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Abstract

In this paper, we investigate the impact of redistribution and taxation on inequality and
pollution. We build a two-sector Ramsey model with a green good, a polluting good, het-
erogeneous households with non-homothetic preferences, and a subsistence level of consump-
tion for the polluting commodity. We find that under heterogeneous preferences, lump-sum
transfers reduce inequality but harms the environment. In the same vein, increasing the
environmental tax under a high level of subsistence consumption leads to lower inequalities
when coupled with high redistribution, but increases pollution. Therefore, there may be
a tradeoff between inequality reduction and pollution mitigation. Looking at the stability
properties of the economy, we find that the level of subsistence consumption and the exter-
nality matter. This leaves room for taxation and redistribution to play a role in the stability
of the equilibrium.
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1 Introduction

Pollution mitigation and income inequality have become hot topics in today’s debates. Both cli-
mate change and income inequality are tried to be tackled in order to (i) preventing temperatures
to rise above 2◦C and (ii) preventing inequality to rise too much. When it comes to reducing
polluting emissions, taxation can be seen as an efficient tool regarding the internalization of the
externality. This has first been studied by Pigou (1920) and Baumol (1972). Environmental
taxation has two benefits: it corrects the inefficiency induced by the externality, and it provides
revenue for the government. This leads to a broad use of environmental taxes. Yet, environ-
mentel tax reform face some opposition in the society, for example the Yellow Vests movement
in France. Overestimating their losses, people rejected the implementation of a carbon tax even
is the tax revenue is directly redistributed towards them (Douenne & Fabre, (2019)). Indeed,
environmental taxes are usually considered regressive, as low income households spend a higher
share of their income on polluting goods and hence bear most of the tax burden (Douenne (2020),
Grainger & Kolstad (2010)). In this case, reducing emissions goes in opposition with inequality
reduction: this is the so-called equity-efficiency tradeoff. Understanding the distributional effect
of environmental tax reforms is thus key when trying to reduce both emissions and inequality at
the same time, while making environmental taxes socially acceptable.

Recycling the tax revenue can be used to reconcile both goals. Part of the environmental lit-
erature has been dedicated to the analysis of the role of revenue recycling in the progressivity
of environmental tax reforms and the reduction in inequality. When it comes to taxation and
revenue recycling, two effects go in opposite directions: the use-side and the source-side impacts
(Goulder et al. (2019)). The former describes the impact of taxation on wages, capital and
transfer incomes ; the latter the impact on purchases. Therefore, the impact on emissions and
inequality depends on which effect dominates the other. A high impact on prices should decrease
pollution, while lump-sum transfers may mitigate this impact and reduce inequality.

This paper aims at analyzing the impact of environmental taxation and revenue recycling on pol-
lution. We build a two-sector Ramsey model with heterogeneous households and a susbistence
level of consumption for the polluting commodity. A tax is set on polluting consumption, and its
revenue is given back to households through lump-sum transfers. The production of the polluting
good exerts an externality on the households’ utilities. We analyze the impact of redistribution
and environmental taxation both on environmental quality and inequalities. Under heteroge-
neous preferences, there exists a tradeoff between reducing emissions and inequality: reducing
the latter harms environmental quality. Similarly, a high level of subsistence consumption leads
to increase environmental damages when the environmental tax is increased. Finally, we study
the dynamics of the model under a local analysis. Focusing on the neighborhood of the steady
state, we show that the level of subsistence consumption matters and the externality matter in
the stability properties of our model. Therefore, the tax level and redistribution rate are key to
ensure the stability of the steady state.

Our paper is linked to three strands of the literature. First, a huge part of the environmental
literature analyzes the link between redistribution and pollution. Being mainly empirical, mixed
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effects are found, as for example in Lin & Li (2011). Berthe and Elie (2015) gather this liter-
ature and explain the differences in models (both theoretically and empirically) leading to this
ambiguous effect. From a more macroeconomic point of view, Oueslati (2015) shows that in a
two-sector endogeneous growth model, lump-sum transfers have no impact on aggregate vari-
ables, and hence on pollution. From a theoretical point of view, Rausch & Schwartz (2016) find
that heterogeneity and non-homotheticity of preferences matter when it comes to the impact of
redistribution on aggregate variables.

A second strand of interest is the one linking environmental taxation and inequality. Scalera
(1996) and Hofkes (2001) look at the long-term effect of environmental taxation of endogeneous
growth models. A great part of this literature focuses on taxation and revenue recycling, showing
the importance of the recycling scheme when it comes to make environmental taxes progressive.
Klenert et al. (2018) show the importance of lump-sum transfers in order to reduce inequality.

Finally, our paper is linked to the literature concerned by the stability properties of models with
an environmental component. Antoci et al. (2005) show that, in a growth model with two goods,
consumption choices can lead to indeterminacy. In the same vein, Itaya (2008) analyzes the im-
pact of environmental taxation on long-run growth. In a model with a representative agent and
an environmental externality, he shows that the impact of taxation on growth depends on the
indeterminacy of the balanced growth path.

Our contribution is twofold. First, we analyze both the impact of taxation and redistribution on
pollution and inequality. Like part of the literature on redistribution and pollution we find that,
assuming the worker spends a higher share of her income on the polluting good relatively to the
capitalist, reducing inequality is harmful for the environment. Alike the literature on taxation
finding a positive relationship between higher taxation and lower pollution (Bovenberg and de
Mooij (1997)), we find that introducing a susbistence level of polluting consumption mitigates
this result. Second, we analyze the stability properties of our model. To our knowledge, this is
the first paper analyzing the stability properties of a Ramsey economy with both externalities
and non-homothetic preferences.

The rest of the paper is organized as follows. In Section 2, we present our framework. Section 3
and 4 state the equilibrium and the steady-state of the economy. Section 5 studies the impact
of a change in taxation and in redistribution of the tax revenue. In Section 6, we analyze the
local stability properties of our economy. Section 7 provides concluding remarks. All proofs are
relegated to the Appendix.

2 The Model

We consider a infinite-horizon two-sector model with environmental externalities. There are
three types of agents: households, firms and a government. Households are infinitely-lived and
heterogeneous in their discount factors. Firms produce either a clean good, or a polluting good
that exerts an externality on household’s utilities. Government’s intervention, through taxation
and/or redistribution, aims at reducing environmental damages as well as income and consump-
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tion inequalities.

2.1 Firms

There are 2 sectors in the economy, each composed of a representative firm: the clean sector
produces Ygt and the polluting sector produces Ypt in period t. Each sector uses capital Kjt and
labor Njt (j = p, g) to produce output according to a Cobb-Douglas production function:

Yjt = AjK
η
jtN

1−η
jt (1)

with Aj a productivity parameter. We assume Ag 6= Ap.

In the polluting sector, output is composed of a consumption good cpt only, while the clean sector
produces a consumption good cgt and a capital good Kt. The capital good includes immaterial
and non-polluting inputs used in the production process, such as R&D investment and human
capital.

Each firm j (j = p, g) seeks to maximize its profit:

πjt = pjt|j=gYjt − rtKjt − wtNjt

with rt the rental rate of capital and wt the wage rate.
Assuming capital and labor are perfectly mobile across sectors, first-order conditions for profit
maximization give:

rt = ηptAgK
η−1
gt N1−η

gt = ηApK
η−1
pt N1−η

pt (2)

wt = (1− η)ptAgK
η
gtN

−η
gt = (1− η)ApK

η
ptN

−η
pt (3)

2.2 Pollution

We consider pollution as a flow due to production in the polluting sector. One can think for exam-
ple of gases emitted during the production process such as sulfur dioxide and carbon monoxide,
which have a short lifetime and hence can be considered as flow pollutants (Liu & Liptak (2000)).

Pollution is given by:

Et =
1

γYpt
(4)

with γ the emission factor.

2.3 The Government

The government intervenes in the economy for two reasons: mitigating pollution and reducing
income inequalities. To reach those goals, two instruments are available in the economy: a tax
on the polluting commodity, denoted τ and the redistribution rate, denoted ε.
The only tax revenue the government gets is through the tax on the polluting commodity, which is
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used for redistribution towards both households. The government is subject to a budget balance
rule:

Tt = T1t + T2t = τ(cp1t + cp2t) = τcpt, (5)

with T1t = εTt and T2t = (1− ε)Tt the transfers given to household 1 and 2 respectively.

2.4 Households

The economy is composed of two infinitely-lived households (i = {1, 2}). At every period t, each
household i consumes a clean good cgit at price pt and a polluting good cpit which is the numeraire
and taxed at a rate τ . There exists a susistence consumption level of the polluting good, denoted
c0. This susbsistence level can be seen for example as the minimum level of energy a household
needs to consume in order to live in a decent manner. Consumption can be summarized by a
basket of good Cit purchased at price Pit.
Households also derive some utility from environmental quality, denoted Et. Finally, they can
save ait, supply ni = 1

2 of labor at wage rate wt, and receive a lump-sum transfer Tit.
Instantaneous preferences write

Ui(cpit, cgit, Et) = Eµt
((cpit − c0)αc1−αgit )1−σ

1− σ
, (6)

with cαpitc
1−α
git = Cit. Pollution is taken as given by households, such that it only plays the role

of an externality in the utility function.

Assumption 1 σ < 1.

The budget constraint writes

cpit(1 + τ) + cgitpt + pt(ait+1 − (1− δ)ait) =
wt
2

+ rtait + Tit.

Households maximize their discounted lifetime utility
∑∞

t=0 β
t
iUi(cpit, cgit, Et) with respect to

their budget and borrowing constraints ait ≥ 0. βi is the discount factor of household i.

Assumption 2 β1 > β2.

The first-order conditions for a solution to the households’ problem are:

cgitpt = (1− α)PitCit (7)

(cpit − c0)(1 + τ) = αPitCit (8)

C−σit
Pit

Eµt pt ≥ βi
C−σit+1

Pit+1
Eµt+1(pt+1(1− δ) + rt+1) (9)

with Pit =
(1+τ)αp1−αt
(1−α)1−ααα + (1+τ)c0

Cit
and (9) holding at equality when ait > 0.
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Equations (7) and (8) are standard optimality conditions for Cobb-Douglas utility functions:
agents spend a constant share of their revenue in each good, augmented by the susbsitence con-
sumption level for the polluting commodity. Equation (9) is the standard Euler equation.

Raising (8) at the power α and (7) at the power (1− α) allows to rewrite the budget constraint
of household i:

PitCit + pt(ait+1 − (1− δ)ait) =
wt
2

+ rtait + Tit (10)

3 Equilibrium

We focus on an equilibrium around the steady-state, meaning that a1t = Kt > 0 = a2t
1.

Using equations (2) and (3), we obtain:

Kt =
Kpt

Npt
=
Kgt

Ngt
(11)

pt ≡ p =
Ap
Ag

(12)

Pit =
(1 + τ)αp1−αt

(1− α)1−ααα
+

(1 + τ)c0
Cit

(13)

Plugging (11) and (12) in (2) and (3) yields:

rt = ηApK
η−1
t (14)

wt = (1− η)ApK
η
t (15)

Using equations (10) and (9) in which we plug (14), (15) and the market clearing condition on
the financial market for each household gives:

C−σ1t

P1t
Eµt = β1

C−σ1t+1

P1t+1
Eµt+1

(
1− δ +

rt+1

p

)
(16)

P1tC1t =
(
(1+η)

2 + αετ
1+τ(1−α)

)
ApK

η
t − (1 + αετ

1+τ(1−α))p(Kt+1 − (1− δ)Kt) + 2ετ(1+τ)
1+τ(1−α)c0(17)

C−σ2t

P2t
Eµt > β2

C−σ2t+1

P2t+1
Eµt+1

(
1− δ +

rt+1

p

)
(18)

P2tC2t =
(1− η)(1 + τ)

2(1 + τ(1− α(1− ε)))
ApK

η
t + (1− ε)τ

(
αP1tC1t + 2c0(1 + τ)

(1 + τ(1− α(1− ε))

)
(19)

In order for C1 and C2 to be positive, we make the following assumption:

Assumption 3 c0 is bounded above by c01 whenever 1
2τ + 1−α

2 ≥ ε and by c02 whenever ε ≥
1+α
2 −

1
2τ

2.

Households’ income partly depends on the redistribution rate ε. When very few of the tax revenu
is given back towards one household, the budget constraint gets tighter. In this cas, a too high

1proof can be found in the next section.
2As we focus on an equilibrium around the steady-state, we use equations (17) and (19) evaluated at the steady-

state and look for the conditions under which we have C1t > 0 and C2t > 0.
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subsistence level of consumption for the polluting good would make the constraint impossible to
hold: the minimal level of consumption would be too high compared with the income. Hence an
upper bound on c0.

Equations (7), (8), (17), (19) and market clearing conditions allow to recover aggregate consump-
tion:

cpt =
∑
i

cpit =
α

1 + τ(1− α)
(ApK

η
t − p(Kt+1 − (1− δ)Kt)) +

2(1 + τ)

1 + τ(1− α)
c0 (20)

cgt =
∑
i

cgit =
(1− α)(1 + τ)

p(1 + τ(1− α))
(ApK

η
t − p(Kt+1 − (1− δ)Kt) + 2τc0) (21)

Finally, equation (4) and the market clearing condition on the polluting sector yield Et = 1
γcpt

.

Substituting (14) and (3) in equations (16) and (17) give the dynamic equations of the model:

Kt+1 =

(
1+η
2 + αετ

(1+τ(1−α))

)
ApK

η
t + 2ετ(1+τ)

1+τ(1−α)c0 − P1tC1t

p
(

1 + αετ
(1+τ(1−α))

) + (1− δ)Kt (22)

Cσ1t+1 = β1
Cσ1tP1t

P1t+1

(
αP1tC1t + α(1−η)

2 ApK
η
t + 2(1 + τ)c0

αP1t+1C1t+1 + α(1−η)
2 ApK

η
t+1 + 2(1 + τ)c0

)µ (
1− δ + ηAgK

η−1
t+1

)
(23)

which gives C1t+1 and Kt+1 as functions of Kt and C1t, and with P1t a function of C1t.

Definition 1 Under assumptions 1 and 3, an equilibrium of the economy is a vector of prices
{{p, Pit, τ, wt, rt}i=1,2}∞t=0 and quantities {{cpit, cgit, Cit, ait,Kpt,Kgt, Npt, Ngt, Ypt, Ygt}i=1,2}∞t=0

such that equations (22) and (23) are satisfied, optimality conditions, market-clearing condi-
tions and the government’s budget constraint hold. In this equilibrium, all variables are given by
Kt, C1t and parameters of the model.

4 Steady State

In this section, we show the existence of a unique steady-state in which the most patient household
holds a positive amount of capital, while the impatient one does not save at all. All steady-state
variable are denoted with a star.

Taking the Euler equation for agent i, we can write 1 ≥ βi(1 − δ + r
p), holding with equal-

ity if ai > 0. Recall that β1 > β2, so that β1(1 − δ + r
p) > β2(1 − δ + r

p) . Thus, we have
a∗1 = K∗ > 0 = a∗2 as we assumed in the decentralized equilibrium. This a standard result in the
literature (Becker (1980), Becker & Foias (1987), Sorger (1994)). Rewriting the left hand-side of
the inequality: r∗

p∗ = 1−β1
β1

+ δ.

As we found that p is a constant, we have p∗ =
Ap
Ag

and P ∗i = (1+τ)αp∗(1−α)

αα(1−α)1−α + (1 + τ) c0C∗i
.
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Using (15) and (14), capital-labor ratios remain constant, withK∗ =
K∗p
N∗p

=
K∗g
N∗g

=

(
ηAg

1
β1
−(1−δ)

) 1
1−η

,

and the wage rate can write w∗ = (1− η)Ap

(
ηAg

1
β1
−(1−δ)

) η
1−η

.

Writing (7) and (8) at the steady state gives individual consumptions. Equations (17) and (19)-
(21) allow to recover overall consumption for each household, as well as aggregate consumption
in both sectors:

P ∗1C
∗
1 = K∗p∗

(
r∗/p∗

η

(
1 + η

2
+

αετ

1 + τ(1− α)

)
− δ

(
1 +

αετ

1 + τ(1− α)

))
+

2ετ(1 + τ)

1 + τ(1− α)
c0 (24)

P ∗2C
∗
2 = K∗p∗

[(
r∗/p∗

η
− δ
)

α(1− ε)τ
1 + τ(1− α)

+
r∗/p∗

η

1− η
2

]
+

2(1− ε)τ(1 + τ)

1 + τ(1− α)
c0 (25)

c∗p =
α

1 + τ(1− α)
K∗p∗

(
r∗/p∗

η
− δ
)

+
2(1 + τ)

1 + τ(1− α)
c0 (26)

c∗g =
(1− α)(1 + τ)

(1 + τ(1− α))
K∗
(
r∗/p∗

η
− δ
)

+
2τ(1 + τ)(1− α)

p∗(1 + τ(1− α))
c0 (27)

Finally, market clearing conditions give Y ∗p = c∗p and Y ∗g = c∗g + δK∗, and pollution writes
E = 1

γc∗p
.

Proposition 1 Under assumptions 1 and 3, there exists a unique steady state in the economy
(K∗, C∗1 ) solution to (22)-(23) with constant prices and capital, and characterised by equations
(24)-(27). At the steady-state, agent 2 is constrained and household 1 holds all the capital.

5 Public Policy

The government has two tools to play on environmental quality and income and consumption
inequalities: lump-sum transfers and commodity taxation. This part aims at analyzing the
impact of both tools separately and analyze their impact on both pollution and inequalities.

5.1 Redistribution

Impact consumption and emissions

The effect of redistribution is straightforward. From equations (26) and (27), we see that redistri-
bution has no impact on aggregate variables. Moreover, capital is only a function of parameters,
so that redistribution has no impact on it either.

The only impact of ε is hence on individual variables, i.e on individual consumption. As con-
sumption of both goods are functions of overall consumption, the only thing we have to look
at is the impact of a change in redistribution on C∗1 and C∗2 respectively. From (24) and (25),
giving more of the tax revenue to the worker has a positive effect on her consumption, while it
is negative for the capitalist.
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The redistribution therefore only impacts individual consumption through a pure redistribution
effect: increasing redistribution towards the capitalist raises her disposable income, and hence
her consumption in both goods proportionally, while it reduces the worker’s consumption. Yet,
both trends perfectly compensate each other so that aggregate consumption, and more broadly
all aggregate variables, do not change, environmental damages included. Hence, it is possible
for the government to reduce income and consumption inequalities by increasing redistribution
towards the worker, while not harming environmental quality.

The absence of impact on pollution can be explained by one feature of our model: identical
preferences. Indeed, Rausch & Schwartz (2016) show that when preferences are homothetic
and identical, aggregate behaviors are similar to a single-agent behavior. Thus, changing the
redistribution pattern has no impact on aggregate consumption as it is similar to giving back
everything to a single agent. Allowing for heterogeneous preferences should allow for an aggregate
impact of redistribution. We set the following assumption:

Assumption 4 Households now differ in their preferences through their spending share on the
polluting commodity. More specifically, we assume that the worker spends a higher share of her
income on the polluting commodity, i.e α2 > α1.

Proposition 2 Under assumptions Assumption 1 to 4, a decrease in ε decreases clean consump-
tion and increases polluting consumption. Reducing income inequalities through redistribution
therefore harms environmental quality.

As for the homogeneous preferences case, changes in consumption occur only through a pure
revenue effect. As we assume α2 > α1, the increase in polluting consumption for the worker
is higher than the decrease for the capitalist, while the reverse occurs for clean commodity
consumption. Therefore, c∗p increases and c∗g decreases. As environmental quality directly depends
on clean commodity consumption, it declines after a switch in ε.

Impact on welfare

Changing redistribution affects individual welfare through consumption and environmental qual-
ity. More precisely:

dU∗i
dε

= µ
dE∗

dε
E∗µ−1

C∗1−σi

1− σ
+
dCi
dε

C∗−σi E∗µ (28)

Proposition 3 Under assumptions 1 to 4, decreasing income inequalities through redistribution:

• decreases welfare for the capitalist and increases it for the worker when µ < µ∗,

• decreases welfare for both households when µ ≥ µ∗.

with µ∗ = (1− σ)
∂C∗2/∂ε
∂c∗p/∂ε

c∗p
C∗2

.
From Proposition 2, giving more of the tax revenue to the worker harms environmental qual-

ity, which has a negative impact on households’ utilities. As the capitalist decreases her overall
consumption, her utility always shrinks. Yet, the worker increases her consumption in both
commodities: the impact on her utility hence depends on how much does environmental quality
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matter in the utility function, i.e on the size of µ. When µ < µ∗, the impact on consumption
overrules the impact on environmental quality, so that U∗2 increases. The reverse occurs when
environmental quality matters a lot (µ > µ∗): the negative impact on E∗ prevails.

5.2 Taxation

There are two effects at play when increasing the tax rate in our model: a price effect and a
redistribution effect. By increasing the consumer price for the polluting commodity, purchasing
power of both households is lowered so that for the same income, they consume less. Increasing
the consumer price also leads to a substitution between the two goods: agents increase their
consumption in the clean good as its relative price decreases. Increasing the tax rate leads to
more government revenue, and hence to higher transfers to households. Everything else equal,
this rise in income allows for a higher level of consumption: this is the redistribution effect.

Impact on consumption and environmental quality

We first investigate the effect of an increase in τ on aggregate consumptions, c∗p and c∗g. Denoting

c0 =
K∗p∗( r

∗/p∗
η
−δη)(1−α)

2η ,

Proposition 4 Under assumptions 1 and 3, an increase in commodity taxation always leads to
an increase in clean consumption. Polluting consumption decreases when c0 < c0 and increases
for c0 > c0.

The increase in c∗g comes from the substitution effect: an increase in taxation makes the clean
good relatively cheaper than the polluting one, so that households substitute one consumption
to another. The mixed effect on polluting consumption comes from the price and redistribution
effects. The former is negative, while the latter is positive. A low subsistence level pushes the
redistribution effect down so that the price effect dominates. The reverse occurs when subsistence
consumption is high.

Let us now focus on individual behaviors. Using equation (7) at the steady-state, we have:

dc∗gi
dτ

=
(1− α)

p∗
d(P ∗i C

∗
i )

dτ
> 0

for any household i. Clean consumption does not always increase only at the aggregate level,
but also at the individual one, which corresponds again to the susbstitution effect of the tax.

Results for individual polluting consumption are summed up in the following proposition, with

ε∗ = 1
2

(
1 + η

1−β1
β1

1−β1
β1

+(1−η)δ

)
:

Proposition 5 Under assumptions 1 and 3 and for
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- 0 ≤ c0 < c0:

• When ε < ε∗, c∗p1 decreases and c∗p2 decreases for α < α2 and increases for α > α2;

• When ε > ε∗, c∗p2 decreases and c∗p1 decreases for α < α1 and increases for α > α1

- c0 > c0:

• When ε < ε∗, c∗p2 increases and c∗p1 decreases for α < α1 and increases for α > α1;

• When ε > ε∗, c∗p1 increases and c∗p2 decreases for α < α2 and increases for α > α2.

From Proposition 5, three variables are key when analyzing which effect dominates the other: the
redistribution rate, the size of subsistence consumption and the spending share on the polluting
commodity. These three variables play a role on the redistribution effect, as the tax revenue
depends on both c0 and α.
When the government redistributes few of the tax revenue towards household i and that c0 is
low, no matter α the size of the redistribution effect is very low, so that the price effect dominates
and polluting consumption decreases. On the other hand, when a high share of the tax revenue is
redistributed and c0 is high, the size of the redistribution effect becomes so big that it overrules
the price effect, leading to an increase in polluting consumption for that household.
When c0 is low (resp. high) and a high (resp. low) share of the tax revenue is redistributed
towards household i, then which effect dominates the other depends on the size of α. When α
is low, the redistribution effect is pushed down by c0 and α, so that the price effect dominates.
However, a high α pushes it up as a lot of the tax revenue is given to the household, hence the
redistribution effect dominates.

impact on welfare

Changing the commodity tax rate affects individual welfare through consumption and environ-
mental quality:

dU∗i
dτ

= µ
dE∗

dτ
E∗µ−1

C∗1−σi

1− σ
+
dCi
dτ

C∗−σi E∗µ (29)

Proposition 6 Under assumptions 1, 3 and ??, increasing the tax rate on the polluting com-
modity:

• For µ < min(µ∗1(τ, ε), µ
∗
2(τ, ε)):

– When c0 < c0 : welfare decreases for the capitalist when ε < ε1, and decreases for the
worker when ε > 1+α

2 ;

– When c0 > c0: welfare increases for both households whenever ε ∈
(
1−α
2 , ε1

)
.

• For µ > max(µ∗1(τ, ε), µ
∗
2(τ, ε)):

– When c0 < c0 and and α > α̂ if ε ∈
(
ε1,

1−α
2

)
, welfare increases for both households;

– When c0 > c0, welfare decreases for both households.
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When subsistence consumption is low, the worker’s welfare increases when she receives a high
share of the tax revenue (both consumption and environmental quality increase), or when few of
the tax revenue is redistributed but environmental quality matters a lot. The same mechanism
applies for the capitalist: her welfare increases when a lot of the tax revenue is redistributed to-
wards her, or when a lower share of the tax revenue is redistributed and she spends a high share
of her income on the polluting commodity (a high α pushes the redistribution effect up so that
consumption increases). When she receives a low share of the tax revenue and environmental
quality matters a lot, the positive effect on environmental quality overrules the negative effect
on consumption. For both households, welfare decreases when a low share of the tax revenue is
redistributed towards them, and environmental quality does not matter a lot, so that the decrease
in consumption offsets the increase in environmental quality.
When subsistence consumption is high, welfare decreases for both households whenever environ-
mental quality matters a lot. When it does not, then it increases for both households under
intermediate values of ε.

When environmental quality does not matters a lot and subsistence consumption is low, increas-
ing the tax rate on the polluting commodity and redistributing a lot of the revenue towards the
worker reconciles the tradeoff between environmental preservation and inequality reduction we
found when playing on transfers. More generally, when subsistence consumption is low, there
always exists a way to reconcile this tradeoff by redistributing more of the tax revenue to the
worker3. On the other hand, a high level of subsistence consumption does not allow for this as
environmental quality will always decrease. More than that, when environmental quality matters
a lot, taxation is bad both for the environment and for welfare, even if income inequalities are
reduced.

6 Local Stability

We now characterize the role of subsistence consumption and the environmental externality on
stability properties near the steady-state of (22)-(23). For that, we look at the log-linearized
system evaluated at the steady-state:[

˜Kt+1

˜Ct+1

]
=

[
Ω1 −Ω2

Ω3 Ω4

][
K̃t

C̃t

]

3 dP∗
2 C

∗
2

dτ
>

dP∗
1 C

∗
1

dτ
as long as ε < 1

2
.
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with

Ω1 =

1+η
2 + αετ

1+τ(1−α)

p
(

1 + αετ
1+τ(1−α)

) ( 1

β1
− 1 + δ

)
+ (1− δ)(30)

Ω2 =
(1 + τ)αp1−αC∗1

αα(1− α)1−αp
(

1 + αετ
1+τ(1−α)

)
K∗

(31)

Ω3 =
µαη (1−η)

2 ApK
∗ηC∗−σ1

((
1+η
2 + αετ

1+τ(1−α)

)(
1
β1
− 1 + δ

)
− δ
)
− β1

p κC
∗−σ
1 K∗f ′′(K∗)

(1− τ)c0C
∗−σ−1
1 − σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α
(32)

Ω4 = 1 +

β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α − µα (1−η)

2 (1 + τ)αp1−αC∗1−σ1

(
1
β1
− 1 + δ

)
αα(1− α)1−αp

(
1 + αετ

1+τ(1−α)

)(
(1− τ)c0C

∗−σ−1
1 − σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) (33)
We now explore the role of the externality µ and subsistence consumption c0 on the stabil-

ity properties of the economy. Following Grandmont et al. (1998), we use the trace and the
determinant to explore the stability properties of the system, given by:

Tr = Ω1 + Ω4(34)

D = Ω1 −
µα (1−η)

2 (1 + τ)αp1−αC∗1−σ1

(
1
β1
− 1 + δ

)
αα(1− α)1−αp

(
1 + αετ

1+τ(1−α)

)(
(1− τ)c0C

∗−σ−1
1 − σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) (35)
To do so, we use the characteristic polynomial P (x) = x2−xTr+D evaluated at −1, 0 and 1.

GRAPH HERE.

6.1 Local dynamics when µ > 0 and c0 = 0

When environmental quality enters households’ utilities but there is no subsistence consumption
for the polluting good, the trace and the determinant are given by:

Tr = 1 + Ω1 +

β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α − µα (1−η)

2 (1 + τ)αp1−αC∗1−σ1

(
1
β1
− 1 + δ

)
αα(1− α)1−αp

(
1 + αετ

1+τ(1−α)

)(
−σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) (36)

D = Ω1 +
µα (1−η)

2 (1 + τ)αp1−αC∗1−σ1

(
1
β1
− 1 + δ

)
αα(1− α)1−αp

(
1 + αετ

1+τ(1−α)

)(
σC∗−σ1 + µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) (37)

This gives the following stability properties:

Proposition 7 Under Assumptions 1 and 3, a steady-state with no subsistence consumption and
taking into account the externality is a saddle.

Accounting for the externality with homothetic preferences ensures saddle-path stability of the
system. In this case, taxation and redistribution have no role to play in the stability properties
of the economy.
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6.2 Local dynamics when c0 > 0 and µ = 0

When the externality is not taken into account, the trace and the determinant simplify to:

Tr = 1 + Ω1 −
β1f

′′(K∗)C∗1 (1 + τ)αp1−α

αα(1− α)1−α
(

1 + αετ
1+τ(1−α

)
(σC∗1 − (1 + τ)c0)

(38)

D = Ω1 (39)

From that, we deduce the following stability properties:

Proposition 8 Under Assumptions 1 and 3, a steady-state under no environmental externality
and a positive level of subsistence consumption has the following stability properties:

• when c0 < c∗0(τ, ε), the steady-state is a saddle;

• when c∗0(τ, ε) < c0 < c∗∗0 (τ, ε), the steady-state is a saddle;

• when c0 > c∗∗0 (τ, ε), the steady-state is a source for p < p and a sink otherwise.

A flip bifurcation occurs at c0 = c∗∗0 and p > p, and a Hopf birfurcation arises when c0 > c∗∗0 and
p = p.

When accounting for subsistence consumption but not for the externality, some instability can
be brought depending on the level of c0 and p. As long as c0 < c∗∗0 , saddle-path stability is
ensured. When c0 < c∗0, the Trace value lies on the RHS of the graph, while on the LHS
when c∗0(τ, ε) < c0 < c∗∗0 (τ, ε). When c0 > c∗∗0 (τ, ε), local unstability arises when p < p, and
indeterminacy occurs whenever p > p∗. As both c∗∗0 and p depend on τ and ε, there is a role to
play for both taxation and rdistirbution in the maintaining of stability and determinacy of the
equilibrium.

6.3 Local dynamics when c0 > 0 and µ > 0

In this case, the trace and the determinant are given by (34)-(35). The economy has the following
stability properties:

Proposition 9 Under Assumptions 1 and 3, a steady-state with positive subsistence consumption
and externality is a source when c0 > c∗0 and µ < µ∗, and is a saddle otherwise.

Accounting for both the environmental externality and subsistence consumption brings back
determinacy of the equilibrium, but can still lead to unstability. Again, unstability arises when
susbistence consumption is high and pollution does not matter a lot in the utility function.
Therefore, the tax and redistribution rates again have a role to play in the stability of the
system.

7 Concluding Remarks

In this paper, we investigate the impact of environmental commodity taxation and redistribution
on pollution and income inequality. For that, we build a two-sector Ramsey model with hetero-
geneous households, an environmental externality and a subsistence level of consumption for the
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polluting good.

After characterizing the intertemporal equilibrium, we show that there exists a unique steady-
state in which the most patient household holds all the capital. We then discuss the impact
of taxation and redistribution on pollution and inequality. Considering the worker spends a
higher share of her income on the polluting commodity, increasing the share of the tax revenue
she receives increases pollution: there is a trade-off between inequality and pollution reduction.
Focusing on taxation, we find that increasing the tax rate does not reduce pollution when the
level of susbistence consumption is too high.

Analyzing the local dynamics, we show that the level of subsistence consumption can lead to
indeterminacy. This parameter, coupled with the externality parameter, are also source of un-
stability when theyr are both taken into account. In this case, the environmental fiscal policy has
a role to play to maintain the stability of the equilibrium. Hence, policy makers must carefully
handle taxation and redistribution to avoid instability, and they also must take into account
subsistence consumption when implementing environmental tax reforms.

Appendix

Household’s Problem

The household’s problem writes:

max
ait+1,cpit,cgit

∞∑
t=0

βtiUi(cpit, cgit, Et)

subject to cpit(1 + τ) + cgitpt + pt(ait+1 − (1− δ)ait) = wtni + rtait + Tit

ait ≥ 0

Using the following Lagrangian to solve the optimizaton problem:

L = Eµt
(cαipitc

1−αi
git )1−σ

1− σ
+ λBCit (wtni + rtait + Tit − cpit(1 + τ)− cgitpt − pt(ait+1 − (1− δ)ait)) + λFCit ait

Optimality conditions:

1− α
cgit

C1−σ
it Eµt = λBCit pt

α

cpit
C1−σ
it Eµt = λBCit (1 + τ)

λBitCpt = βiλ
BC
it+1(pt+1(1− δ) + rt+1) + βiλ

FC
it+1

Taking the first FOC at the power α and th second FOC at the power 1−α, then multiplicating
them yields for agent i:

Eµt C
1−σ
it (1− αi)1−αiααii = λBCit (1 + τ)αip1−αt cαipitc

1−αi
git
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Recall that Cit = cαipitc
1−αi
git , so that the equation can be rewritten:

Eµt C
−σ
it

(1− αi)1−αiααii
(1 + τ)αip1−αit

= λBCit

As Pit =
(1+τ)αip

1−αi
t

(1−αi)1−αiα
αi
i

, we obtain λBCit =
C−σit
Pt

Eµt .

Dividing the two first FOCs and rearranging gives cgitpt = 1−αi
αi

cpit(1 + τ).
Denote Iit = wtni + rtait − (ait+1 − (1− δ)ait). Plugging the previous equation for cgitpt in the
budget constraint of agent i yields:

cpit =
αi

1 + τ
Iit

cgit =
1− αi
pt

Iit

The ex post budget constraint can be written PitCit = Iit.

Recall Cit = cαipitc
1−αi
git , so that Cit =

(
αi
1+τ Iit

)αi (1−αi
pt

Iit

)1−αi
.

Plugging this into the ex post budget constraint and rearranging yields Pit =
(1+τ)αip

1−αi
t

(1−αi)1−αiα
αi
i

.

Proof of Proposition 2

Under heterogeneous preferences, steady-state variables become:

P ∗1C
∗
1 = K∗p∗

(
r∗/p∗

η

(
(1+η)(1+τ(1−α2))+2εα2τ
2(1+τ(1−α2(1−ε)−α1ε))

)
− δ

(
1+τ(1−α2(1−ε))

1+τ(1−α2(1−ε)−α1ε)

))
+ 2ετ(1+τ)

1+τ(1−α2(1−ε)−α1ε)
c0(40)

P ∗2C
∗
2 = K∗p∗

(
r∗/p∗

η

(
(1+τ(1+α1(1−2ε))−η(1+τ(1−α1))

2(1+τ(1−α2(1−ε)−α1ε))

)
− δ

(
α1(1−ε)τ

1+τ(1−α2(1−ε)−α1ε)

))
+ 2(1−ε)τ(1+τ)

1+τ(1−α2(1−ε)−α1ε)
c0(41)

c∗p = K∗p∗
(
r∗/p∗

η

(
α1+α2−η(α2−α1)

2(1+τ(1−α2(1−ε)−α1ε))

)
− δ

(
α1

1+τ(1−α2(1−ε)−α1ε)

))
+ 2(1+τ)

1+τ(1−α2(1−ε)−α1ε)
c0(42)

c∗g = K∗
(
r∗/p∗

η

(
1− (α1+α2)

2(1+τ(1−α2(1−ε)−α1ε))

)
− δ

(
1− α1

1+τ(1−α2(1−ε)−α1ε)

))
+ 2τ(1+τ)((1−α2(1−ε)−α1ε)

p∗(1+τ(1−α2(1−ε)−α1ε))
c0(43)

From equations (26) and (27), we get:

dc∗p
dε

=
−(α2 − α1)τ

(1 + τ(1− α2(1− ε)− α1ε))2

[
K∗p∗

(
r∗/p∗

η

(α1 + α2 − η(α2 − α1))

2
− δα1

)
+ 2(1 + τ)c0

]
(44)

dc∗g
dε

=
(α2 − α1)τ

(1 + τ(1− α2(1− ε)− α1ε))2

[
K∗p∗

(
r∗/p∗

η

(α1 + α2)

2
− δα1

)
+ 2(1 + τ)c0

]
(45)

As we assumed α2 > α1, we have dc∗p
dε > 0 and dc∗g

dε < 0 when decreasing ε.

Proof of Proposition 3

Taking the derivatives of C∗1 and C∗2 with respect to ε yields:

dC∗1
dε =

α
α1
1 (1−α1)(1−α1)

(1+τ)α1p∗(1−α1)

(
K∗p∗

(
r∗/p∗

η

(
τ(1+τ(1−α2))(α2(1−η)+α1(1+η))

2(1+τ(1−α1(1)ε)−α1ε))2

)
− δ

(
α1τ(1+τ(1−α2))

(1+τ(1−α1(1)ε)−α1ε))2

))
+ 2τ(1+τ(1−α2)

(1+τ(1−α1(1)ε)−α1ε))2
c0

)
dC∗2
dε =

α
α2
2 (1−α2)(1−α2)

(1+τ)α2p∗(1−α2)

(
K∗p∗

(
r∗/p∗

η

(
τ(1+τ(1−α1))(2α1−(α2−α1)(1−η))

2(1+τ(1−α2(1−ε)−α1ε))2

)
+ δ

(
α1τ(1+τ(1−α1))

(1+τ(1−α1(1)ε)−α1ε))2

))
− 2τ(1+τ(1−α1)

(1+τ(1−α1(1)ε)−α1ε))2
c0

)
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Following (42), dE∗

dε is positive. Using 40 and 41, we obtain dC∗1
dε > 0 and dC∗2

dε < 0. As dUi
dε

depends on dE∗

dε and dC∗i
dε , we have that U1 always decreases. As we have 2 forces going in opposite

directions for the worker, the signe of dU
∗
2

dε will depend on the size of µ.

Taxation. From (26) and (27):

dc∗p
dτ

=
−α(1− α)

(1 + τ(1− α))2
K∗p∗

(
r∗/p∗

η
− δ
)

+
2α

(1 + τ(1− α))2
c0

dc∗g
dτ

=
1− α

p(1 + τ(1− α))2

(
K∗p∗

(
r∗/p∗

η
− δ
)

+ 2(1 + 2τ(1 + τ c(1− α)))c0

)
Proof of Proposition 5

For the capitalist

The derivative of c∗p1 with respect to τ is a second degree polynomial. Polluting consumption
decreases for:

τ2
(
K∗p∗(1− α)

(
r∗/p∗

η − ηδ
)

+
(
r∗/p∗

η + η
(

1
β1
− 1− δ

))
(1−α)
2αε −

2ηc0
α

)
+ τ

((
r∗/p∗

η + η
(

1
β1
− 1− δ

))
(1−α)
αε −

4ηc0
α

)
−

(
K∗p∗

(
r∗/p∗

η − ηδ −
(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
2αε

)
+ 2ηc0

α

)
> 0,

positive when

(
2
(
r∗/p∗

η − ηδ
)
−
(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
ε

)(
K∗p∗( r

∗/p∗

η − δη)(1− α)− 2ηc0

)
> 0.

When this is negative, the sign of the polynomial is equal to the sign ofK∗p∗(1−α)
(
r∗/p∗

η − ηδ
)

+(
r∗/p∗

η + η
(

1
β1
− 1− δ

)
(1−α)
2αε

)
− 2ηc0

α , which is positive for 0 < α < α̂1 and negative for α̂1 <

α < 1.

- ε < ε∗:

• When c0 < c0, the discriminant is negative and α < α̂, so the polynomial is positive,
meaning c∗p1 decreases.

• When c0 > c0, the discriminant is positive and there are 2 roots:

τ11 =

4ηc0
α
−
(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
(1−α)
αε
−

√√√√√2K∗p∗

2
(
r∗/p∗
η
−ηδ

)
−

(
r∗/p∗
η +η

(
1
β1
−1−δ

))
ε

(K∗p∗( r∗/p∗
η
−δη)(1−α)−2ηc0

)
2
(
K∗p∗(1−α)

(
r∗/p∗
η
−ηδ+

(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
(1−α)
2αε

)
− 2ηc0

α

)

τ12 =

4ηc0
α
−
(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
(1−α)
αε

+

√√√√√2K∗p∗

2
(
r∗/p∗
η
−ηδ

)
−

(
r∗/p∗
η +η

(
1
β1
−1−δ

))
ε

(K∗p∗( r∗/p∗
η
−δη)(1−α)−2ηc0

)
2
(
K∗p∗(1−α)

(
r∗/p∗
η
−ηδ+

(
r∗/p∗
η

+η
(

1
β1
−1−δ

))
(1−α)
2αε

)
− 2ηc0

α

)

We know a > 0 for 0 < α < α̂1 and a < 0 for α̂1 < α < 1, and α̂1 < 0 for ε > K∗p∗B
4ηc0

.
When ε > K∗p∗B

4ηc0
, a < 0, the numerators of τ11 and τ12 are always positive so τ11 < 0

and τ12 < 0 for any value of α and c∗p1 increases.

When ε < K∗p∗B
4ηc0

, the numerator of τ11 is an increasing function of α, and evaluating
the numerator of τ11 at α̂1, we find it is equal to zero. Hence τ11 < 0 for any value of
α. the numerator of τ12 has an inverted-U shape in α, and we know that it is negative
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at the minimum value of α, and positive when α = 1. Also, when α→ α̂, τ12 → +∞,
so there exists an α1 < α̂ such that τ12 > 0 and a α1 < α̂ such that τ12 > 1. We can
summarize:

α c∗p1
0 < α < α1 decreases
α1 < α < α1 has an inverted U-shape
α1 < α increases

- ε > ε∗:

• When c0 < c0, the discriminant is positive and there are 2 roots, τ11 and τ12 .
When ε > K∗p∗B

4ηc0
, a < 0, and the numerator of τ11 is a decreasing function of α. At

the maximum value α can take, the numerator is positive, so thenumerator if always
positive on the interval and τ11 < 0 always. The numerator of τ12 > 0 always, so τ12 < 0

and c∗p1 increases.
When ε < K∗p∗B

4ηc0
, the numerator of τ11 has an inverted U shape in α, and is positive

at max(α). We know then it crosses 0 once at α̂1, so τ11 < 0 on that interval. The
numerator of τ12 is an increasing function of α, and we have the numerator negative
when α→ 0, and positive when α→ max(α). Hence we know there exists an α1 such
that the numerator becomes positive. We also know that the numerator is positive at
α̂1, so α1 < α̂1. When α→ α̂1, τ12 → +∞. Tehrefore, there exists an α1 such that on
(α1, α̂1), τ12 > 1. Results on the effect of taxation on consumption can be summarized
in the following table:

α c∗p1
0 < α < α1 decreases
α1 < α < α1 has an inverted U-shape
α1 < α increases

• When c0 > c0, the discriminant is negative and α > α̂1, so the polynomial is negative,
i.e c∗p1 increases.

For the worker

The derivative of c∗p2 with respect to τ is a second degree polynomial. Polluting consumption
decreases for:

τ2
(
K∗p∗(1− α)

(
r∗/p∗

η − ηδ
)

+
(
r∗/p∗(1−η)

η

)
(1−α)

2α(1−ε) −
2ηc0
α

)
+ τ

((
r∗/p∗(1−η)

η

)
(1−α)
α(1−ε) −

4ηc0
α

)
−

(
K∗p∗

(
r∗/p∗

η − ηδ −
(
r∗/p∗(1−η)

η

)
2α(1−ε)

)
+ 2ηc0

α

)
> 0,

positive when

(
2
(
r∗/p∗

η − ηδ
)
−
(
r∗/p∗(1−η)

η

)
1−ε

)(
K∗p∗( r

∗/p∗

η − δη)(1− α)− 2ηc0

)
> 0.

When this is negative, the sign of the polynomial is equal to the sign ofK∗p∗(1−α)
(
r∗/p∗

η − ηδ +
(
r∗/p∗(1−η)

η

)
(1−α)

2α(1−ε)

)
−

2ηc0
α , which is positive for 0 < α < α̂2 and negative for α̂2 < α < 1.

- ε < ε∗:
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• When c0 < c0, the discriminant is positive, so there are two roots:

τ21 =

4ηc0
α
−
(
r∗/p∗(1−η)

η

)
(1−α)
α(1−ε)−

√√√√√2K∗p∗

2
(
r∗/p∗
η
−ηδ

)
−

(
r∗/p∗(1−η)

η

)
1−ε

(K∗p∗( r∗/p∗
η
−δη)(1−α)−2ηc0

)
2
(
K∗p∗(1−α)

(
r∗/p∗
η
−ηδ+

(
r∗/p∗(1−η)

η

)
(1−α)

2α(1−ε)

)
− 2ηc0

α

)

τ22 =

4ηc0
α
−
(
r∗/p∗(1−η)

η

)
(1−α)
α(1−ε)+

√√√√√2K∗p∗

2
(
r∗/p∗
η
−ηδ

)
−

(
r∗/p∗(1−η)

η

)
1−ε

(K∗p∗( r∗/p∗
η
−δη)(1−α)−2ηc0

)
2
(
K∗p∗(1−α)

(
r∗/p∗
η
−ηδ+

(
r∗/p∗(1−η)

η

)
(1−α)

2α(1−ε)

)
− 2ηc0

α

)
We know a > 0 for α < α̂2 and a < 0 for α > α̂2, with α̂2 < 0 for ε < 1− K∗p∗B2

4ηc0
.

When ε < 1− K∗p∗B2

4ηc0
, the numerators of τ21 and τ22 are always positive, so τ21 < 0 and

τ22 < 0 for any value of α: c∗p2 increases.
When ε > 1− K∗p∗B2

4ηc0
, the numerator of τ21 is an increasing function of α and is equal

to zero at α̂2, so τ21 < 0 for any value of α. The numerator of τ22 has an inverted U
shape in α and is negative when α is close to zero and positive around its maximal
value, meaning there exists an α2 < α̂2 such that the numerator becomes positive.
When α→ α̂2, τ22 → +∞, meaning there exists α2 < α̂ such that τ22 > 1. Results can
be summarized in the following table:

α c∗p2
0 < α < α2 decreases
α2 < α < α2 has an inverted U-shape
α2 < α increases

• When c0 > c0, the discriminant is negative and α > α̂2 so c∗p2 increases.

- ε > ε∗:

• When c0 < c0, the discriminant is negative and α < α̂2 so the polynomial is negative,
and c∗p2 decreases.

• When c0 > c0, the discriminant is positive and there are 2 roots τ21 and τ22 . In this
case, we always have ε > 1− K∗p∗B2

4ηc0
, i.e a > 0 for α < α̂2 and a < 0 otherwise. The

numerator of τ21 has an inverted-U shape in α, is negative at the minimum value of α
and positive at α = 1, so it crosses 0 once at α̂. Hence τ21 < 0 always. The numerator
of τ22 is an increasing function of α, negative at min(α) and positive at α = 1. As
before, there exists an α2 < α̂2 such that the numerator becomes positive, and an
α2 < α̂2 such that τ22 > 1. Results are summarized in the following table:

α c∗p2
0 < α < α2 decreases
α2 < α < α2 has an inverted U-shape
α2 < α increases
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Proof of Proposition 6

Impact on overall consumption

For the capitalist: Taking the derivative of C∗1 with respect to τ gives the following:

τ c2c0(1− α)(2ε− 1 + α) + 2τc0(2ε− 1 + α) +K∗p∗(
r∗/p∗

η
− δ)αε+ c0(2ε− 1)

Solving for the polynomial gives that ∂C∗1
∂τ > 0 for c0 < c0 and ε < 1−α

2 or c0 > c0 and ε > 1−α
2 .

• c0 < c0:
If ε > 1−α

2 , C∗1 increases.
If ε < 1−α

2 , the polynomial as two roots:

τ c11 =
2c0(1− α− 2ε)−

√
∆1

2c0(1− α)(2ε− 1 + α)
τ c12 =

2c0(1− α− 2ε) +
√

∆1

2c0(1− α)(2ε− 1 + α)

and ∆1 the discriminant associated to ∂C∗1
∂τ . τ c12 < 0 as the nominator is positive and the

denominator negative.
τ c11 > 0 iff ε > ηc0

2ηc0+K∗p∗α
(

1−β1
β1

+δ(1−η)
) ≡ ε1. If not, τ c11 < 0 and C1 increases. Assuming

ε1 < ε < 1−α
2 , we must now ensure that τ c11 < 1.

τ c11 < 1⇐⇒ α2ηc0 + α

(
2εηc0 −K∗p∗ε

(
1− β1
β1

+ δ(1− η)

)
− 4ηc0

)
+ 4ηc0(1− 2ε) > 0

The polynom in α has two roots, α̂ and ˆ̂α. ˆ̂α < 0 and 0 < α̂ < 1 iff ε > ηc0

6ηc0+K∗p∗
(

1−β1
β1

+δ(1−η)
) ,

which is always verified under the assumption ε > ε1. Hence, we have τ c11 < 1 for α < α̂

and C∗1 has an inverted U-shape, and τ c11 > 1 for α > α̂, leading to an increase in C∗1 .

• c0 > c0:
If ε < 1−α

2 , C∗1 decreases.
ε > 1−α

2 , the polynomial has two roots τ c11 < 0 and τ c12. τ c12 > 0 iff ε < ε1. If ε > ε1, C∗1

decreases.
Assuming ε < ε1 and after some computations, we find that τ12 > 1, meaning that C∗1
increases.

For the worker: Taking the derivative of C∗2 with respect to τ gives:

τ c2c0(1− α)(2(1− ε)− 1 + α) + 2τc0(2(1− ε)− 1 + α) +K∗p∗(
r∗/p∗

η
− δ)α(1− ε) + c0(1− 2ε)

Solving for the polynomial gives that ∂C∗2
∂τ > 0 for c0 < c0 and ε > 1+α

2 or c0 > c0 and ε < 1+α
2 .

• c0 < c0:
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If ε < 1+α
2 , C∗2 increases.

If ε > 1−α
2 , the polynomial as two roots:

τ c21 =
2c0(1− α− 2(1− ε))−

√
∆2

2c0(1− α)(2(1− ε)− 1 + α)
τ c22 =

2c0(1− α− 2(1− ε)) +
√

∆2

2c0(1− α)(2(1− ε)− 1 + α)

and ∆2 the discriminant associated to ∂C∗2
∂τ . τ c22 < 0 as the nominator is positive and the

denominator negative, and after some computations we find τ c21 > 1. Hence, C∗2 decreases.

• c0 > c0:
If ε > 1+α

2 , C∗1 decreases.
If ε < 1+α

2 , the polynomial has two roots τ c21 and τ c12 tht are both negative. Therefore C∗2

increases.

Impact on welfare

An increase in the commodity tax rate leads to changes in utilities:

dUi
dτ

= µ
dE∗

dτ
E∗µ−1

C∗1−σi

1− σ
+
dCi
dτ

C∗−σi E∗µ

The result is straightforward:

• when c0 < c0, if Ci increases, then Ui increases. If Ci decreases, Ui increases if µ > µ∗i (τ, ε)

and decreases otherwise;

• when c0 > c0, if Ci decreases, then Ui decreases. If Ci increases, Ui decreases if µ > µ∗i (τ, ε)

and increases otherwise.

Proof of Proposition 7

Looking at the characteristic polynomial:

P (−1) = 2(1 +D)−
β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α

αα(1− α)1−αp
(

1 + αετ
1+τ(1−α)

)(
−σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) > 0

P (0) = D > 0

P (1) =

β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α

αα(1− α)1−αp
(

1 + αετ
1+τ(1−α)

)(
−σC∗−σ1 − µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α

) < 0

When p < p, D > 1 and T > 2 so we have a saddle.
When p > p, D > 1 if µ > µ and lower than 1 otherwise. When D < 1, T < 2 whenever
µ < µ∗ < µ. in any case, P (1) < 0 so we have a saddle.
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Proof of Proposition 8

Looking at the characteristic polynomial:

P (−1) = 2(1 +D)− β1f
′′(K∗)C∗1 (1 + τ)αp1−α

αα(1− α)1−α
(

1 + αετ
1+τ(1−α

)
(σC∗1 − (1 + τ)c0)

P (0) = D

P (1) =
β1f

′′(K∗)C∗1 (1 + τ)αp1−α

αα(1− α)1−α
(

1 + αετ
1+τ(1−α

)
(σC∗1 − (1 + τ)c0)

If c0 < c∗0, then σC∗1 − (1 + τ)c0 > 0 and we have a saddle.
If c0 > c∗0, P (1) > 0 so we must check the sign of P (−1) and P (0) in order to know whether
there is indeterminacy of the equilibrium or not.
D > 0 always so P (0) > 0. Looking at P (−1), we have P (−1) > 0 if c0 > c∗∗0 , meaning the
equilibrium is either a sink or a source, depending on whether D > 1 or not, meaning whether
p < p, as for proposition 7. As µ = 0 here, D < 1 if p > p.

Proof of Proposition 9

Looking at the characteristic polynomial:

P (−1) = 2(1 +D)−
β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α

αα(1− α)1−αp
(

1 + αετ
1+τ(1−α)

)(
+σC∗−σ1 + µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α − (1− τ)c0C
∗−σ−1
1

)
P (0) = D

P (1) =

β1
p C
∗1−σ
1 K∗f ′′(K∗)(1 + τ)αp1−α

αα(1− α)1−αp
(

1 + αετ
1+τ(1−α)

)(
σC∗−σ1 + µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α − (1− τ)c0C
∗−σ−1
1

)
As σC∗−σ1 + µαC∗1−σ1

(1+τ)αp1−α

αα(1−α)1−α − (1− τ)c0C
∗−σ−1
1 < 0, P (1) < 0 always.

P (−1) < 0 for µ < µ̃, in which case D < −1 which gives a source. Otherwise, P (−1) > 0 and
hence a saddle.
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