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Abstract

We characterize a retailer’s optimal order when its supplier’s unknown

marginal cost of production either has a low intercept but is increasing, or

is constant, or when a lower intercept is associated to a steeper marginal

cost and reciprocally. Asymmetric information results in two kinds of distor-

tions. When demand is large enough, the retailer under-purchases to all types

except to the least capacity constrained one, and the retail price increases.

When demand is low enough, the retailer over-purchases to all types except

to the most efficient one, and when the product is perishable the retail price

decreases. For an intermediate demand, the retailer over- or under-purchases

except from the two extreme types as well as an intermediate one. Bunching

occurs for an interval of types next to the latter. The optimal order is not

always continuous with respect to the seller’s type.
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1 Introduction

As pointed out by many empirical analysis, firms display an enormous amount of

heterogeneity even within the same industry, be it on their production technology or

on the cost of their inputs. This heterogeneity also prevails geographically, no matter

whether U.S. firms or firms from developing countries are considered1. Productivity

or cost functions estimations2 also show that firms operate neither at the same scale

nor with the same level of efficiency, and often face increasing marginal costs of

production, that is decreasing returns-to-scale3.

Although it is not their focus, all these estimations also allow to emphasize an

important issue. Once a firm has chosen its short-run capacity of production and

once its operations are planned, generally based on demand forecasts and given

longer run investments whose costs are sunk4, a firm’s short run cost structure is

fixed. Moreover when the production and sales phases start, given the orders already

confirmed, each new order a firm receives exhausts its planned capacity, and, once it

is fully used, additional orders force this firm to acquire extra inputs which can be

more costly at the margin than what had been planned ex-ante. How low and how

steep a firm’s marginal cost curve is, is given, and differences in efficiencies as well

as in residual capacities coexist. As the most efficient operators attract customers

more easily than the least efficient ones, the residual capacity of the least efficient

firms can be larger than the residual capacity of the most efficient ones at any point

in time. That is efficiencies and residual capacities can evolve in opposite directions,

the most efficient operators being more capacity constrained than the least efficient

ones.

Whether a supplier’s residual capacity is large or not, and whether a firm’s

marginal cost is low or not, is generally not observable to a buyer5. When deciding

1See for example Baily et al [4], Bartelsman and Dhrymes [5], and Roberts and Tybout [14].
2See amongst others Beard et al [6], Röller [15], Van Biesebroeck [17] or Kim and Knittel [11].
3For example Van Biesebroeck [17] points out that these differences, and in particular decreasing

returns, may come from the use of a lean manufacturing system instead of a mass production system

which generates more economies of scale.
4In capital, such as in a plant or in the machines needed. Planning production is of concern to

management scientists but also to economists, at least as early as in Holt, Modigliani, Muth and

Simon [9]. The rationale for sharing production plans with suppliers in the automobile industry is

studied in Doyle and Snyder [8].
5For example see again Van Biesebroeck [17].
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how much to order, a buyer may face an efficient but capacity constrained seller, or

on the contrary an inefficient but capacity unconstrained seller, or any combination

between these two extremes. Due to potential diseconomies of scale which differ,

differences in the total cost of these different types of suppliers may give each of

them the opportunity to raise some profits: a supplier efficient at the margin but

experiencing large decreasing returns-to-scale could pretend it is less efficient but less

capacity constrained when it is offered to produce a small quantity, while oppositely

when it is offered to produce a large quantity, a supplier less efficient at the margin

but less capacity constrained could pretend it is the opposite. Depending on the

demand it faces, a buyer (be it a retailer or a downstream manufacturer) therefore

faces a tension between procuring the quantity of product it needs as efficiently as

possible, and ordering an optimal quantity which allows to serve the downstream

market optimally. This tension is particularly important when the product traded is

perishable, e.g. when the product is a service, and when purchases must be renewed

regularly, when the service purchased is not durable.

In this paper, we explore how a buyer (or retailer) should optimally purchase

the product it resales, when it does not observe the true characteristics of its single

supplier, and when this supplier can either be efficient but faces steep decreasing

returns-to-scale, or on the contrary is less efficient but faces constant returns, or any

combination of the two such that the steeper the marginal cost of production the

smaller its intercept it. In such a setting where the unobserved characteristic of the

supplier affects the determinants of its variable cost of production, three classical

assumptions satisfied by the basic textbook principal-agent model do not hold any

more. First, a supplier’s total variable cost of production may increase or decrease

as its types changes, and hence countervailing incentives are present6. Second, a

supplier’s marginal cost of production may also increase or decrease as its type

changes, and hence the Spence-Mirrlees condition fails to be satisfied7. Last, when

it determines the menu of contracts it offers to its supplier, the retailer’s expected

profit, which depends on how types affect the total variable cost of production, may

fail to be concave with respect to the purchase order it sends to the supplier.

6See Lewis and Sappington [12], Biglaiser and Mezzeti [7], Maggi and Rodriguez-Clare [13], and

Jullien [10].
7See Araujo and Moreira [1], [2] and Schottmüller [16].
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In such a model, we characterize the distortions the retailer acting as a principal

chooses on the quantity it purchases, compared to what a fully informed monopoly

would purchase and resell. We demonstrate that these distortions depend on the

determinants of a supplier’s cost of production, as well as the market demand the

retailer faces. When demand is large enough, asymmetric information leads the

retailer to under-purchase compared to what a fully informed monopolist would

do. Asymmetric information therefore results in additional social losses compared

to a monopoly, even if double marginalization is absent. On the contrary when

demand is low enough, asymmetric information leads the retailer to over-purchase

compared to what a fully informed monopolist would do, which reduces social losses

compared to the situation where a monopoly operates. Last in the interim situation,

the retailer over-purchases from efficient but capacity constrained sellers, while it

under-purchases from inefficient but capacity unconstrained sellers. We analyze

the situation where bunching occurs, and we demonstrate that the quantity profile

offered in the contract is not always continuous with respect to the seller’s type.

Our paper crosses two streams of research in the principal-agent literature which,

to our knowledge, have been examined separately so far. In Lewis and Sapping-

ton [12], affine total costs of production change with the agent’s type and counter-

vailing incentives follow from the tension between misreporting one’s fixed and one’s

unit cost of production. This tension occurs more generally when the agent’s outside

option depends on its type, which has been analyzed comprehensively in Jullien [10].

We show that countervailing incentives may also follow from the tension between

the determinants of the variable cost of production of a firm, namely the intercept

and the slope of the marginal cost, in a model where fixed costs are sunk and hence

outside options can be normalized to zero for all types. Over-production, under-

production, and the pooling of different suppliers on the output value such that all

variable costs are equal occur in equilibrium, which mirrors in our setting the sem-

inal result obtained by Lewis and Sappington [12]. When countervailing incentives

emerge from tensions between the determinants of a variable cost of production, the

Spence-Mirrlees condition can also fail to be satisfied. Our paper therefore relates to

Araujo and Moreira [1] and [2], and Schottmüller [16]). Under the assumption that

marginal costs functions rotate around each other as the supplier’s type changes, we

demonstrate that the non local incentive constraints never bind when the purchase
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order is monotonic with respect to the supplier’s type. Hence, local conditions are

sufficient to determine the second best purchase orders, and the usual distortions

coming from countervailing incentives are still present. This is in contrast with

Schottmüller [16], who analyzes the case where quadratic cost functions depend on

the agent’s type through the variable total cost of production but also through type-

dependant fixed costs, in such a manner that countervailing incentives are absent. In

such a setting, he characterizes the effect of non local incentive constraints when the

purchase order is otherwise monotonic in the agent’s type. In particular he shows

that distortions may occur including for the type realizing the first best when only

local conditions are considered. Last, the negative correlation between the deter-

minants of an agent’s variable cost of production introduce non-concavities in the

retailer’s virtual surplus, so that the optimal quantity schedule is not continuous

anymore, and the set of types for which pooling occurs increases.

2 The Model

A downstream retailer D sells to its customers a (non-negative) quantity of product

q, which it procures from a single upstream supplier U . The consumers’ inverse

demand is denoted P (q), which is linear and strictly decreasing in q,

P (q) = max{a− bq, 0} with a > 0, b > 0. (1)

We let P ′(q) denote the first order derivative of the inverse demand8. The upstream

supplier U cannot directly access the market, and produces the quantity q with a

technology of production whose investment costs are sunk and normalized to 0, and

whose variable cost of production is continuous and convex in the quantity q. This

variable cost also depends on a parameter θ, and is denoted C(q; θ) given by9

C(q; θ) = θq +
1

2
d(θ)q2 for all q ≥ 0, with θ ≥ 0, d(θ) ≥ 0. (2)

8When a function depends on one variable only, we use a ′ to indicate its total derivative with

respect to this variable.
9Assuming that fixed costs are sunk allows us to focus on countervailing incentives which come

from increasing marginal costs of production, and not from type dependent participation constraints

as in Jullien [10]. This cost function also differs from the running example in Schottmüller [16], in

which non sunk type-dependent fixed costs are introduced to ensure that informational rents are

monotonic in the agent’s type and countervailing incentives are absent.
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Supplier U ’s variable cost of production is private information to this firm: the

parameter θ is the realization of a random variable Θ which is drawn on a bounded

support [0, c̄] and is revealed only to U ; the function d(θ) is continuous and strictly

decreasing in θ, d′(θ) < 0, and is common knowledge to U and R. To fix the ideas

we assume d(θ) is linear and given by

d(θ) = d̄

(
1− θ

c̄

)
. (3)

The cumulative distribution function and the density function of Θ are continuous

on [0, c̄] and given respectively by

F (θ) ∈ [0, 1] and f(θ) ≥ 0 for θ ∈ [0, c̄], (4)

where moreover we assume that F (θ) verifies10

∂

∂θ

(
F (θ)

f(θ)

)
≥ 0 ≥ ∂

∂θ

(
1− F (θ)

f(θ)

)
for θ ∈ [0, c̄]. (5)

Under these assumptions firm U ’s type is given by θ ∈ [0, c̄], which determines

immediately the slope of its marginal cost d(θ) ∈ [0, d̄]. Figure 1 illustrates this

assumption. When θ tends to 0, the slope of the marginal cost tends to d̄ while,

when θ tends to c̄ the slope of the marginal cost tends to 0. Moreover marginal costs

rotate around a unique value q0 = c̄
d̄
, while the total costs intersect twice, at q = 0

where there are all nil, and at an output level equal to 2q0 = 2 c̄
d̄
. Therefore a highly

specialized supplier (c = 0) is strongly capacity constrained (d = d̄) but can operate

very efficiently when demand is low, while a supplier with a large capacity does not

suffer decreasing returns-to-scale (d = 0), faces a constant cost per unit (c = c̄)

which allows him or her to operate more efficiently than other types of suppliers

when demand is large11. We denote C(2q0) the total cost of producing 2q0 which is

identical across all types.

10As explained below, the consequence of the cost structure we consider is that the objective

function of the principal (here retailer D) is not necessary concave in the purchase order q. Under

this assumption on F (θ), there exists a threshold type θ such that the objective function is convex

only for types higher than this threshold, and concave else. This assumption is satisfied if F (θ) is

log-concave (see Bagnoli and Bergstrom [3]).
11When d(θ) is not linear in θ, marginal costs do not intersect at the same quantity q0 and

total costs do not intersect at the same quantity 2q0 anymore. We study the consequences of this

alternative assumption in section 5.
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We denote Cq(q; θ) the first order partial derivative with respect to q, i.e. the

marginal cost of supplier U to produce q when it is of type θ

Cq(q; θ) = θ + d̄

(
1− θ

c̄

)
q. (6)

The first order and the cross-partial derivatives with respect to θ (and respectively

θ and q) are equal to

Cθ(q; θ) = q − d̄

2c̄
q2 and Cqθ(q; θ) = 1− d̄

c̄
q. (7)

These derivatives do not have a constant sign as q varies: Cθ(q; θ) ≥ 0 if q ≤ 2c̄
d̄

and

negative else, and similarly Cqθ(q; θ) ≥ 0 if q ≤ c̄
d̄

and negative else. Therefore when

the technology of production is heterogenous across the population of suppliers,

and the fundamentals of each supplier’s variable cost of production are negatively

correlated with each other, countervailing incentives are present while the Spence-

Mirrlees condition is not satisfied. The second and third order derivatives for θ ∈
[0, c̄] are Cqq(q; θ) = d̄

(
1− θ

c̄

)
≥ 0 and nil for θ = c̄, Cqθθ(q; θ) = 0, and Cqqθ(q; θ) =

− d̄
c̄
< 0 for all q and θ.

To procure the quantity q it markets, retailer D is able to offer a menu of binding

contracts to its upstream supplier U , from which U can choose12. Each contract

consists in a payment and a quantity the supplier has to produce, if it accepts the

contract, which depends on the type supplier U announces to the retailer D. Let θ̃

be the message supplier U of type θ reports to the principal, and let
(
T (θ̃), q(θ̃)

)
be the contract offered to supplier U when it reports θ̃. Then retailer D earns an

expected profit equal to

πeD(θ̃) = E
(
P (q(θ̃))q(θ̃)− T (θ̃)

)
(8)

where the expectation is computed on the distribution of types F (θ). The ex-post

profit of supplier U of type θ reporting θ̃ is given by:

πU(q(θ̃); θ) = T (θ̃)− C(q(θ̃); θ) for θ ∈ [0, c̄]. (9)

12We assume that the retailer R cannot sell less than the quantity it has procured. Leftover

inventories can be infinitely costly to dispose (be it for economic or reputation reasons, as the

recent scandals on Amazon leftovers inventories showed), and impossible to resell (e.g. because

the product is perisable). We leave the study of the optimal procurement of a storable good for

another paper.
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If it does not accept the contract offered by the downstream retailer D, the upstream

supplier U earns no profit. The timing of the game is standard:

1. Nature draws the type θ of supplier U and informs this firm;

2. The downstream retailer D offers a menu of binding contracts to supplier U

which specifies a payment and a production which depends on the type θ̃ the

upstream supplier U reports,
(
T (θ̃); q(θ̃)

)
;

3. Supplier U reports its type or refuses the contract offered;

4. Supplier U produces according to the contract it has accepted, and the total

quantity q is sold on the market by the downstream retailer R, so that payoffs

are realized.

We can restrict our attention to direct mechanisms in which supplier U sends a

message θ̃ to the retailer D which consists in a type, θ̃ ∈ [0, c̄], and in which the

contract offered by the retailer to the supplier is contingent to the type it reports.

If the game above possesses an equilibrium in which supplier U announces its type

truthfully, then the revelation principle insures that payment and production can

be directly conditioned to the types the supplier reports, and truth-telling occurs

when the contract offered by the retailer satisfies the following set of incentive-

compatibility constraints:

πU(q(θ); θ) ≥ πU(q(θ̃); θ) for θ̃ 6= θ (10)

As discussed above, the assumptions made on supplier U ’s cost function imply that

the Spence-Mirrlees condition is not satisfied and U ’s profit is not monotonic in its

type13.

To conclude this section, let us recall the optimal purchasing strategy of the

downstream retailer when its supplier’s cost is known. Let the industry profit when

the supplier U ’s cost is common knowledge be given by

Π(q; θ) = P (q)q − C(q; θ) (11)

13Indeed ∂2πU (q;θ)
∂q∂θ = −Cqθ(q; θ) > 0 if q > c̄

d̄
= q0 and negative else; similarly ∂πU (q;θ)

∂θ =

−Cθ(q; θ) > 0 if q > 2c̄
d̄

= 2q0.
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and let Πq(q; θ) = P (q)+ qP ′(q)−Cq(q; θ) be its derivative with respect to q. Under

our assumptions, Π(q; θ) is continuous, differentiable and concave in q. If D cannot

discriminate consumers, we have:

Definition 1 (Monopolistic purchases) The non discriminating integrated monopoly

production qM(θ) is the unique solution of Πq(q
M(θ); θ) = 0, equal to

qM(θ) =
a− θ

2b+ d̄
c̄
(c̄− θ)

, with derivative qM
′
(θ) =

−2b− d̄+ d̄
c̄
a(

2b+ d̄
c̄
(c̄− θ)

)2 .

We refer to this threshold as being the monopoly one hereafter. Note that when

qM(0) ≤ q0, then qM(θ) is decreasing in θ, while when qM(0) ≥ q0, then qM(θ)

is increasing14. The optimal solution to the problem above is therefore strictly

monotonic in θ.

The first best level of production for the entire economy obtains when the market

price is equal to the marginal cost θ. It also obtains when D is able to perfectly

discriminate consumers demand (case in which D earns the total welfare production

and sales generate in the economy). We have,

Definition 2 (Competitive purchases) The first best production qFB(θ) is the

unique solution of P (q∗(θ))− Cq(q∗(θ); θ) = 0, equal to

qFB(θ) =
a− θ

b+ d̄
c̄
(c̄− θ)

, with derivative qFB
′
(θ) =

−b− d̄+ d̄
c̄
a(

b+ d̄
c̄
(c̄− θ)

)2 .

We refer to this threshold as being the competitive one hereafter. Again this solu-

tion is monotone in the type θ, increasing or decreasing depending on the demand

parameters15. Figure 1 below concludes this section with a graphical illustration of

the levels an integrated and non discriminating monopoly would produce depending

on the size of market demand.

14Indeed qM
′
(θ) is negative if a ≤ c̄

d̄
(2b + d̄), while qM (0) = a

2b+d̄
≤ q0 = c̄

d̄
if a ≤ c̄

d̄
(2b + d̄),

which are the same conditions. The opposite inequalities hold when qM (0) ≥ q0.
15qFB(θ) does not increase or decrease in the same range of parameters than qM (θ).
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+

0
q

Total cost

q0 2q0

C(2q0)

C(q; 0)

C(q; c̄)

(a) Total costs for θ = {0, c̄}

+

0
q

Marginal cost

q0 2q0

Cq(q; 0)

Cq(q; c̄)

(b) Marginal costs for θ = {0, c̄} and

marginal revenues ((X:Y)=(1:2))

Figure 1: Supplier’s costs and monopoly production as types and demand change

3 Local and global incentive constraints

The retailer D optimization problem consists in choosing the quantity order q(θ)

and a profit level for its supplier πU(θ; θ) which maximizes its expected profit

πeD(θ) = E (P (q(θ))q(θ)− πU(q(θ); θ)− C(q(θ); θ)) (12)

subject to the individual rationality (IR) and the incentive compatibility (IC) con-

straints:

(IR) πU(q(θ); θ) ≥ 0 for all θ ∈ [0, c̄] (13)

(IC) πU(q(θ); θ) ≥ πU(q(θ̃); θ) for all (θ̃, θ) ∈ [0, c̄]× [0, c̄] (14)

The payment offered by the retailer and the quantity ordered to each supplier’s type

θ must be such that reporting θ̃ = θ is optimal for each type of supplier U . This

feature has the following consequence.

Lemma 1 In any local optimum of the retailer which satisfies the (IR) and (IC)

constraints, the purchase order q(θ) to supplier U must be non increasing with θ

(q′(θ) ≤ 0) when q(θ) ≤ q0, and non decreasing with θ (q′(θ) ≥ 0) when q(θ) ≥ q0.
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Proof. See Appendix A.1.‖

Whether the purchase order q(θ) is increasing or decreasing with the supplier’s

type θ therefore changes in the (quantity, type) plane. A second result characterizes

the evolution of the net profit of supplier U when θ varies, that is of its informational

rent. We have

Lemma 2 Supplier U ’s profit increases with its type θ when q(θ) ≥ 2q0, and de-

creases when q(θ) ≤ 2q0. Moreover its derivative to θ is equal to π′U(q(θ); θ) =

−Cθ(q(θ); θ).

Proof. See Appendix A.2.‖

The immediate consequence is that the profit of supplier U is minimal for the

type θ00 such that q(θ00) = 2q0 when q(θ) is such that some types produce less than

2q0 and some others produce more.

We can express the rent of supplier U of type θ, πU(q(θ); θ), as a function of

the cross-partial derivative of its cost function, Cqθ(q; θ), and establish the condition

under which there are no global deviation in the type space supplier U would prefer

to announce. Using the first order condition of the revelation game,

π′U(q(θ); θ) = T ′(θ)− q′(θ)Cq(q(θ); θ)− Cθ(q(θ); θ) = −Cθ(q(θ); θ), (15)

so that the rent can be rewritten as

πU(q(θ); θ) =T (θ)− C(q(θ); θ) = πU(q(c̄); c̄)−
∫ c̄

θ

π′U(q(θ̃); θ̃)dθ̃

=πU(q(c̄); c̄) +

∫ c̄

θ

Cθ(q(θ̃); θ̃)dθ̃. (16)

The non local (or global) incentive constraint can then be obtained16: announcing

θ must be more profitable than any other type θ̂ in [0, c̄]. In our setting,

πU(q(θ); θ)− T (θ̂) + C(q(θ̂); θ) ≥ 0. (17)

Then this expression can be rewritten using the different expressions of the rent in

16See Araujo and Moreira [1] and Schottmüller [16].
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(16) above. To fix the ideas, suppose that θ̂ ≤ θ. Then:

πU(q(θ); θ)− T (θ̂) + C(q(θ̂); θ) = πU(q(θ); θ)− πU(q(θ̂); θ̂)− C(q(θ̂); θ̂) + C(q(θ̂); θ)

=

∫ c̄

θ

Cθ(q(θ̃); θ̃)dθ̃ −
∫ c̄

θ̂

Cθ(q(θ̃); θ̃)dθ̃ − C(q(θ̂); θ̂) + C(q(θ̂); θ)

=−
∫ θ

θ̂

Cθ(q(θ̃); θ̃)dθ̃ +

∫ θ

θ̂

Cθ(q(θ̂); θ̃)dθ̃ =

∫ θ

θ̂

(
Cθ(q(θ̂); θ̃)− Cθ(q(θ̃); θ̃)

)
dθ̃

=−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃. (18)

The same result holds true if θ̂ ≥ θ17. The non linear incentive constraint therefore

requires

−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ =

∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

(
−1 +

d̄

c̄
q̃

)
dq̃dθ̃ ≥ 0 (19)

for any θ and θ̂ in [0, c̄]. This constraint states that the positive area below the

curve Cqθ(q̃; θ̃), computed for values of (q, θ) in the half plane q > q0, exceeds the

area above this curve computed for values of (q, θ) in the half plane q < q0. To

summarize, the retailer’s problem consists in maximizing

πeD =

∫ c̄

0

Π(q(θ); θ)− πU(q(θ); θ)dF (θ) (20)

with respect to (q(θ), πU(q(θ); θ)) for all θ ∈ [0, c̄], subject to

πU(q(θ); θ) ≥ 0 ∀θ ∈ [0, c̄] (IR)

π′U(q(θ); θ) = −Cθ(q(θ); θ) ∀θ ∈ [0, c̄] (LIC)

−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ ≥ 0 ∀(θ, θ̂) ∈ [0, c̄]2 (NLIC)

The solution of the retailer’s maximisation problem above is denoted (q∗(θ), π∗U(θ))

for θ ∈ [0, c̄].

4 Optimal sourcing when only local incentive con-

straints matter

In this section we examine the case of a large market, and we assume that variable

costs are linear in the supplier’s type. That is, the demand parameters (a, b) are

17Indeed, πU (q(θ); θ) − T (θ̂) + C(q(θ̂); θ) =
∫ θ̂
θ
Cθ(q(θ̃); θ̃)dθ̃ −

∫ θ̂
θ
Cθ(q(θ̂); θ̃)dθ̃ =

−
∫ θ
θ̂
Cθ(q(θ̃); θ̃)dθ̃ +

∫ θ
θ̂
Cθ(q(θ̂); θ̃)dθ̃ = −

∫ θ
θ̂

∫ q(θ̃)
q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃.
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such that given the support of the distribution of types [0, c̄], the first best level of

purchases qM(θ) for θ ∈ [0, c̄] are “much” larger than q0 for all types (but can be

larger or smaller than 2q0), and the slope of the marginal cost of production is linear

and decreasing in θ,

qM(0)� q0 and d(θ) = d̄

(
1− θ

c̄

)
. (21)

Our assumptions imply that all cost and marginal cost functions intersect at the

same type-independent values 2q0 and q0 respectively18, i.e. are such that marginal

costs rotate around each other. These assumptions therefore mirror to the case

where asymmetric information lies on variable costs of production, the assumptions

made by Araujo and Moreira [2], who analyze the case of a rotation of demand

functions.

Let us start our analysis by showing that the non local incentive constraint is

never binding under the assumptions we imposed above. When the variable cost

function of each type of supplier is linear in θ, with d(θ) being decreasing, q0 is

independent from θ, i.e. defines an horizontal line in the plane (θ, q). Therefore for

any (θ, θ̂), if the solution to the retailer’s problem q∗(θ) is monotonic in the type θ,

then all possible pairs (θ′, q′) which belong to the set {(θ′, q′) ∈ [θ, θ̂]× [q(θ), q(θ̂)] |
q′ ≤ q∗(θ′)}, do also belong to the half-plane where Cqθ is of constant sign. Since the

set of pairs (θ′, q′) is the one over which the cross-partial derivative Cqθ is integrated

and is equal to the left-hand-side term of the non local incentive constraint, then this

left-hand-side term is of constant sign. Hence the non-local incentive compatibility

constraint is satisfied by any monotonic solution to the principal’s problem, and the

multiplier of this constraint is therefore nil. To summarize,

Lemma 3 When d(θ) is linear and decreasing in θ, if the solution q∗(θ) to retailer

D’s problem is monotone in θ, then the non-local incentive compatibility constraint

is not binding.

The second step in our analysis consists in remarking that 2q0, the quantity

around which the derivative of the agent profit changes sign, can be part of a contract

which is particularly attractive to the retailer. Indeed, the contract (q(θ), πU(q(θ); θ)) =

18In the case where there are only two types, the linearity of d(θ) does not matter any more as

the two cost functions intersect only once.
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(2q0, 0) is implementable and satisfies the individual rationality constraint of all

types θ ∈ [0, c̄], i.e. is feasible19. This contract is such that the IR constraint of any

type offered this contract is binding. Moreover as the industry profit Π(2q0; θ) ≥ 0

for all θ, the participation of all types is granted in our model: purchasing the

product from any type of supplier is profitable to the retailer.

From Lemma 3 above, the non local incentive constraint can be neglected. Then

the expected virtual surplus can be determined and simplified as in Jullien [10],

starting from the integral of the Hamiltonian determined when maximizing πeD in

(20) with respect to the (IR) and (LIC) constraints. Let µ(θ) be the non negative

multiplier of the (IR) constraint of a type θ, which we assume to be an integrable

function of θ20, and let 1−F (θ) be a primitive of −f(θ) and 1−M(θ) be a primitive

of −µ(θ). Then by integrating by part the integrals which depend on the supplier’s

profit πU(q(θ); θ), we have

V e
D =

∫ c̄

0

Π(q(θ); θ)− πU(q(θ); θ)dF (θ) +

∫ c̄

0

µ(θ)πU(q(θ); θ)dθ

=

∫ c̄

0

Π(q(θ); θ)dF (θ) + [(1− F (θ))πU(q(θ); θ)]c̄0 −
∫ c̄

0

1− F (θ)

f(θ)
π′U(q(θ); θ)dF (θ)

− [(1−M(θ))πU(q(θ); θ)]c̄0 +

∫ c̄

0

1−M(θ)

f(θ)
π′U(q(θ); θ)dF (θ). (22)

To simplify this last expression, it is necessary to interpret M(θ) =
∫ θ

0
µ(t)dt. First,

µ(θ) interprets as the opportunity gain for the retailer to reduce πU(q(θ); θ) from an

infinitesimal (positive) amount to 0, holding the quantity q(θ) unchanged. As µ(θ)

is positive or nil, M(θ) cannot decrease, and interprets as the opportunity gain D

obtains by reducing uniformly the profits left to all types between 0 and θ, from an

infinitesimal (positive) amount to 0, holding all quantities unchanged. Then, keeping

quantities unchanged, a uniform reduction of profits across all types continuously

distributed over [0, c̄] has a cumulated opportunity gain given by M(c̄) = 1, and

consequently M(θ) has the property of a cumulated distribution function21.

19Here q(θ) = 2q0 is constant and the supplier’s reservation utility is nil for all θ. Moreover

the rate of growth of this reservation utility is nil, and the derivative of the supplier’s profit with

respect to θ, equal to −Cθ(q; θ), evaluated at q = 2q0, is nil too. Hence Jullien [10]’s homogeneity

property is (weakly) verified in our model.
20Strictly speaking we should consider the possibility that µ(θ) is a non integrable function of θ.

This occurs for example when one particular type only sees its (IR) constraint binding, while the

(IR) constraints of the other types do not. We neglect this issue for the moment.
21There are some specificities related to the cumulation of µ(θ): M(θ) remains constant on every
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Still maintaining the assumption that µ(θ) is integrable (and in particular that it

is not strictly positive for only one θ), and using the local incentive constraint (LIC),

M(0) = 0 and the expected virtual surplus the retailer maximizes with respect to

q(θ) simplifies into:

V e
D =

∫ c̄

0

Π(q(θ); θ)− F (θ)−M(θ)

f(θ)
Cθ(q(θ); θ)dF (θ) (23)

The point-wise optimization of the virtual surplus with respect to q(θ) for each θ

gives the first and second order conditions

Πq(q(θ); θ)−
F (θ)−M(θ)

f(θ)
Cθq(q(θ); θ) = 0 (24)

and

Πqq(q(θ); θ)−
F (θ)−M(θ)

f(θ)
Cθqq(q(θ); θ) ≤ 0. (25)

The virtual surplus is not always concave in the purchases q(θ)22, even if Πqq(q(θ); θ) =

2P ′(q(θ)−Cqq(q(θ); θ) = −2b− d(θ) is negative under our assumptions. Indeed, the

second term of the second order condition above is not always negative: under

the assumption that the marginal costs curves cross once in the graph (q,cost) as

the type changes, the second order cross partial derivative Cθqq(q(θ); θ) = d′(θ) is

strictly negative. Since the support of M(θ) belongs to the support of F (θ) then

when M(θ) = 1, F (θ) − 1 ≤ 0 and the second term of (25) is negative, but when

M(θ) = 0, the second term of (25) is positive. Consequently the second order con-

dition (25) is negative only for types close enough to c̄, but when θ is closer to 0,

F (θ)−M(θ) may be positive and the second order condition can fail to be satisfied.

Let

(q∗(θ),M∗(θ))θ∈[0,c̄] ≡ arg max
(q(θ),M(θ))

V e
D (26)

be the optimal quantity scheme and cumulated opportunity gain of saturating IR

constraints which maximize the expected virtual surplus. We now characterize the

interval of types for which µ(θ) = 0, and hence when µ(θ) can be integrated, the support of types

for which M(θ) ∈ (0, 1) is included in [0, c̄]; moreover when only the IR constraint of θ = 0 binds,

then M(0) = 1 and 0 else, while when the IR constraint of θ = c̄ binds, then M(c̄) = 1 and 0 else.
22And therefore our model does not satisfy assumption 2 in Jullien [10], so that the property

called potential separation cannot be verified here. However similarly to Jullien we do obtain an

interval of types offered a contract which leaves them no rent, and, as 2q0 is independent of θ,

where all firms produce the same quantity.
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assumptions under which q∗(θ),M∗(θ))θ∈[0,c̄] exists and is unique for all demand

satisfying qM(0)� q0, and we characterize this solution.

Let us start with the determination of the quantities q̃(θ, 1) and q̃(θ, 0) which

maximize V e
D for M(θ) = 1 and when M(θ) = 0 for all θ ∈ [0, c̄], irrespectively of

the fact that M(θ) should have the same property than a cumulative distribution

function. The solution in (26) above can correspond to one of these two solutions.

To do so, we need to impose the following assumption.

Assumption 1 In our model,

(i) There exists a maximum quantity q̄ that the retailer’s order q(θ) cannot exceed

for any θ ∈ [0, c̄];

(ii) The demand is such that P (0) − G(c̄) ≥ 0, where G(θ) = θ + F (θ)
f(θ)

is strictly

increasing in θ.

The first part of this assumption (i) states that it exists a maximal quantity which

can be ordered by the retailer, unrelated to the cost of production of the supplier and

possibly large23, but bounded. The second part of this assumption (ii) is satisfied

if (sufficient condition) f(θ) 6= 0 for every θ and is particular at the bounds θ = 0

and θ = c̄. As the following result demonstrates, the first part (i) of the assumption

above ensures that whenever the retailer’s profit is convex and increasing in q, the

quantity ordered can be determined (it is equal to q̄). The second part (ii) ensures

that the retailer’s marginal profit is strictly positive whenever it is convex, i.e. it

ensures that the retailer is better off asking all types to produce a strictly positive

quantity. Assumption 1 therefore ensures that the quantity ordered by the retailer

exists and is continuous in θ even if the retailer’s profit is convex in q. We have

Lemma 4 The unique values q̃(θ, 1) and q̃(θ, 0) which maximize V e
D respectively for

M = 1 and M = 0 are such that:

(i) q̃(θ, 1) is continuous and increasing in θ,

(ii) q̃(θ, 0) is continuous and increasing in θ for θ ∈ [0, Γ̄], and jumps upward to q̄

for θ ∈ [Γ̄, c̄], where Γ̄ solves Γ̄ + F (Γ̄)

f(Γ̄)
= (2b+d̄)c̄

d̄
,

23e.g. this can be a logistic constraint, such as the maximal quantity which can be transported.
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(iii) q̃(θ, 0) ≥ qM(θ) ≥ q̃(θ, 1) for all θ ∈ [0, c̄], with q̃(0, 0) = qM(0) and q̃(c̄, 1) =

qM(c̄).

Proof. See Appendix A.3‖.

We can illustrate this result in the graph below.

+ +

0 c̄
θ

Quantity

+

Γ̄

+q̄

+qM (0)

+qM (c̄)

+q̃(Γ̄, 0)

q̃(θ, 1)

q
M (θ)

q̃(θ, 0)

Figure 2: Monopolistic purchases (solid line) and virtual surplus optima (dashed

lines) when M = 1 or M = 0 for all θ ∈ [0, c̄]

From Lemma 2 and definition 1, it exists a unique value θ0 such that 2q0P ′(2q0)+

P (2q0) = Cq(2q
0; θ0). Depending on how large the market demand is, this type

belongs to [0, c̄] or not: θ0 ∈ [0, c̄] if 2q0P ′(2q0) + P (2q0) − Cq(2q
0; 0) ≤ 0 and

2q0P ′(2q0) + P (2q0) − Cq(2q
0; c̄) ≥ 0, that is if the marginal revenue at 2q0 is

in between the marginal cost of the lowest type θ = 0 computed at 2q0, and the

marginal cost of the highest type θ = c̄. Then the other two cases we need to address

are 2q0P ′(2q0) + P (2q0)−Cq(2q0; 0) > 0, case in which the marginal revenue at 2q0

is strictly above all marginal costs, or 2q0P ′(2q0) + P (2q0) − Cq(2q
0; c̄) < 0, case

in which the marginal revenue at 2q0 is strictly below all marginal costs. In these

two last cases, it is possible that the IR constraint of only one type, either θ = 0 or

θ = c̄, binds at equilibrium. We have:

17



Lemma 5 When 2q0 is strictly smaller than q̃(0, 1) (respectively strictly larger than

max{q̃(Γ̄, 0); q̃(c̄, 1)}), then if it exists, the solution to (26) must be such that M∗(0) =

1 and 0 else (resp. M∗(c̄) = 1 and 0 else).

Proof. See Appendix A.4.‖

Then suppose that the demand is such that q̃(0, 1) ≤ 2q0 ≤ max{q̃(Γ̄, 0); q̃(c̄, 1)}:
we characterize below the contract offered by the retailer at equilibrium, in each of

the different configurations of the marginal revenue we detailed previously. These

configurations are such that the IR constraint binds for a convex subset of types.

Proposition 1 When Cq(2q
0; c̄) ≤ P (2q0) + 2q0P ′(2q0) ≤ Cq(2q

0; 0), the equilib-

rium (q∗(θ),M∗(θ)) is such that the IR of all types θ ∈ [min{θ1, Γ̄}, θ2] bind, where θ1

(respectively θ2) is the unique type which solves q̃(θ1, 0) = 2q0 (resp. q̃(θ2, 1) = 2q0).

Moreover (q∗(θ),M∗(θ)) is given by:

(q∗(θ),M∗(θ)) =



(q̃(θ, 0), 0) if θ < min{θ1, Γ̄}

(2q0, F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [min{θ1, Γ̄}, θ2]

(q̃(θ, 1), 1) if θ > θ2

Proof. See Appendix A.5.‖

From the previous analysis, the following corollary comes immediately.

Corollary 1 (to Proposition 1) The equilibrium order q∗(θ) is larger (respec-

tively lower) than qM(θ) for θ lower (resp. larger) than θ0, where θ0 solves 2q0P ′(2q0)+

P (2q0) = Cq(2q
0; θ0). Moreover if θ1 > Γ̄, q∗(θ) jumps upward at θ = Γ̄; else it is

continuous.

Figures 3a and 3b illustrate the equilibrium described in proposition 1 above, by

representing the scheme q(θ) with a thick black line and the monopoly purchases

qM(θ) by a thin black line going from qM(0) to qM(c̄).

The next two propositions characterize the equilibrium in the cases where coun-

tervailing incentives do not affect the retailer’s order scheme as much as in proposi-

tion 1 above, so that a “no distortion at the top” result emerges. First, consider the
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0 c̄
θ
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+

Γ̄

+q̄

+qM (0)

qM (c̄)

θ1 θ2

2q0

(a) Continuous quantity for θ1 ≤ Γ̄

+ +

0 c̄
θ

Quantity

+

Γ̄

+q̄

+qM (0)

qM (c̄)

θ2

2q0

(b) Discontinuous quantity for θ1 > Γ̄

Figure 3: Equilibrium when Cq(2q
0; c̄) ≤ P (2q0) + 2q0P ′(2q0) ≤ Cq(2q

0; 0)

case in which demand is large enough, so that the retailer is better off employing

optimally a supplier with a large capacity of production. We have,

Proposition 2 When P (2q0) + 2q0P ′(2q0) > Cq(2q
0; 0) and 2q0 ≥ q̃(0, 1), the equi-

librium (q∗(θ),M∗(θ)) is such that the IR constraint of all types θ ∈ [0,max{θ2, 0}]
bind, where θ2 solves q̃(θ2, 1) = 2q0. Moreover (q∗(θ),M∗(θ)) is given by:

(q∗(θ),M∗(θ)) =


(2q0, F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [0,max{θ2, 0})

(q̃(θ, 1), 1) if θ ∈ [θ2, c̄].

In the extreme case of a large enough demand, the most attractive supplier for

retailer D is the one with the largest capacity, θ = c̄, and the IR constraint of a type

θ = 0 is the only one binding.

Corollary 2 (to Proposition 2) The equilibrium order q∗(θ) is strictly lower than

(respectively equal to) qM(θ) when θ is strictly lower than (respectively equal to) c̄.

Moreover when 2q0 < q̃(0, 1), then q∗(θ) = q̃(θ, 1) and M∗(0) = 1 and 0 for all

θ 6= 0.

Proof. See Appendix A.6.‖

Oppositely, consider the case demand is small enough so that the retailer is

better off employing optimally the supplier whose marginal cost of production has

the lowest intercept. We have,
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Proposition 3 When P (2q0)+2q0P ′(2q0) < Cq(2q
0; c̄), the equilibrium (q∗(θ),M∗(θ))

is such that the IR constraint of all types θ ∈ [min{Γ̄, c̄}, c̄] bind. Moreover (q∗(θ),M∗(θ))

is given by:

(q∗(θ),M∗(θ)) =


(q̃(θ, 0), 0) if θ ∈ [0,min{Γ̄, c̄})

(2q0, F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [min{Γ̄, c̄}, c̄].

In the extreme case of a small enough demand, the most attractive supplier for

retailer D is the most efficient one, θ = 0, and the IR constraint of a type θ = c̄ is

the only one binding.

Corollary 3 (to Proposition 3) The equilibrium order q∗(θ) is strictly larger than

(respectively equal to) qM(θ) when θ is strictly larger than (respectively equal to) 0.

Moreover when 2q0 > max{q̃(Γ̄, 0), q̃(c̄, 1)}, then q∗(θ) = q̃(θ, 0) and M∗(c̄) = 1 and

0 for all θ 6= c̄.

Proof. See Appendix A.7.‖

The figure below illustrate these cases.

+ +

0 c̄
θ

Quantity

+

Γ̄

+q̄

+qM (0)

qM (c̄)

θ2

2q0

(a) P (2q0) + 2q0P ′(2q0) > Cq(2q
0; 0)

+ +

0 c̄
θ

Quantity

+

Γ̄

+q̄

+qM (0)

qM (c̄)

2q0

(b) P (2q0) + 2q0P ′(2q0) < Cq(2q
0; c̄)

Figure 4: Equilibria when the market size points to one extreme type

5 Optimal sourcing and global incentives

As we demonstrated in the previous section, non local incentive constraints can be

neglected when marginal costs rotate around each other as the agent’ type increases.
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Let us consider instead the following marginal cost function

Cq(θ) = d1(θ) + d2(θ)q, (27)

where the intercept increases with θ, d′1(θ) > 0, the slope decreases, d′2(θ) < 0, with

d1(0) = 0, d2(0) = d̄, d1(c̄) = c̄, d2(c̄) = 0 (28)

and where the intersection between the marginal costs of two different types θ̃ < θ̂

is given by

q0(θ̃, θ̂) =
d1(θ̂)− d1(θ̃)

d2(θ̃)− d2(θ̂)
, (29)

with

lim
(θ̂,θ̃)→(0,0)

q0(θ̃, θ̂) = q0 < lim
(θ̂,θ̃)→(c̄,c̄)

q0(θ̃, θ̂) = q0. (30)

Under these assumptions, the derivatives of the cost function become

Cθ = d′1(θ)q + d′2(θ)q2 and Cqθ = d′1(θ) + 2d′2(θ)q. (31)

In this case, we demonstrate now that the non local incentive constraint change

the distortions which result from the presence of countervailing incentives.

6 Conclusion

To conclude, note that when the demand parameters (a, b) are such that the first

best quantities are “much” smaller than q0 for all types, qM(c̄) < qM(0)� q0, then

the local conditions are sufficient to determine the optimal schedule offered by the

retailer to its supplier. As the Spence-Mirrlees condition is verified, and since no

countervailing incentives are present in that situation, the standard analysis applies.
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A Proofs

A.1 Proof of Lemma 1

When maximizing its profit with respect to the type θ̃ it reports, supplier U faces

the following necessary and sufficient conditions (for possible values of Cq ∈ [0, c̄])

T ′(θ̃)− q′(θ̃)Cq(q(θ̃); θ)|θ̃=θ = 0 (32)

and

T ′′(θ̃)− q′′(θ̃)Cq(q(θ̃); θ)− (q′(θ̃))2Cqq(q(θ̃); θ) ≤ 0 (33)

at θ̃ = θ, where Cqq(q(θ̃); θ) is the second order partial derivative of the total cost

C(q; θ) with respect to q. Rewriting the necessary condition at θ̃ = θ and differen-

tiating it with respect to θ gives

T ′(θ)− q′(θ)Cq(q(θ); θ) = 0 (34)

and

T ′′(θ)− q′′(θ)Cq(q(θ); θ)− (q′(θ))2Cqq(q(θ); θ)− q′(θ)Cqθ(q(θ); θ) = 0 (35)

which can be replaced in the sufficient condition to obtain

q′(θ)Cqθ(q(θ); θ) ≤ 0. (36)
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The cross partial derivative of total cost with respect to q and θ evaluated at q(θ)

is equal to Cqθ(q(θ); θ) = 1− d̄
c̄
q(θ), whose sign is given by

Cqθ(q(θ); θ) ≥ 0⇔ 1− d̄

c̄
q(θ) ≥ 0⇔ q(θ) ≤ q0 (37)

while Cqθ(q(θ); θ) ≤ 0 when q(θ) ≥ q0. Therefore q′(θ) ≤ 0 for θ such that q(θ) ≤ q0

while q′(θ) ≥ 0 for θ such that q(θ) ≥ q0.

A.2 Proof of Lemma 2

The derivative of the supplier’s profit with respect its type θ when U reports it

truthfully is equal to

π′U(θ; θ) = T ′(θ)− q′(θ)Cq(q(θ); θ)− Cθ(q(θ); θ) = −Cθ(q(θ); θ) (38)

once the first order condition of the reporting game has been cancelled out. Using

the expression of the total cost, it comes

Cθ(q(θ); θ) = q(θ) +
1

2
d̄

(
−1

c̄

)
(q(θ))2 = q(θ)

(
1− d̄

2c̄
q(θ)

)
. (39)

As q(θ) ≥ 0, the sign of this derivative is given by the sign of 1− d̄
2c̄
q(θ). Consequently

π′U(c; c) ≥ 0 if 1− d̄
2c̄
q(θ) ≤ 0, i.e. if q(θ) ≥ 2c̄

d̄
= 2q0, and π′U(θ; θ) ≤ 0 if 1− d̄

2c̄
q(θ) ≥ 0,

i.e. if q(θ) ≤ 2c̄
d̄

= 2q0.

A.3 Proof of Lemma 4

As the analysis above demonstrated, the virtual surplus is concave in q for M = 1

and hence the solution q̃(θ, 1) solves the first order condition which is necessary and

sufficient:

Πq(q̃(θ, 1); θ)− F (θ)− 1

f(θ)
Cθq(q̃(θ, 1); θ) = 0. (40)

Since all functions are continuous, q̃(θ, 1) is continuous in θ. Using the Implicit

Function Theorem and omitting the functions arguments, we have

dq̃

dθ
(θ, 1) = −

Πqθ +
d( 1−F (θ)

f(θ) )
dθ

Cθq

Πqq + 1−F (θ)
f(θ)

Cθqq
(41)

Under our assumptions, Πqq < 0, Cθqq < 0, and Πqθ = −Cqθ, where Cqθ < 0 for

q > q0 which is the hypothesis under which we are working. The numerator of the
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above simplifies as

Πqθ +
d
(

1−F (θ)
f(θ)

)
dθ

Cθq = Cθq

−1 +
d
(

1−F (θ)
f(θ)

)
dθ

 (42)

which is positive under the assumption that 1−F (θ)
f(θ)

is decreasing. As the denominator

is negative, we have dq̃
dθ

(θ, 1) ≥ 0. Therefore q̃(θ, 1) is non-decreasing in θ.

As discussed before, the virtual surplus is not concave in q for M = 0. When

M = 0, under our assumptions the second order condition rewrites

Πqq(q(θ); θ)−
F (θ)

f(θ)
Cθqq(q(θ); θ) = −2b− d̄+

d̄

c̄

(
θ +

F (θ)

f(θ)

)
. (43)

Let G(θ) = θ + F (θ)
f(θ)

which is strictly increasing in θ under our assumptions, and let

Γ(x) be its reciprocal, the second derivative of V e
R is negative if and only if

− 2b− d̄+
d̄

c̄

(
θ +

F (θ)

f(θ)

)
≤ 0⇔ θ ≤ Γ

(
(2b+ d̄)

c̄

d̄

)
≡ Γ̄. (44)

As the virtual surplus is concave for θ = 0, Γ̄ > 0. However it can be larger or

smaller than c̄: when θ = c̄, the second order derivative of V e
D is equal to −2b+ d̄

c̄f(c̄)

which can be positive when cost functions are very convex in q, or negative when d̄

is not sufficiently large. The virtual surplus V e
D is therefore convex for M = 0 when

θ ∈ [min{c̄; Γ̄}, c̄]. (45)

Consequently when θ ∈ [0,min{c̄; Γ̄}], the first order condition is sufficient to deter-

mine the optimum q̃(θ, 0), which solves

Πq(q̃(θ, 0); θ)− F (θ)

f(θ)
Cθq(q̃(θ, 0); θ) = 0. (46)

A straightforward application of the Implicit Function Theorem allows to determine

the variation of q̃(θ, 0) when θ ∈ [0, Γ̄]. It comes,

dq̃

dθ
(θ, 0) = −

Πqθ −
d(F (θ)

f(θ) )
dθ

Cθq

Πqq − F (θ)
f(θ)

Cθqq
(47)

where Πqq < 0, Cθqq < 0, and Πqθ = −Cqθ, where Cqθ < 0 for q > q0. As F (θ)
f(θ)

increases with θ, the numerator is positive, and as the second order condition is

negative, the denominator negative, to that dq̃
dθ

(θ, 0) ≥ 0. Therefore q̃(θ, 0) increases

with θ ∈ [0, Γ̄].
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On the other hand when θ ∈ [min{c̄; Γ̄}, c̄], the virtual surplus is convex and

the marginal virtual surplus increases in q. Note that when q = 0, Πq(0; θ) −
F (θ)
f(θ)

Cθq(0; θ) = P (0) − Cq(0; θ) − F (θ)
f(θ)

Cθq(0; θ) = P (0) − θ − F (θ)
f(θ)

. For the virtual

surplus to be convex for θ ∈ [Γ̄, c̄], the previous analysis has showed that (2b+d̄)c̄

d̄
≤

G(θ) ≤ G(c̄). Consequently P (0) − θ − F (θ)
f(θ)

= P (0) − G(θ) ≥ P (0) − G(c̄). Let us

assume that P (0) − G(c̄) ≥ 0, then the marginal virtual is positive for q = 0 and

increasing for all θ such as the virtual surplus V e
D is convex. Therefore for types θ

such that V e
D is convex, the marginal virtual surplus is strictly positive for all q ≥ 0.

Hence the solution consists in increasing the quantity ordered to a maximum value

q̄, which we assume to be finite24.

To summarize, when M = 0 the quantity which maximizes the virtual surplus is

equal to q̃(θ, 0) when θ ∈ [0, Γ̄], and to q̄ else.

The comparison of q̃(θ, 0) with q̃(θ, 1) is straightforward from the comparison of

the first order conditions which determine these quantities: when the virtual surplus

is concave in q for M = 1 and M = 0, both marginal virtual surpluses defining these

two solutions are strictly decreasing in q. Since, in the case of large market, the

quantity produced is such that Cθq < 0 for all θ, the left-hand-side of the first order

condition which determines q̃(θ, 1) defines a function of θ which is below that of the

first order condition which determines q̃(θ, 0) for all θ ∈ [0, Γ̄]. Then when M = 0

the quantity order jumps upward to q̄, and is a fortiori above q̃(θ, 1). Therefore the

solution which maximizes the virtual surplus for M = 0 is strictly above the solution

the solution for M = 1. Last the monopoly solution is strictly increasing with θ, and

such that Πq(q
M(θ); θ) = 0. Inspecting the first order conditions determining q̃(c̄, 1)

and q̃(0, 0) above, it is immediate to verify that these solutions coincide with qM(c̄)

and qM(0) respectively. Therefore qM(θ), which increases with θ, lies in between the

solutions for M = 1 and M = 0.

24Since the market demand is strictly decreasing and linear, there is a quantity above which the

total income of the retailer is nil. When q exceeds this quantity, the virtual surplus is therefore

equal to −C(q; θ)− F (θ)
f(θ)Cθ(q; θ). As C(q; θ) is linear in θ, at every θ0 we have C(q; θ) = C(q; θ0) +

Cθ(q; θ
0)(θ − θ0). Therefore C(q; θ) exceeds its derivative at every θ0, and if F (θ)

f(θ) is bounded

everywhere, then the virtual surplus becomes negative when q is large. Consequently there is an

upper bound on the order q of the retailer when the virtual surplus is convex. Alternatively, we can

directly assume that there is an upward limit to the order the retailer can buy from its supplier.
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A.4 Proof of Lemma 5

Consider first the case 2q0 < q̃(0, 1). In that case, from Lemma 2, all quantity

schemes q(θ) which are feasible (including q∗(θ) if it exists) are such that the sup-

plier’s profit increases with θ. Suppose that the IR constraint binds for some type

θ̃ ∈ (0, c̄]. As to satisfy Lemma 1 the quantity scheme must be non decreasing with

θ, then for θ < θ̃ the profit of supplier θ must be strictly negative, and the quantity

produced (weakly) lower than the quantity requested from θ̃. This is in contradiction

with the IR constraint of this type. This is true for every θ̃ ∈ (0, c̄] and therefore the

only IR constraint which is binding is the one of a type 0, where all mass in M∗(θ)

is located. Therefore the solution to (26) must be such that M∗(0) = 1.

Consider now the case 2q0 > max{q̃(Γ̄, 0); q̃(c̄, 1)}. This is a situation in which

from Lemma 2, all quantity schemes q(θ) which are feasible (including q∗(θ) if it

exists) are such that the supplier’s profit decreases with θ. Again if the IR constraint

was saturated for any θ̃ ∈ [0, c̄), the IR constraint of supplier of type θ > θ̃ would

not be respected. Therefore the solution to (26) must be such that M∗(c̄) = 1 and

0 else.

A.5 Proof of Proposition 1 and its corollary

We must consider two situations in turn: first, the case where 2q0 ≤ q̃(Γ̄, 0), and

then the case 2q0 > q̃(Γ̄, 0).

Start with 2q0 ≤ q̃(Γ̄, 0). In that case from Lemma 4, it exists a unique θ1 ≤ Γ̄

(respectively θ2 > Γ̄) which solves q̃(θ1, 0) = 2q0 (resp. q̃(θ1, 0) = 2q0). From Lemma

2, the supplier payoff decreases with θ when the quantity is lower than 2q0, while

it with θ when q exceeds 2q0. Suppose the retailer sets the rent ΠU to 0 only for

all types θ ∈ [θ1, θ2] which produce 2q0. Consider types θ ∈ [0, θ1]: from Lemma

1 and 2, the quantity ordered at equilibrium must be smaller than 2q0 and hence

must be such that rents are left. Therefore the cumulated value M∗(θ) must be nil

for these types, and the optimization of the virtual surplus leads the retailer to offer

q∗(θ) = q̃(θ, 0) < 2q0. Consider types in [θ2, c̄]: by a symmetric argument rents must

be left to all these types which must produce more than 2q0. The cumulated value

M∗(θ) must therefore be equal to 1 when θ = θ2. Then the profit of the retailer
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increases by equating q∗(θ) = q̃(θ, 1) > 2q0. Then M∗(θ) is equal to

M∗(θ) = F (θ) + f(θ)
Πq(2q

0; θ)

Cθq(2q0; θ)
(48)

which equates the first order condition of the optimization of the virtual surplus to

0. It remains to check whether 2q0 maximizes the expected profit of the retailer

given the value of the multiplier. For θ ∈ [θ1, θ2], we have

F (θ)−M∗(θ)

f(θ)
= − Πq(2q

0; θ)

Cθq(2q0; θ)
(49)

where as 2q0 > q0, Cθq(2q
0; θ) < 0, and where by construction Πq(2q

0; θ) = 0 for

θ0 ∈ (θ1, θ2), with Πq(2q
0; θ) > 0 for θ > θ0 and Πq(2q

0; θ) < 0 for θ < θ0 again by

construction. The second order condition simplifies as

Πqq(2q
0; θ)−F (θ)−M∗(θ)

f(θ)
Cqqθ(2q

0; θ) = Πqq(2q
0; θ)+

Πq(2q
0; θ)

Cθq(2q0; θ)
Cqqθ(2q

0; θ). (50)

Consider the case θ ∈ [θ1, θ
0]. As Πqq(2q

0; θ) < 0, Cqqθ(2q
0; θ) < 0, and Πq(2q

0; θ) <

0, the second order condition is clearly negative for θ < θ0, and therefore q(θ) = 2q0

maximizes the profit of the retailer. Consider the case θ ∈ [θ0, θ2]. In that case

the second order condition is potentially not satisfied, and the profit of the retailer

convex. However consider the difference in the marginal profit Πq(q; θ)−Πq(2q
0; θ)

which is equal to the value of the marginal profit for any other quantity than 2q0

when the multiplier is M∗(θ). By construction when q < 2q0 and θ > θ0, the

marginal revenue is larger than its value at 2q0, and the marginal cost of type θ

is smaller than its value at 2q0. Consequently this difference in marginal profits is

strictly positive for any q < 2q0. Therefore the profit of the retailer increases when

q tends to 2q0. Therefore q = 2q0 maximizes the retailer’s profit when θ > θ0 and

the retailer’s profit is convex.

Suppose that a subset of types in [θ1, θ2] earn rents: this is impossible as it

require either the quantity to increase above 2q0 and then to decrease again, which

breaks the local incentive constraints, or it would break the monotonicity of the

supplier’s utility for quantities strictly lower (or strictly larger) than 2q0. Suppose

that the individual rationality constraint is binding for types θ < θ1. Then to

respect the local incentive constraints the quantity q(θ) < 2q0, but in that case

the profit left to this type would be strictly negative and the individual rationality

constraint not respected anymore, which is impossible. Similarly suppose that the
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individual rationality constraint is binding for types θ > θ2: respecting the local

incentive constraints asks to increase q(θ) above 2q0, but in that case by lowering

the type towards θ2 the profit of the supplier would become negative, which is again

impossible.

The analysis is similar when 2q0 > q̃(Γ̄, 0), except for the fact that the virtual

surplus is not concave in q anymore when θ > Γ̄. Suppose the retailer sets the

rent ΠU to 0 for all types θ ∈ [Γ̄, θ2] which produce 2q0. This value is lower than q̄

and since the virtual surplus is convex while the marginal virtual surplus is strictly

positive, this quantity is indeed the order which maximizes the virtual surplus and

respect the individual rationality of these types of suppliers. Then types in [0, Γ̄] are

offered to produce q̃(θ, 0), which is lower than 2q0 and hence satisfy the local incentive

constraints, and earn some rents so that M∗(θ) = 0. A symmetric argument applied

to types in [θ2, c̄] reveals that rents must be left to all these types which must produce

more than 2q0. The cumulated valueM∗(θ) must therefore be equal to 1 when θ = θ2,

and the profit of the retailer is maximal by equating q∗(θ) = q̃(θ, 1) > 2q0. Last the

cumulated multiplier must be M∗(θ) = F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
for θ ∈ [Γ̄, θ2].

A.6 Proof of Proposition 2 and its corollary

Start with Proposition 2. When 2q0P ′(2q0) + P (2q0)− Cq(2q0; 0) > 0, qM(θ) > 2q0

for all θ. From Lemma 2, the supplier’s profit is strictly increasing in q, and hence

the retailer is better off minimizing informational rents by setting the order of a type

0 supplier as close as it can to 2q0. The limit to the reduction of the quantity is set

by 2q0 offered for ΠU = 0, below which the supplier would earn a negative profit.

Therefore the IR constraint of at least a type θ = 0 bind, and when θ > θ2 the

retailer has saturated the IR constraint of all the types it could, M(θ) = 1. Then

by concavity of the virtual surplus, it offers q∗(θ) = q̃(θ, 1) to all types θ > θ2.

A.7 Proof of Proposition 3 and its corollary

Consider now Proposition 3. When 2q0P ′(2q0)+P (2q0)−Cq(2q0; c̄) < 0, qM(θ) < 2q0

for all θ. From Lemma 2, the supplier’s profit is strictly decreasing in q, and hence the

retailer is better off minimizing informational rents by setting the order of a supplier

of type c̄ as close as it can to 2q0. Therefore the IR constraint of at least a type θ = c̄
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bind, and as the virtual surplus is convex and increasing in q for θ ≥ Γ̄ this choice

makes the retailer better off. When θ < Γ̄, the retailer must lower the quantity to

respect the IR constraints as well as the local incentive compatibility constraints.

As the retailer is better off setting ΠU(2q0; θ) = 0 for types in [min{Γ̄, c̄}, c̄], the

profit of the supplier must be positive for q(θ) < 2q0. Consequently M(θ) = 0 for

all θ < Γ̄. As the virtual surplus is concave for θ < Γ̄, and maximal at q̃(θ, 0), the

retailer offers q(θ) = q̃(θ, 0) to all θ < Γ̄.
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