

Hδ : Rβ = q + (RS−1xxR
′)1/2 · δ, (9)

for δ ∈ Rr satisfying the limiting condition

lim
n,r→∞

‖δ‖
r1/4

= ∆δ ∈ [0,∞].

Below we show that the power of the test is monotone in ∆δ, with power equal to size when

∆δ = 0 and power equal to one when ∆δ =∞.

The role of (RS−1xxR
′)1/2 in indexing the local alternatives is analogues to that of n−1/2

often used in parametric problems. However, in settings with many regressors some lin-

ear restrictions may be estimated at rates that are substantially lower than the standard

parametric one. Therefore, we index the deviations from the null by the actual rate of

(RS−1xxR
′)1/2 instead of n−1/2.

The alternative is additionally indexed by δ, which in standard parametric problems is

typically fixed. However, fixed δ is less natural here, as the dimension of δ increases with

sample size. Instead, we fix the limit of its Euclidean norm when scaled by r1/4. This

approach allows us to discuss different types of alternatives and how the numerosity of the

tested restrictions affects the test’s ability to detect deviations from the null. Specifically,

note that when the deviation δ is sparse, i.e., only a bounded number of its entries are non-

zero, then the test has a non-trivial power against alternatives that diverge at a rate that is

r1/4 lower than when only a fixed number of restrictions is being tested. This observation

highlights the cost for the power of including many irrelevant restrictions in the hypothesis.

On the other hand, if δ is dense, e.g., with all entries bounded away from zero, then the

test can detect local deviations that on average shrink at a rate that is r1/4 greater than the

usual. This means that if the tested restrictions can be estimated at the parametric rate and

they are all relevant, then the test can detect deviations from the null of order n−1/2r−1/4.

The following theorem states the asymptotic power under sequences of local alternatives
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of the form given in (9) and discussed above.

Theorem 3.2. If Assumptions 1, 2, and 3 hold, then, under Hδ,

lim
n,r→∞

P (F > cα)− Φ

(
Φ−1 (α) + ∆2

δ

(
V0

[
F − ÊF

]
/r
)−1/2)

= 0,

where Φ denotes the cumulative distribution function of the standard normal and Φ(∞) = 1.

Remark 3. It is instructive to compare the power curve documented in Theorem 3.2 with the

asymptotic power curve of the exact F test when both tests are valid. When the individual

error terms are homoskedastic normal with variance σ2, the asymptotic power of the exact

F test is the limit of (Anatolyev, 2012)

Φ
(

Φ−1 (α) + ∆2
δ

(
2σ4 + 2σ4r/(n−m)

)−1/2)
.

Thus, the relative asymptotic power of the proposed LO test and the exact F test is deter-

mined by the limiting ratio of r−1V0

[
F − ÊF

]
to 2σ4(1 + r/(n−m)). The Appendix shows

that this ratio approaches one in large samples if the number of tested restriction is small

relative to the sample size or if the limiting variability of Bii/Mii is small (Kline et al., 2020,

calls this a balanced design). When neither of these conditions holds, the proposed test will,

in general, have a slightly lower power than the exact F test, which we also document in the

simulations in Section 5.

Remark 4. The order of the numerosity of alternatives that can be detected with the pro-

posed test is optimal in the minimax sense when the alternatives are moderately sparse to

dense, i.e., when O(
√
r) or more of the tested restrictions are violated (Arias-Castro et al.,

2011). However, if the alternative is strongly sparse so that at most o(
√
r) tested restric-

tions are violated, a higher power can be achieved by tests that redirect their power towards

those alternatives. Such tests typically focus their attention on a few largest t statistics (i.e.,

smallest p values) and are often described as multiple comparison procedures (Donoho and

Jin, 2004; Romano et al., 2010). While such tests can control size when the error terms are

homoskedastic normal, it is not clear whether they can do so in the current semiparametric
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framework with an unspecified error distribution. The issue is that the size control for mul-

tiple comparisons relies on knowing the (normal or t) distributions of individual t statistics,

but in the current framework with many regressors those distributions are not necessarily

known (even asymptotically).

4 If leave-three-out fails

This section extends the definition of the critical value cα to settings where the design matrix

may turn rank deficient after leaving certain pairs or triples of observations out of the sample.

When Assumption 1 fails in this way, ÊF is still an unbiased estimator of E0[F ], but the

unbiased variance estimator introduced in Section 2.6 does not exist. For this reason, we

propose an adjustment to the variance estimator that introduces a positive bias for pairs of

observations where we are unable to construct an unbiased estimator of the variance product

σ2
i σ

2
j and for triples of observations where we are unable to construct an unbiased estimator of

x′jβ x
′
kβ σ

2
i . This introduction of a positive bias to the variance estimator ensures asymptotic

size control, even when Assumption 1 fails.

Since this section considers a setup where Assumption 1 may fail, we introduce a weaker

version of the assumption, which only imposes the full rank of the design matrix after

dropping any one observation.

Assumption 1’.
∑

j 6=i xjx
′
j is invertible for every i ∈ {1, . . . , n}.

One can always satisfy this assumption by appropriately pruning the sample, the model,

and the hypothesis of interest. For example, if Sxx does not have full rank, then one can

remove unidentified parameters from both the model and hypothesis of interest, and proceed

by testing the subset of restrictions in H0 that are identified by the sample. Similarly, if∑
j 6=i xjx

′
j does not have full rank for some observation i, then there is a parameter in the

model which is identified only by this observation. Therefore, one can proceed as in the case

of rank deficiency of Sxx, by dropping observation i from the sample and by removing the

parameter that determines the mean of this observation from the model and null hypothesis.

22



When doing this for any observation i such that
∑

j 6=i xjx
′
j is non-invertible, one obtains a

sample that satisfies Assumption 1’ and can be used to test the restrictions in H0 that are

identified by this leave-one-out sample.

4.1 Variance estimator

When Assumption 1 fails, some of the unbiased estimators σ̂2
i,−jk and σ̂2

i σ
2
j cease to exist.

For such cases, the variance estimator V̂F utilizes replacements that are either also unbiased

or positively biased, depending on the cause of the failure. Assumption 1 fails if Dijk = 0 for

some triple of observations, and we say that this failure of full rank is caused by i if Djk > 0

or DijDik = 0, i.e., if the design retains full rank when only observations j and k are left

out or if leaving out observations (i, j) or (i, k) leads to rank deficiency. Our replacement

for σ̂2
i,−jk is biased when i causes Dijk = 0, while the replacement for σ̂2

i σ
2
j is biased when

both i and j cause Dijk = 0 for some k.

To introduce the replacement for σ̂2
i,−jk, we consider the case when it does not exist, or

equivalently, when Dijk = 0. If i causes this leave-three-out failure, then our replacement

is the upward biased estimator y2i . When this failure of leave-three-out is not caused by i,

the leave-two-out estimators σ̂2
i,−j and σ̂2

i,−k are equal and independent of both yj and yk (as

shown in the Appendix). These properties imply that yjykσ̂
2
i,−j is an unbiased estimator of

x′jβ x
′
kβ σ

2
i , and we therefore use σ̂2

i,−j as a replacement for σ̂2
i,−jk. To summarize, we let

σ̄2
i,−jk =


σ̂2
i,−jk, if Dijk > 0,

σ̂2
i,−j, if Djk = 0 and DijDik > 0,

y2i , otherwise.

When j is equal to k, we consider pairs of observations, and the definition only involves the

last two lines since Dijj = 0. In this case, we also write σ̄2
i,−j for σ̄2

i,−jj.

For the replacement of σ̂2
i σ

2
j = yi

∑
k 6=j M̌ik,−ijyk · σ̂2

j,−ik, we similarly consider the case

where this estimator does not exist, i.e., where Dijk = 0 for a k not equal to i or j. When
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any such rank deficiency is caused by both i and j, we rely on the upward biased replacement

y2i σ̄
2
j,−i. When none of the leave-three-out failures are caused by both i and j, the replacement

uses σ̄2
i,−jk in place of σ̂2

i,−jk. To summarize, we define

σ2
i σ

2
j =

yi
∑

k 6=j M̌ik,−ijyk · σ̄2
j,−ik, if Dij > 0 and (Dijk > 0 or DikDjk = 0 for all k),

y2i σ̄
2
j,−i, otherwise.

This estimator is unbiased for σ2
i σ

2
j when none of the leave-three-out failures are caused by

both i and j, i.e., when the first line of the definition applies. Unbiasedness holds because the

presence of a bias in σ̄2
j,−ik implies that j is causing the leave-three-out failure. Therefore,

i cannot be the cause, which yields that σ̂2
i,−j is independent of yk, or equivalently, that

M̌ik,−ij = 0.

Now, we describe how these replacement estimators enter the variance estimator V̂F .

When σ2
i σ

2
j or σ̄2

i,−jk are biased and would enter the variance estimator with a negative

weight, we remove these terms, as they would otherwise introduce a negative bias. For σ2
i σ

2
j ,

the weight is Uij−V 2
ij , so a biased variance product estimator is removed when Uij−V 2

ij < 0.

For σ̄2
i,−jk, the weight is Vijyj ·Vikyk, but σ̄2

i,−jk does not depend on j and k when it is biased,

so we sum these weights across all such j and k, and we remove the term if this sum is

negative.

The following variance estimator extends the definition of V̂F to settings where leave-

three-out may fail:

V̂F =
n∑
i=1

∑
j 6=i

(
Uij − V 2

ij

)
·Gij · σ2

i σ
2
j +

n∑
i=1

∑
j 6=i

∑
k 6=i

Vijyj · Vikyk ·Gi,−jk · σ̄2
i,−jk,
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where the indicators Gij and Gi,−jk remove biased estimators with negative weights:

Gij =

0, if σ2
i σ

2
j = y2i σ̄

2
j,−i and Uij − V 2

ij < 0,

1, otherwise,

Gi,−jk =

0, if σ̄2
i,−jk = y2i and

∑
j 6=i
∑

k 6=i Vijyj · Vikyk · 1
{
σ̄2
i,−jk = y2i

}
< 0,

1, otherwise.

4.2 Asymptotic size

In order to establish that the proposed test controls asymptotic size when there are some

failures of leave-three-out, we replace the regularity condition in Assumption 3 with an anal-

ogous version that allows for some of the determinants Dij and Dijk to be zero. Otherwise,

the role of Assumption 3’ below is the same as Assumption 3 in that it rules out denominators

that are arbitrarily close to zero.

Assumption 3’. (i) max
1≤i≤n

M−1
ii = Op(1), and (ii) max

i,j:Dij 6=0
D−1ij + max

i,j,k:Dijk 6=0
D−1ijk = Op(1).

When computing V̂F , one must account for machine zero imperfections while comparing

Dij and Dijk with zero in the definitions of σ̄2
i,−jk and σ2

i σ
2
j . Such imperfections are typically

of order 10−15; however, we propose to compare Dij to 10−4 and Dijk to 10−6. Doing so will

replace any potential case of a small denominator with an upward biased alternative and

ensures that Assumption 3’(ii) is automatically satisfied.

The following theorem establishes the asymptotic validity of the proposed leave-out test

in settings where Assumption 1 fails. The theorem pertains to a nominal size below 0.31,

as the upward biased variance estimator may not ensure validity in cases where a nominal

size above 0.31 is desired. This happens because the quantile q1−α(F̄ŵ,n−m) may fall below

1 when α is greater than 0.31.

Theorem 4.1. If α ∈ (0, 0.31] and Assumptions 1’, 2, and 3’ hold, then, under H0,

lim sup
n→∞

P (F > cα) ≤ α.
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An important difference between this result and that of Theorem 3.1 is that the asymp-

totic size may be smaller than desired, which can happen when leave-three-out fails for a

large fraction of possible triples. When such conservatism materializes, there will be a corre-

sponding loss in power relative to the result in Theorem 3.2. Otherwise, the power properties

are analogous to those reported in Theorem 3.2 and we therefore omit a formal result.

Remark 5. Before turning to a study of the finite sample performance of the proposed test,

we describe an adjustment to the test which is based on finite sample considerations. This

adjustment is to rely on demeaned outcome variables in the definitions of ÊF , V̂F , and ŵ.

The benefit of relying on demeaned outcomes is that it makes the critical value invariant

to the location of the outcomes. On the other hand, this adjustment removes the exact

unbiasedness used to motivate the estimators of E0[F ] and V0

[
F − ÊF

]
. However, one can

show that the biases introduced by demeaning vanish at a rate that ensures asymptotic

validity. Therefore, we deem the gained location invariance sufficiently desirable that we are

willing to introduce a small finite sample bias to achieve it. We refer to the Appendix for

exact mathematical details but note that this adjustment is used in the following simulations.

5 Simulation evidence

This section documents some finite sample properties of the proposed leave-out (LO) test and

compares its performance with conventional tests that are likely to be used by a researcher

in the present context. These benchmark tests are the following:

1. The exact F test that uses critical values from the F distribution to reject when F >

q1−α(Fr,n−m). This test has actual size equal to nominal size in finite samples under

conditional homoskedastic normal errors for any number of regressors and restrictions.

It is also asymptotically valid with conditional homoskedasticity and non-normality

under certain homogeneity conditions on the regressors.

2. Three different Wald tests that reject when a heteroskedasticity-robust Wald statistic
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exceeds the (1− α)-th quantile of a χ2
r distribution, i.e., when W > q1−α(χ2

r) for

W =
(
Rβ̂ − q

)′(
RS−1xx

(∑n

i=1
xix

′
iσ̃

2
i

)
S−1xxR

′
)−1(

Rβ̂ − q
)

and particular choices of the error variance estimators {σ̃2
i }ni=1. We consider a degrees-

of-freedom corrected individual error variance estimator σ̃2
i = (yi − x′iβ̂)2n/(n − m)

which is referred to as W1 (MacKinnon, 2013), a leave-one-out version with σ̃2
i = σ̂2

i

that we call WL (Kline et al., 2020), and the version considered in Cattaneo et al.

(2018) which we refer to as WK. Asymptotically, the two Wald tests, WL and WK,

are valid with many regressors under arbitrary heteroskedasticity but not necessarily

with many restrictions, while W1 is valid with few regressors and few restrictions under

arbitrary heteroskedasticity.

5.1 Simulation design

The simulation setup borrows elements of MacKinnon (2013) and adapts it to the case

of many regressors as in Richard (2019) but with richer heterogeneity in the design. The

outcome equation is

yi = β1 +
m∑
k=2

βkxik + εi, i = 1, . . . , n,

where data is drawn i.i.d. across i. Following MacKinnon (2013), the sample sizes take

the values 80, 160, 320, 640, and 1280. The number of unknown coefficients is m = 0.8n

throughout to demonstrate the validity of the proposed test even with very many regressors.

The null restricts the values of the last r coefficients using R =
[
0r×(m−r), Ir

]
. We consider

both a design that contains only continuous regressors and a mixed one that also includes

some discrete regressors.

In the continuous design, the regressors xi2, . . . , xim are products of independent standard

log-normal random variables and a common multiplicative mean-unity factor drawn inde-

pendently from a shifted standard uniform distribution, i.e., 0.5 + ui where ui is standard

uniform. This common factor induces dependence among the regressors and rich heterogene-
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ity in the statistical leverages of individual observations. For this design, we consider r = 3

and r = 0.6n.

When also including discrete regressors, we let xi2, . . . , xi,m−r be as above and let the

last r regressors be group dummies. This mixed design corresponds to random assignment

into r + 1 groups with the last group effect removed due to the presence of an intercept in

the model. The assigned group number is the integer ceiling of (r + 1)(ui + u2i )/2, where ui

is the multiplicative factor used to generate dependence among the continuous regressors.

By reusing ui we maintain dependence between all regressors, and by using a nonlinear

transformation of ui we induce systematic variability among the r+ 1 expected group sizes.

We let r = 0.15n, which leads the expected group sizes to vary between 4 and 13 with an

average group size of about 6.5. The null corresponds to a hypothesis of equality of means

across all groups.

Each regression error is a product of a standard normal random variable and an individual

specific standard deviation σi. The standard deviation is generated by

σi = zζ (1 + si)
ζ , i = 1, . . . , n,

where si > 0 depends on the design and the multiplier zζ is such that the mean of σ2
i is unity.

The parameter ζ ∈ [0, 2] indexes the strength of heteroskedasticity, with ζ = 0 corresponding

to homoskedasticity. We consider only the two extreme cases of ζ ∈ {0, 2}. In the continuous

design, we let si =
∑m

k=2 xik, and in the mixed design, si =
∑m−r

k=2 xik + zuui. The factor

zu = 2r exp(1/2) ensures that si has the same mean in both designs.

Under the null, the coefficients on the continuous regressors are all equal to %, where % is

such that the coefficient of determination, R2, equals 0.16. The coefficients on the included

group dummies are zero, which correspond to the null of equality across all groups. The

intercept is chosen such that the mean of the outcomes is unity. For the continuous design

this yields an intercept of 1−(m−1)% exp(1/2), while the intercept is 1−(m−r−1)% exp(1/2)

in the mixed design. With these parameter values, the null is (βm−r, . . . , βr)
′ = q, where

q = (%, . . . , %)′ ∈ Rr in the continuous design, and q = (0, . . . , 0)′ ∈ Rr in the mixed design.
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To document power properties, we consider both a sparse and dense deviations from the

null, and focus on the settings where r is proportional to n. In parallel to the theoreti-

cal power analysis in Section 3, we consider deviations for the last r coefficients that are

parameterized using

(βm−r, . . . , βm)′ = q +
(
RE[Sxx]

−1R′
)1/2

δ,

where we use the lower triangular square-root matrix. This choice of square-root implies

that the alternative is sparse when only the last few entries of δ are non-zero. As shown

in Section 3, asymptotic power is governed by the norm of δ over r1/4, but whether an

alternative is fixed or local, additionally depends on the rate at which the tested coefficients

are estimated. This rate is governed by E[Sxx], which is reported in the Appendix.

In the continuous design, the tested coefficients are estimated at the standard parametric

rate of n−1/2. To specify a fixed sparse alternative we therefore use δ = 0.5n1/2(0, . . . , 0, 1)′ ∈

Rr, for which βm differs from the null value by approximately 0.2 (here and hereafter, the

scaling is chosen so that the power is bounded away from the size and away from unity for

the sample sizes we consider). Since the norm of δ grows faster than r1/4, the power will

be an increasing function of the sample size. For the dense alternative, we consider instead

δ = 0.5n1/2r−1/2ιr where ιr = (1, . . . , 1)′ ∈ Rr, for which all deviations between the tested

coefficients and % shrink at the standard parametric rate of n−1/2. Here, power is again

increasing in the sample size due to numerous deviations from the null.

In the mixed design, the group effects are not estimated consistently as the group sizes

are bounded. A possible fixed sparse alternative is then δ = (0, . . . , 0, 6)′ ∈ Rr, for which

βm differs from the null value of zero by roughly 3. In contrast to the continuous design,

the power will decrease with sample size as the precision, with which βm can be estimated,

does not increase with n. For the dense alternative, we use δ = 1.5ιr, which corresponds to

a fixed alternative for every tested coefficient. Here, the power will be increasing in n due

to the numerosity of deviations.
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5.2 Simulation results

We present rejection rates based on 10000 Monte-Carlo replications and consider tests with

nominal sizes of 1%, 5% and 10%. Furthermore, we report the frequency with which the

proposed variance estimate V̂F is negative and therefore replaced by the upward biased and

positive alternative introduced in Remark 1. For the design that includes discrete regressors,

we also report the average fraction of observations that cause a failure of leave-three-out full

rank, and for which we therefore rely on an upward biased estimator of the corresponding

error variance. For all sample sizes, this fraction is around 7% in the mixed design, which

corresponds to the percentage of observations that belong to groups of size 2 or 3. The

fraction is zero in the design that only involves continuous regressors.

Table 1 contains the actual rejection rates under the null for both the continuous and

mixed designs. In settings with many regressors and restrictions, the considered versions

of the “heteroskedasticity-robust” Wald test fail to control size irrespective of the design,

presence of heteroskedasticity, and nominal size. The failure of the conventional Wald test,

W1, is spectacular, with type I error rates close to one for the continuous design, but the

two versions that are robust to many regressors, WK and WL, also exhibit size well above

the nominal level. With few restrictions, the Wald tests show a more moderate inability to

match actual size with nominal size, and the table suggests that the leave-one-out version,

WL, can control size in samples that are somewhat larger than considered here. Under

homoskedasticity, the table reports that the exact F test indeed has exact size. However, in

the heteroskedastic environments with many restrictions the exact F test is oversized with a

type I error rate that approaches unity as the sample size increases.

By contrast, the proposed leave-out test exhibits nearly flawless size control as it is

oversized by at most one percent across nearly all designs, nominal sizes, and whether het-

eroskedasticity is present or not. In the smallest sample for the continuous design, the test

is somewhat conservative, presumably due to the relatively high rate of negative variance

estimates (20% with homoskedasticity and 13% with heteroskedasticty) that are replaced

by a strongly upward biased alternative. This rate diminishes quickly with sample size, and
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Table 1: Empirical size (in percent)

Nominal size 1% 5% 10%

Test LO EF W1 WK WL LO EF W1 WK WL LO EF W1 WK WL %V̂F < 0

Homoskedasticity

Continuous design

n = 80 r = 3 2 1 4 14 11 7 5 10 19 18 12 10 15 23 23 8.7
n = 160 r = 3 1 1 2 14 7 6 5 6 19 14 12 10 10 23 20 2.0
n = 320 r = 3 1 1 1 15 4 6 5 4 22 10 11 10 8 27 15 0.6
n = 640 r = 3 1 1 1 15 2 6 5 3 23 8 11 10 7 29 13 0.1
n = 1280 r = 3 1 1 1 9 2 6 5 3 17 7 11 10 7 24 12 0.0

n = 80 r = 48 1 1 99 54 16 3 5 100 54 18 7 10 100 54 19 19.8
n = 160 r = 96 2 1 100 54 20 5 5 100 54 21 10 10 100 54 22 6.4
n = 320 r = 192 2 1 100 53 20 6 5 100 54 21 11 10 100 54 21 1.5
n = 640 r = 384 1 1 100 54 22 6 5 100 54 23 11 10 100 54 23 0.3
n = 1280 r = 768 1 1 100 53 22 5 5 100 53 23 11 10 100 53 23 0.0

Mixed design

n = 80 r = 12 2 1 21 25 19 7 5 33 29 23 12 10 41 31 26 4.8
n = 160 r = 24 1 1 25 27 23 6 5 38 30 27 12 10 47 31 29 0.4
n = 320 r = 48 1 1 33 29 29 5 5 49 31 32 11 10 58 32 34 0.1
n = 640 r = 96 1 1 47 31 32 5 5 64 33 35 11 10 72 33 36 0.0
n = 1280 r = 192 1 1 69 31 35 5 5 82 33 37 10 10 87 33 38

Heteroskedasticity

Continuous design

n = 80 r = 3 2 3 7 17 10 6 10 15 22 16 11 17 22 26 21 10.3
n = 160 r = 3 2 2 4 14 7 6 8 10 20 14 12 15 16 24 19 2.3
n = 320 r = 3 1 2 2 16 4 6 8 8 23 10 12 15 14 28 16 0.6
n = 640 r = 3 1 2 2 15 2 6 8 7 23 8 11 14 12 29 13 0.3
n = 1280 r = 3 1 2 1 9 2 5 8 6 17 6 11 15 12 24 12 0.0

n = 80 r = 48 1 22 100 52 13 5 47 100 52 15 9 61 100 52 16 12.8
n = 160 r = 96 1 32 100 50 15 5 61 100 50 16 11 75 100 51 17 3.7
n = 320 r = 192 1 56 100 49 17 6 81 100 49 18 11 90 100 49 19 0.9
n = 640 r = 384 1 86 100 49 18 5 96 100 49 19 11 99 100 49 20 0.1
n = 1280 r = 768 1 99 100 48 19 5 100 100 48 19 11 100 100 48 20 0.0

Mixed design

n = 80 r = 12 1 5 38 27 14 6 17 51 30 18 12 26 58 32 21 4.8
n = 160 r = 24 1 9 49 28 19 6 24 63 30 23 13 35 71 31 25 0.5
n = 320 r = 48 1 14 67 29 22 5 33 80 31 25 11 46 85 32 27 0.1
n = 640 r = 96 1 28 89 31 26 5 52 95 32 29 11 65 97 33 30 0.0
n = 1280 r = 192 1 52 99 33 30 5 75 100 34 31 10 84 100 34 32 0.0

NOTE: LO: leave-out test, EF: exact F test, W1: heteroskedastic Wald test with degrees-of-freedom correction, WK:
heteroskedastic Wald test with Cattaneo et al. (2018) correction, WL: heteroskedastic Wald test with Kline et al. (2020)

correction; %V̂F < 0: fraction of negative variance estimates for LO (in percent). Results from 10000 Monte-Carlo
replications.

31



Table 2: Empirical power (in percent) corresponding to 5% and 10% size

Homoskedasticity Heteroskedasticity

Deviation Sparse Dense Sparse Dense

Nominal size 5% 10% 5% 10% 5% 10% 5% 10%

Test LO EF LO EF LO EF LO EF LO LO LO LO

Continuous design

n = 80 r = 48 6 15 12 25 5 15 10 25 10 18 7 14
n = 160 r = 96 16 23 26 34 12 21 22 34 20 32 17 29
n = 320 r = 192 29 35 43 48 26 36 39 51 31 45 29 44
n = 640 r = 384 49 55 63 69 44 57 58 71 52 66 49 64
n = 1280 r = 768 74 80 84 88 68 84 81 92 76 86 74 85

Mixed design

n = 80 r = 12 18 23 30 36 17 19 29 30 24 38 23 37
n = 160 r = 24 18 18 29 28 27 28 41 41 24 35 34 49
n = 320 r = 48 13 13 22 22 40 42 54 56 16 27 48 64
n = 640 r = 96 10 10 18 18 60 65 73 77 11 20 70 82
n = 1280 r = 192 8 8 16 15 87 91 94 95 9 17 92 97

NOTE: LO: leave-out test, EF: exact F test. Results from 10000 Monte-Carlo replications.

the fraction of negative variance estimates is already essentially zero in samples with 640

observations and 512 regressors. In the mixed design, negative variance estimates are even

less prevalent, potentially due to the fact that the test uses some upward biased variance

estimators for 7% of observations. Perhaps somewhat surprisingly, having 7% of observations

causing failure of leave-three-out is not sufficient to bring about any discernible conserva-

tiveness in the leave-out test for this design.

Table 2 contains simulated rejection rates for the continuous and mixed designs under

alternatives where the parameters deviate from their null values in one of two ways – either

one tested coefficient deviates (sparse) or all tested coefficients deviate (dense). The table

reports these power figures for tests with a nominal size of 5% and 10% that also control

the size well, i.e., the LO and exact F tests under homoskedasticity and the LO test under

heteroskedasticity.

For the continuous design, the power of the tests increases from slightly above nominal

size to somewhat below unity as the number of observations increases from 80 to 1280. This

pattern largely holds irrespective of the type of deviation and presence of heteroskedasticity,
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although the LO test is a bit more responsive to sparse deviations than to dense ones. Along

this stretch of the power curve, the LO test exhibits a power loss that varies between 4 and

16 percentage points when compared to the exact F test, and in relative terms, this gap

in power shrinks as the sample size grows. Given that the number of tested restrictions in

this setting is above half of the sample size, we conjecture that these figures are towards the

high end of the power loss that a typical practitioner would incur in order to be robust with

respect to heteroskedasticity.

In the mixed design, the fixed dense alternative exhibits similar power figures as in the

continuous design, while the fixed sparse deviation generates a power function that decreases

with sample size. The reason for the latter is, as discussed in the previous subsection, that

the deviating group effect is not estimated more precisely as additional groups are added to

the data. Upon comparison of the LO and exact F tests, we see that the differences in the

power figures are only 0–7 percentage points. In light of Remark 3, which explains that there

is no power difference between the LO and exact F tests when r/n is small, it is natural

to attribute this almost non-existant power loss to the fact that there are four times fewer

tested restrictions in this mixed design than in the continuous one.

6 Concluding remarks

This paper develops an inference method for use in a linear regression with conditional

heteroskedasticity where the objective is to test a hypothesis that imposes many linear

restrictions on the regression coefficients. The proposed test rejects the null hypothesis if the

conventional F statistic exceeds a linearly transformed quantile from the F-bar distribution.

The central challenges for construction of the test is estimation of individual error variances

and their products, which requires new ideas when the number of regressors is large. We

overcome these challenges by using the idea of leaving up to three observations out when

estimating individual error variances and their products. In some samples the variance

estimate used for rescaling of the critical value may either be negative or cease to exist due

to the presence of many discrete regressors. For both of these issues, we propose an automatic
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adjustment that relies on intentionally upward biased estimators which in turn leaves the

resulting test somewhat conservative. Simulation experiments show that the test controls

size in small samples, even in strongly heteroskedastic environments, and only exhibits very

limited adjustment-induced conservativeness. The simulations additionally illustrate good

power properties that signal a manageable cost in power from relying on a test that is robust

to heteroskedasticity and many restrictions.

Bootstrapping and closely related resampling methods are often advocated as automatic

approaches for the construction of critical values. However, in the context of linear regres-

sion with proportionality between the number of regressors and sample size, multiple papers

(Bickel and Freedman, 1983; El Karoui and Purdom, 2018; Cattaneo et al., 2018) demon-

strate the invalidity of standard bootstrap schemes even when inferences are made on a

single regression coefficient. Under an additional assumption of homoskedasticity and fur-

ther restrictions on the design, El Karoui and Purdom (2018) and Richard (2019) show that

various (problem-specific) corrections to bootstrap methods can restore validity. We leave

it to future research to determine whether bootstrap or other resampling methods can be

corrected to ensure validity in our context of a heteroskedastic regression model with many

regressors and tested restrictions.

References

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High wage workers and high wage

firms. Econometrica 67 (2), 251–333.

Akritas, M. G. and N. Papadatos (2004). Heteroscedastic one-way ANOVA and lack-of-fit

tests. Journal of American Statistical Association 99 (466), 368–382.

Anatolyev, S. (2012). Inference in regression models with many regressors. Journal of

Econometrics 170 (2), 368–382.

Anatolyev, S. (2013). Instrumental variables estimation and inference in the presence of

many exogenous regressors. Econometrics Journal 16 (1), 27–72.

34



Anatolyev, S. (2018). Almost unbiased variance estimation in linear regressions with many

covariates. Economics Letters 169, 20–23.

Anatolyev, S. (2019). Many instruments and/or regressors: a friendly guide. Journal of

Economic Surveys 33 (2), 689–726.

Anatolyev, S. and M. Sølvsten (2020). manyRegressors: R package for inference in models

with heteroskedasticity and many regressors. https://github.com/mikkelsoelvsten/

manyRegressors.

Arias-Castro, E., E. J. Candès, and Y. Plan (2011). Global testing under sparse alternatives:

ANOVA, multiple comparisons and the higher criticism. Annals of Statistics 39 (5), 2533–

2556.

Berndt, E. R. and N. E. Savin (1977). Conflict among criteria for testing hypotheses in the

multivariate linear regression model. Econometrica 45 (5), 1263–1277.

Bickel, P. J. and D. A. Freedman (1983). Bootstrapping regression models with many

parameters. In A festschrift for Erich L. Lehmann, pp. 28–48. CRC Press.

Calhoun, G. (2011). Hypothesis testing in linear regression when k/n is large. Journal of

Econometrics 165 (2), 163–174.

Card, D., A. R. Cardoso, J. Heining, and P. Kline (2018). Firms and labor market inequality:

Evidence and some theory. Journal of Labor Economics 36 (S1), S13–S70.

Cattaneo, M. D., M. Jansson, and W. K. Newey (2018). Inference in linear regression

models with many covariates and heteroscedasticity. Journal of the American Statistical

Association 113 (523), 1350–1361.

Chao, J. C., J. A. Hausman, W. K. Newey, N. R. Swanson, and T. Woutersen (2014).

Testing overidentifying restrictions with many instruments and heteroskedasticity. Journal

of Econometrics 178, 15–21.

Chetty, R. and N. Hendren (2018). The impacts of neighborhoods on intergenerational

mobility II: County-level estimates. Quarterly Journal of Economics 133 (3), 1163–1228.

Donoho, D. and J. Jin (2004). Higher criticism for detecting sparse heterogeneous mixtures.

Annals of Statistics 32 (3), 962–994.

35

https://github.com/mikkelsoelvsten/manyRegressors
https://github.com/mikkelsoelvsten/manyRegressors


El Karoui, N., D. Bean, P. Bickel, C. Lim, and B. Yu (2013). On robust regression with

high-dimensional predictors. Proceedings of the National Academy of Sciences 110 (36),

14557–14562.

El Karoui, N. and E. Purdom (2018). Can we trust the bootstrap in high-dimensions? The

case of linear models. Journal of Machine Learning Research 19 (1), 1–66.

Finkelstein, A., M. Gentzkow, and H. Williams (2016). Sources of geographic variation in

health care: Evidence from patient migration. Quarterly Journal of Economics 131 (4),

1681–1726.

Horn, S. D., R. A. Horn, and D. B. Duncan (1975). Estimating heteroscedastic variances in

linear models. Journal of the American Statistical Association 70 (350), 380–385.

Huber, P. J. (1973). Robust regression: asymptotics, conjectures and Monte Carlo. Annals

of Statistics 1 (5), 799–821.

Jochmans, K. (2020). Heteroscedasticity-robust inference in linear regression mod-

els with many covariates. Journal of the American Statistical Association, DOI:

10.1080/01621459.2020.1831924.

Kline, P., R. Saggio, and M. Sølvsten (2020). Leave-out estimation of variance components.

Econometrica 88 (5), 1859–1898.

Lachowska, M., A. Mas, R. Saggio, and S. A. Woodbury (2019). Do firm effects drift?

Evidence from Washington administrative data. NBER Working Paper No. 26653.

MacKinnon, J. G. (2013). Thirty years of heteroskedasticity-robust inference. In Recent

Advances and Future Directions in Causality, Prediction, and Specification Analysis, pp.

437–461. Springer.

Phillips, G. D. A. and C. Hale (1977). The bias of instrumental variable estimators of

simultaneous equation systems. International Economic Review 18 (1), 219–228.

Rao, C. R. (1970). Estimation of heteroscedastic variances in linear models. Journal of

American Statistical Association 65 (329), 161–172.

Richard, P. (2019). Residual bootstrap tests in linear models with many regressors. Journal

of Econometrics 208 (2), 367–394.

36



Romano, J. P., A. M. Shaikh, and M. Wolf (2010). Multiple testing. In Palgrave Macmillan

(eds) The New Palgrave Dictionary of Economics. Palgrave Macmillan, London.

Sacerdote, B. (2001). Peer effects with random assignment: Results for Dartmouth room-

mates. Quarterly Journal of Economics 116 (2), 681–704.

Sherman, J. and W. J. Morrison (1950). Adjustment of an inverse matrix corresponding

to a change in one element of a given matrix. Annals of Mathematical Statistics 21 (1),

124–127.

Verdier, V. (2020). Estimation and inference for linear models with two-way fixed effects

and sparsely matched data. Review of Economics and Statistics 102 (1), 1–16.

Woodbury, M. A. (1949). The stability of out-input matrices. Chicago, IL 9.

Zhou, B., J. Guo, and J.-T. Zhang (2017). High-dimensional general linear hypothesis testing

under heteroscedasticity. Journal of Statistical Planning and Inference 188, 36–54.

37


	Introduction
	Leave-out test
	Test statistic
	F-bar distribution
	Critical value
	Leave-out algebra
	Location estimator
	Variance estimator
	Computational remarks

	Asymptotic size and power
	Asymptotic size
	Asymptotic power

	If leave-three-out fails
	Variance estimator
	Asymptotic size

	Simulation evidence
	Simulation design
	Simulation results

	Concluding remarks

