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Abstract

This study examines a specific class of common-pool resources whereby rivalry is

not characterized by competition for the resource stock. Artesian aquifers are a typical

example of such resources since the stock never depletes, even when part of the resource is

extracted. We first propose a dynamic model to account for the relevant features of such

aquifers such as the water pressure and well yield and characterize the corresponding

dynamics. We then compare the social optimum with the private exploitation of an

open-access aquifer. The comparison of these two equilibria highlights the existence of a

new source of inefficiency. In the long run, this so-called pressure externality results in an

additional number of wells for the same water consumption, thereby raising costs. Finally,

we characterize a specific stock-dependent tax to neutralize the pressure externality.
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1. Introduction

Common-pool resources (CPRs) have been studied extensively since the seminal pa-

pers by Gordon [16] and Hardin [17] in the 1950s and 1960s. Most studies have focused

on how non-excludability and rivalry induce different forms of externalities. Specifically,

the literature on aquifers mainly identifies stock externalities, which create two distinct

effects (Burt and Provencher [7]): a reduction in extraction opportunities and an increase

in future extraction costs. It also identifies spatial externalities, which consider the impact

of the location of pumping activity on the extraction costs of neighboring wells (Brozovic

et al. [6], Pfeiffer and Lin [31]). However, both these types of externalities rely on the

idea that individual withdrawal reduces the water stock available for consumption and

therefore the water table (perhaps with a geographical concern), which, in turn, increases

the future extraction costs for everyone (perhaps in an asymmetric way).

However , these concerns do not apply to artesian aquifers, which have two particular

properties. First, they are a kind of confined aquifer, which is an aquifer confined between

an upper and a lower impermeable layer that recharges from a distant and more elevated

aquifer that is often unconfined. Second, they have the so-called artesian property : water

naturally flows from a well, without any pumping, and withdrawal from the aquifer is

immediately compensated so that there is no dewatering at all. The absence of pumping

and spatial externalities due to pumping therefore suggests that this resource does not

suffer overexploitation under open access and needs no regulation. The main objective

of our study is to show that this perception is wrong. As the artesian property of each

well is linked to the global water pressure in a confined aquifer, this pressure externality

leads, under an open-access regime, to an excessive number of wells and thereby additional

costs. This result is obtained by contrasting the open-access outcome with the socially

optimal equilibrium, which internalizes this externality. In other words, even through

the groundwater stock within the confined aquifer does not decrease, we show that the
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behaviors of economic agents are not aligned with the socially optimal outcome.

Few studies on groundwater management consider the pressure externality. Since

Gisser and Sanchez’s 1980 paper [15], most researchers have continued to analyze the po-

tential role of water management under different assumptions, but kept the focus on

unconfined aquifers with pumping cost externalities. A number of studies have com-

pared perfect competition with socially optimal management outcomes. For instance,

Provencher [36] and Provencher and Burt [37] respectively show that property rights

allow the recovery of a large proportion of welfare gains, but that these gains remain

relatively low. Allen and Gisser [1] find a small difference between competition and social

planning, while Brill and Burness [5] find an increased divergence between both scenarios

under different hydrological and economic assumptions, including demand growth, declin-

ing well yields, and low social discount rates. Other studies contrast the social planner

solution with strategic behaviors (Negri [29], Rubio and Casino [40]). Rubio and Casino

[40], for instance, confirm Gisser and Sanchez’s [15] result. Some studies expand on this

in a number of directions, including examining uncertainty (Knapp and Olson [24], Tsur

and Graham-Tomasi [49]), conjunctive surface water use (Azaiez [3], Stahn and Tomini

[46],[47]), and water quality management (Roseta-Palma [39]). Nevertheless, all these

works assume that an aquifer behaves as a “bathtub” with perfect hydraulic conductivity

and is only subject to atmospheric pressure. The water level is therefore constant across

the aquifer and equal to the potentiometric surface.1 The dynamics of these “single cell”

and unconfined aquifers can be summarized by changes in the water level, and since water

disposal requires, in this case, pumping, their users share a common part in their current

cost function: the cost of the water lift.

1The potentiometric line is an imaginary line where the water pressure is equal to the atmospheric
pressure. Water will rise to this specific level. In an unconfined aquifer, the potentiometric line is
equivalent to the water table level.

3



Spatial externalities are mainly based on the location of the pumping activity or final

users. Chakravorty and Roumasset [8], Chakravorty and Umetsu [9], and Pongkijvo-

rasin and Roumasset [34] stress final-user heterogeneity by linking the water conveyance

lost/cost to the distance to the water source, while Pitafi and Roumasset [32] focus on

users located at different elevations. Other studies look at the limitations of the bathtub

assumption due to spatially differentiated hydrological components (Katic and Grafton

[22]). They borrow elements from the hydrologic literature on imperfect transmissivity,2

such as Darcy’s law [10], which describes the water flow in a porous medium, and Theis’

analysis [48] of the depression cone induced by pumping. Brozovic et al. [6] and Merrill

and Guilfoos [28] build on Theis’ approach and relate the marginal cost of the water lift

at a given location to the pumping histories and distances of other wells. This modifies

the strength of the externality and potential gain from regulation, but remains, never-

theless, a pumping externality. Other strands of the literature consider multi-aquifer (or

multi-cell) systems with water exchanges between these aquifers (or cells). The porosity

between cells is governed by Darcy’s law. Exchanges mostly take place between lateral

aquifers (or cells) and induce spatial externalities (e.g., Saak and Peterson [42], Peterson

and Saak [30], Pfeiffer and Lin [31], Athanassoglou et al. [2], and Manning and Suter

[27]. However, as long as there is pumping in each cell, it remains a pumping externality,

although the magnitude may vary across space. Indeed, the implicit water price for a

given cell (i.e., the co-state variable associated with this cell) is linked to the water prices

of other cells.

Spatial externalities are different if we compare unconfined with confined aquifers.

Theis ’ argument [48] on depression cones is based on confined aquifers, even though it

can also, to an extent, be applied to unconfined aquifers (see Appendix 2 of Brozovic

2Transmissivity refers to the horizontal movement of water through an aquifer, which may be consid-
ered as a slow (imperfect) or instantaneous process.
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et al. [6]). Darcy’s law, which describes the flow resulting from imperfect transmissivity

between aquifers, is not restricted to lateral flows and therefore does not necessarily induce

spatial externalities. For instance, Gisser and Mercado [14] consider a confined and an

unconfined aquifer (the Pecos River Basin aquifer), the former being located below the

latter, with vertical flows governed by Darcy’s law. By contrast, Worthington et al. [52]

consider a two-part aquifer (the Crow Creek Valley aquifer), one part confined and the

other unconfined, but nevertheless with perfect transmissivity. The primary argument of

these authors is that confined aquifers are under pressure, which explains why, for instance,

water can flow upward, according to Gisser and Mercado [14]. In fact, the main difference

between confined and unconfined aquifers is that the water table is different from the

potentiometric line. With confined aquifer systems, users share not only a common stock

but also a common pressure, both being affected by individual withdrawals. Similarly,

Reinelt [38] considers an aquifer system composed of an unconfined recharge area, a

confined aquifer that obtains water from the recharge area, and a discharge area for the

confined aquifer, at sea level, with possible saline intrusions. Modeling the change in

the potentiometric surface due to pumping in a spatio-dynamical setting, he derives an

optimal water extraction strategy. In doing so, he captures both the standard marginal

pumping cost externality in the unconfined aquifer and the spatial externalities within

the confined aquifer and between the confined and unconfined aquifers, as well as the

externalities induced by saline intrusion. However, he observes that the global marginal

pumping cost externalities are different in the unconfined and confined aquifers because

the latter consumes the water pressure and water volume.

Our study starts with a different rationale, that is, we isolate this pressure externality.

The best option is to consider aquifers for which water consumption requires no pumping

at all. This is typically the case for artesian aquifers—confined aquifers that obtain their

recharge from an unconfined area but whose potentiometric surface is above ground level.
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In this case, the pressure is sufficiently strong to ensure that water naturally flows over

the top of a drilling well without the need for pumping. Water yields are, nevertheless,

dependent on the pressure of the confined aquifer, and when a new well is drilled, the

pressure of the whole aquifer decreases, which consequently exerts a negative externality

on the yields of existing wells. We refer to this as the “pressure externality,” which

requires managing the overall number of wells.

Artesian aquifers can be found in many countries. The Great Artesian Basin in Aus-

tralia is considered as the largest and deepest in the world, underlying 22% of the conti-

nent. Other important systems are the Edwards Aquifer in Texas, USA and the Northern

Sahara Aquifer System in northern Africa. There are also artesian wells south of Van-

couver, Canada and in several places in India, providing water for millions of people.

Nevertheless, this resource is subject to the “rule of capture”and is thus threatened by

human pressure. Moreover, in many of the wells, the flow is still uncontrolled. As such,

optimizing the exploitation of this resource and production of groundwater reservoirs is

a difficult challenge. Regulations have already been implemented in some areas to limit

adverse impacts. For instance, the St. Johns River Water Management District in Florida

encourages well owners to control the flow and even abandon problematic wells by plug-

ging them.

In this paper, we present a simple hydro-economic dynamic model of a confined arte-

sian aquifer. To emphasize the pressure externality, we restrict our analysis to free-flowing

artesian wells:3 water is obtained by drilling a hole without any pumping and therefore

without any pumping externalities. We also assume perfect transmissivity between the

recharge area and confined aquifer to avoid any spatial externalities. Water yields are

therefore driven only by the evolution of the water pressure in the aquifer over time.

3Even if few artesian aquifers are exploited with free-flowing wells nowadays, we adopt this theoretical
assumption to highlight the pressure externality. An extension to pumping is discussed in Section 7.
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Specifically, we use fluid dynamics to describe the relationship between the water stock,

water pressure, and water discharge. On this basis, we first assume that this resource

operates under an open-access regime. Second, we introduce an optimal management

problem for the number of wells that takes into account this pressure externality. For

both management regimes, we characterize the long-run steady-state values and their

properties with respect to changes in the economic and hydrological parameters of the

model. We then compare these two management regimes by introducing two rates that

capture the main differences. The first rate measures the yield losses per well compared

with the optimal management case, while the second rate measures the rate of increase in

the long-run water cost. These rates act as proxies for the loss of pressure and social cost

of overextraction, respectively. This approach allows us to challenge the Gisser–Sanchez

effect since our welfare gain can be large. We also analyze the sensitivity of these rates

to the economic and hydrological parameters of the model and propose a state-dependent

tax that aligns the open-access steady state with the optimal management. We finally dis-

cuss potential extensions concerning farmer behavior and technology choices, especially

the richer water policy induced by non-myopic behavior, the limitations of our entry

mechanism, and the possibility to supplement free water harvesting by pumping.

The remainder of this paper is organized as follows. The specific features of an artesian

aquifer, particularly the consequences of the water pressure model, are presented in Section

2. Section 3 presents the main economic characteristics of our system and analyzes the

short- and long-run properties of this hydro-economic model under open access. Section 4

analyzes the centralized water management problem and Section 5 describes the long-run

properties of this optimal management. Section 6 contrasts these two regimes in terms

of pressure losses and social costs. Section 7 discusses further extensions and Section 8

concludes. The proofs and computations can be found in Appendices A–D.
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2. Aquifers with flowing artesian wells

Artesian aquifers are overlain by a relatively impermeable layer, such that water is

under a pressure greater than atmospheric pressure. Consequently, water may rise above

the top of the aquifer and even, when the pressure is sufficiently large, above the land

surface when a drill hole penetrates an artesian aquifer. In particular, we can observe wells

that naturally flow to (or above) the land surface, without the need for pumping, when

the potentiometric line is above the surface. This level represents the pressure exerted by

water, given the force of gravity. Consequently, the confined layer remains saturated, even

with exploitation. However, the abstraction of groundwater resources implies variations

in the pressure, which in turn trigger falls in the water flow at the surface.

These artesian aquifers never dewater since they are fed by water that moves from a

distant outcrop area, also called the recharge zone. This area is usually located at a high

elevation (e.g., near mountains), exposed at the ground level, and a considerable distance

away from the artesian aquifer, which is at a lower elevation beneath an impermeable

layer. This difference in elevation generates a water column, h, the weight of which exerts

a pressure on the artesian aquifer. More precisely, we define the water column as the

vertical distance between the top of the water table in the outcrop area and upper layer

of the artesian aquifer. For simplicity, the elevation of this upper layer is normalized to 0

so that h ∈ (0, hmax), with hmax the upper level of the outcrop area. If this area behaves

as a bathtub unconfined aquifer with a flat bottom of area Ar perpendicular sides and

storativity rate s,4 the weight of the water column that exerts this pressure is sArh.

The water column may rise and fall according to the recharge and discharge toward the

artesian aquifer. We denote R as the potential recharge, that is, all the water available at

the surface, which may or may not reach the ground. The part of the potential recharge

4The storativity rate is defined as the volume of water released from storage per unit surface area of
the aquifer per unit decline in the hydraulic head.
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that effectively soaks into the soil represents the actual recharge, while the remaining

water runs off over land.5 In other words, only the proportion ρR recharges the outcrop

area, where ρ is the infiltration rate.

This net recharge moves down toward the confining layer, replacing the water flowing

out of the artesian wells because of the pressure exerted by the weight of the water column.

We even assume perfect transmissivity between and inside these two parts of the aquifer

to avoid any spatial externalities as well as that no economic activity takes place in the

recharge area. Exploitation only occurs over the impermeable layer (i.e., no return flow);

moreover, since water flows naturally through a well to the land surface, pumping is not

necessarily required. To avoid any pumping externalities, we even assume that pumping

is not available.6. It is therefore important to know how much water flows out of a well

under pressure. From fluid dynamics, we can characterize the relationship between the

water pressure and water column and then deduce the maximum water yield flowing out

of a well using Torricelli’s law.7 Let us assume that k is the size of the drill hole (i.e., a

technological characteristic)8 and g is the acceleration due to gravity; then, the maximum

water yield, r, is approximately given by

r(h) = k
√

2gh (1)

We can easily observe that the lower the water column, the lower is the maximum water

yield (r′(h) > 0). The water yield approximatively captures the pressure and a change in

5This distinction is commonly used in the hydrogeological literature (e.g., Rushton [41]).
6This assumption can seem rather extreme. However, for instance, it simply means that the marginal

pumping cost exceeds the marginal cost of a unit of water obtained from an additional well. The possibility
of pumping is discussed in Section 7.

7Under perfect conductivity, this law is an application of Bernoulli’s principle relating pressure, ve-
locity, and elevation for a steady-flow system. Torricelli’s law describes the fluid flowing out of an orifice.

8By size, we mean the surface of a section of the drill hole. It can therefore be related to the diameter
of the bore hole.
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the water yield is equivalent to a change in the artesian pressure. Moreover, if n active

wells are operating at capacity, the total water discharge is w(h) = r(h)n. Hereafter,

we consider n to be a real number. This means, for instance, that the last well is only

partially active. Figure 1 illustrates this specific structure.
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Figure 1: Schematic representation of a confined aquifer

Hence, we can characterize the hydrodynamics of artesian aquifers by two equivalent

formulations: (i) a law of motion based on changes in the water column, h(t), in the

outcrop area and (ii) a law of motion based on changes in the maximum water yield, r(t),

of a well over the artesian aquifer. The dynamics of the water column in the recharge area

result from a physical water balance between inflows and outflows. The actual recharge

ρR is the source of incoming water, while outflows are the sum of the water discharge

flowing at the surface in different wells, w(h(t)) = r(h(t))n(t). Within this context, the

time evolution of the water column (as long as h ≥ 0) in the outcrop area is associated
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with changes in the potentiometric water head of the artesian aquifer and is described as

ḣ(t) =
ρR− w (h(t))

sAr
(2)

The relevant area Ar is now the size of the recharge area as opposed to the whole area of

the aquifer in contrast to the Gisser–Sanchez [15] model of an unconfined aquifer, which

explains why the gains from public management are not negligible.

Using Torricelli’s law (1), we can characterize the time evolution of the maximum

water yield:

ṙ(t) =
kgḣ(t)√
2gh(t)

=
k2gḣ(t)

r(t)
(3)

Using the dynamics of Eq. (2), it follows that the dynamics of the yield of an artesian

well are given by

ṙ(t) =
k2g

r(t)sAr
[ρR− r(t)n(t)] (4)

These second dynamics sound more economically oriented since outflows result from the

economic decision to build new wells, but they are unusual because they are based on

the accumulation of resources flowing out of a reservoir. However, more water out of the

aquifer means that the pressure correspondingly changes. Interestingly, this formulation

captures the idea that the pressure of the water behaves as a CPR. Consequently, we

may expect the existence of a new externality different from the pumping cost commonly

observed in analyses of unconfined aquifers. This pressure externality results from the

effect of an additional well on future yields and not on the future costs as is usual with

pumping externalities.

It remains to set the initial condition of this system. For simplicity, we assume for

Eq. (2) that the initial level of the water column is h(0) = hmax and for Eq. (4) that the

initial yield is r(0) = k
√

2ghmax.
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3. Artesian aquifer as an open-access resource

As recharge occurs at elevated outcrop areas, we assume that water is only extracted

above the artesian aquifer, such as in the distant lower areas (e.g., plains and valleys)

in which the economic activity takes place. Water demand is described by decreasing

inverse water demand with the overall production of water, P (w), with P ′(w) < 0, and

providing a social benefit
∫ w
0
P (ω)dω. Moreover, we ignore possible conveyance losses and

thus assume that all the water flow at the surface is the actual volume of water used by

consumers.

Individual wells are drilled to fulfill this demand, such that the number of wells corre-

sponds to the number of well owners. A well owner faces an instantaneous profit function:

Π(t) = p(t)r(t)− c (5)

with p(t) being the market price the owner receives for the yield r(t) = k
√

2gh(t) of

his/her well and c > 0 the annual exploitation cost of the well.9 Now, consider that an

artesian aquifer is exploited by myopic well owners, who decide to exploit the aquifer

when there is a positive profit. As the resource is open access, this also means that new

wells are drilled as long as the observed profit remains positive. This free-entry condition

associated with the competitive water market-clearing condition therefore induces the

following dynamics of the number of wells:10

ṅ(t) = α (P (n(t)r(t)) r(t)− c) (6)

9Following the literature on irrigation networks (e.g., Chakravorty and Roumasset [8], Jandoc et al.
[20]), this cost includes the per-period equivalent of the construction cost, operating and maintenance
cost, and water provision because of irrigation networks, conveyance structures linking all the wells, and
distribution to consumers.

10We adopt the standard free-entry condition based on the average rent earned from the exploitation
resource. See, among others, Weitzamn [50] for a static characterization of open access and Gordon [16],
who characterizes the bioeconomic equilibrium of a fishery.
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with α > 0 being an adjustment parameter or a behavioral constant given the market-

clearing price p(t) = P (n(t)r(t)).

Although there is no dewatering of the artesian aquifer, the water flows from any

additional well reduce the water column (h(t)) in the outcrop area. A lower water column

in this area consequently reduces the pressure in the confined aquifer and lowers the water

yield of each existing well. This means that a complete description of the dynamics of the

number of wells must include both the free-entry dynamics (Eq. (6)) and the dynamics of

the water column in the outcrop area (Eq. (2)). With the help of Torricelli’s law, which

links the yields to the water column, we obtain

 ṅ(t) = α
(
P
(
n(t)k

√
2gh(t)

)
k
√

2gh(t)− c
)

sArḣ(t) = ρR− n(t)k
√

2gh(t)
(7)

The open-access hydro-economic equilibrium is thus obtained by setting the time vari-

ation in the number of wells and that of the water column in the outcrop area equal to 0:

ṅ = ḣ = 0. We can easily deduce that the number of wells under open access is

nm(c, ρ, R) = P (ρR)
c
ρR (8)

This number depends on the actual recharge, weighted somehow by a profitability rate.

We then derive the steady-state value for the water column:

hm (c, k, ρ, P ) =
1

2g

(
c

kP (ρR)

)2

(9)

At this point, we need a consistency assumption for the parameters of the model, which

simply states that hmax > hm. Finally, using Torricelli’s law (Eq. (1)), we can derive the
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long-run maximum water yield:

rm(c, ρ, R) =
c

P (ρR)
(10)

and the global water consumption

wm (ρ,R) = ρR (11)

We can even prove that the open-access hydro-economic equilibrium is stable, as sum-

marized in the following proposition.

Proposition 1. The dynamical system given by Eq. (7) has a unique steady state given
by Eqs. (8) and (9) that is locally asymptotically stable. Table 1 presents the effects of
any change in the economic parameters, that is, the unit cost c and size k of a well, and
hydraulic parameters, that is, the recharge R and infiltration rate ρ . The notation +/−
means that an effect can be either positive or negative depending on whether the elasticity
εP (w) of inverse demand evaluated at the steady-state consumption ρR is higher or lower
than −1.

Table 1: Effects of the economic and hydrological parameters on the open-access equilibrium

Effects on
Parameters water column number of wells water consumption water yield

Cost (c) + − 0 +
size of the well (k) − 0 0 0

Recharge (R) + +/− + +
Infiltration rate (ρ) + +/− + +

The impact of an increase in the unit cost per well is clear. It provides less incentive to

drill additional wells, which typically constrains water in the outcrop area, the consequence

of which is an increase in the pressure in the artesian aquifer and therefore of the yield. To

understand how an increase in the size of the well affects the steady state, it is important

to note that the steady-state yield of a well is, under free entry, independent of k (see
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Eq. (10)). This means that any increase in k induces transitory dynamics toward a new

steady state with an unchanged yield. However, during this transitory adjustment, the

yield first increases, meaning that the new steady state can be reached only at a lower

potentiometric level, h. Moreover, bearing in mind that the water consumption at the

steady state is equal to the recharge, the number of wells must be unchanged. An increase

in the infiltration rate or recharge increases the amount of water in the aquifer. At the

steady state, this increases the water column, yield, and water consumption. The effect

on the number of wells depends on the elasticity of inverse demand evaluated at the net

recharge, that is, εP (ρR) = P ′(ρR)ρR
P (ρR)

. If εP (ρR) > −1 (εP (ρR) < −1), the number of wells

increases (decreases).

4. Optimal management of an artesian aquifer

The social planner aims to choose the number of active wells within the artesian aquifer

in each time period t, accounting for the water flow dynamics (Eq. (4)). If δ > 0 denotes

the social discount rate, he/she maximizes the discounted sum of social benefits net of

exploitation costs:

max
n(t)

∫ +∞

0

(∫ r(t)n(t)

0

P (ω)dω − cn(t)

)
e−δtdt

s.t. ṙ(t) =
k2g

r(t)sAr
[ρR− r(t)n(t)] (12)

In this formulation, the objective of the social planner is to control the amount of water

flowing out of the wells given the time variation in artesian well yields. Considering the

total water discharge, we can write

∫ r(t)n(t)

0

P (ω)dω =

∫ w(t)

0

P (ω)dω
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and using the hydrological relationship between the artesian aquifer and outcrop area

given by Torricelli’s law (Eq. (1)), the social planner can take a more standard approach:

max
w(t)

∫ +∞

0

(∫ w(t)

0

P (ω)dω − cw(t)

k
√

2gh(t)

)
e−δtdt

s.t. sArḣ(t) = ρR− w(t) (13)

This formulation is convenient to analyze the optimal exploitation of an artesian aquifer

since the optimization program is defined only over water quantity, rather than water

and the number of wells. Moreover, the dynamics of the resource are now independent

of the state variable. This formulation enables us to derive (i) the optimal number of

wells from the social planner’s choice of water supply and (ii) the water pressure in the

artesian aquifer resulting from its optimal exploitation. More precisely, we know that

the potentiometric line of the aquifer corresponds to the level of the water column in the

recharge area, h, and is the point to which water naturally flows from a single well. Given

this level, we can first deduce the well yield and number of wells to obtain the total water

discharge, w. Second, the potentiometric line directly allows us to capture the water

pressure. More relevantly, this formulation associates the potentiometric line with the

constant marginal cost of drilling an additional well, c, which enables us to capture the

pressure externality, but not the pumping cost externality. For instance, a decrease in the

potentiometric line reduces the water yield. This requires, for a given water production

level, w(t), additional wells to be drilled, thereby increasing the overall well exploitation

cost.

However, this new setting has one problem. The co-state variable, λ(t), associated with

the water column dynamics in the program (Eq. (13)) now stands for the shadow price of

a one-unit decrease in the water column in the recharge area. This variable only partially

captures the shadow price of a unit of water naturally rising at the surface from an arte-
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sian well. This value is actually given by the co-state variable, Γ(t), associated with the

dynamics used in the optimization problem (Eq. (12)). This variable measures the mon-

etary consequences of a decrease in the yield of an artesian well. However, let us denote

the future values at t of the two programs (Eqs. (12) and (13)) along the optimal path

by, respectively, V ∗1 (t) = V1 ((n∗ (t)), r∗(t),Γ∗(t)) and V ∗2 (t) = V2 ((w∗ (t)), h∗(t), λ∗(t)).

We know from the equivalence of both programs that ∀t, V ∗1 (t) = V ∗2 (t). It follows from

Torricelli’s law (Eq. (1)) and the usual property of the co-states that

Γ∗(t) =
∂V ∗1
∂r

=
∂V ∗2
∂h

∂h

∂r
= λ∗(t)

(
r∗(t)

k2g

)
= λ∗(t)

(√
2gh∗(t)

kg

)
(14)

In other words, we can obtain the shadow price of a unit of water naturally rising at the

surface from an artesian well using the solution to the program given by Eq. (13).

The current-value Hamiltonian becomes

H (w(t), h(t), λ(t)) =

∫ w(t)

0

P (ω)dω − cw(t)

k
√

2gh(t)
+
λ(t)

sAr
[ρR− w(t)] (15)

where λ(t) is the current-value shadow price associated with the water column of the

recharge area. We derive the following first-order conditions:

P (w(t)) =
c

k
√

2gh(t)
+
λ(t)

sAr
(16)

λ̇(t) = δλ(t)− cgw(t)

k
√

(2gh(t))3
(17)

Eq. (16) represents the usual optimality condition, which yields a marginal benefit in

each period equal to the total marginal costs, the sum of the marginal exploitation cost

(of an additional unit of water) and the water shadow price, λ(t)
sAr

.11

11Recall that λ measures the shadow price of one additional drop of water in the ground and λ
sAr

is
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Eq. (17) describes the behavior of the shadow value. This equation shows that the time

evolution of the shadow price depends on the discount factor, which following the literature

on unconfined aquifers, depends on the marginal exploitation cost. In fact, a stock-

dependent recharge impacts the value of the resource since the current exploitation of the

artesian aquifer affects the water column in the outcrop area, which in turn influences the

pressure and thus future flow.

5. Sustainable artesian water exploitation

We can now investigate the sustainable management of an artesian aquifer by char-

acterizing the optimal steady state, that is, by setting ḣ = λ̇ = 0. Indeed, in the steady

state, we characterize the highest rate of exploitation without depleting the aquifer, or

rather without reducing to zero the water pressure in the long run. From Eq. (2), we can

directly derive the steady-state level of The global water consumption:

wo = ρR (18)

Regarding the standard model of an unconfined aquifer, the global water consumption

corresponds to the actual recharge, but now in the distant outcrop area. Using Eq. (17)

and the stationary state for the water discharge (Eq. (18)), we also obtain the steady

state for the shadow value of water:

λ(ho; c, k, δ, ρ, R) =
cgρR

δk
√

(2gho)3
(19)

Then, using Torricelli’s theorem (Eq. (1)), we can derive the long-run maximum water

consequently the shadow value of a marginal water column elevation in the outcrop area.
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yield of a well

r(ho; k) = k
√

2gho (20)

the shadow value of the pressure

Γ(ho; c, k, δ, ρ, R) =
cρR

2δgk2ho
(21)

and the number of wells

n(ho; k, ρ, R) =
ρR

k
√

2gho
(22)

All these steady-state values depend on the long-run level of the water column in the

distant outcrop area, ho. On the basis of previous observations and using Eq. (16), we

obtain the condition required for the level of the water column at the steady state. This

equates the long-term water price to the long-term marginal cost of an additional unit of

water:

P (ρR) =
c

k
√

2gho

(
1 +

ρR

2δhosAr

)
(23)

Using the long-term pressure (Eq. (20)) and its shadow value (Eq. (21)), it can also be

written as

roP (ρR) = c+ k2g
sAR

Γo (24)

In other words, the long-term marginal gain from an additional well must be equal to its

cost c augmented by the long-term marginal cost of the pressure externality.

Hence, we can investigate the existence of a steady state based on this single condition

and examine the stability properties. We again need a consistency assumption for the

parameters to ensure that ho < hmax.
12 All the results are introduced in the proposition

12In Appendix B, we explicitly compute the solution to Eq. (23) and provide this consistency assump-
tion.

19



below.

Proposition 2. Any optimal water consumption path wo(t) and water column path ho(t)
that satisfies the optimal first-order conditions (16) and (17), with the dynamics (2), admit
a unique steady state, which is a local saddle point.

We can now analyze the long-run impact of variations in the parameters of the model

on the water column, water consumption, and water yield of a well as well as the number

of wells. More precisely, we study the effect of the hydrological parameters {Ar, R, ρ} and

economic parameters {c, k, δ}.13

Regarding the long-run water column, Eq. (23) shows that all the parameters,

except the natural recharge R and ρ, affect the long-run costs only. This specifically

modifies the incentive to exploit artesian water by affecting the full marginal cost of a

unit of water, that is, the sum of the marginal exploitation cost and marginal user cost.

Typically, the two parameters associated with exploitation, {c, k}, affect both parts of the

full marginal cost. First, an increase in the cost of drilling a well raises the full marginal

cost and thus the water column for the optimality condition (23) to hold in the long run.

Conversely, a larger drill hole size, k, decreases the full marginal cost of a unit of water

and leads to a decline in the long-run water column.

Second, the hydrogeological parameter Ar and discount rate δ both affect the time

variation in the shadow value of the resource (Eq. (17)), and thus they impact its long-

run value. A larger recharge area, Ar, provides a greater incentive to exploit water because

the resource has a lower future value. Likewise, the higher the discount rate, the lower is

the present value of the future benefit. Both parameters therefore lead to a lower water

column in the long run.

Finally, an increased potential recharge R or a larger infiltration rate ρ simultaneously

impacts both water demand and the long-run social cost. An increase in R or ρ allows

13Detailed computations can be found in Section Appendix C.
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more water to infiltrate the outcrop area, which consequently decreases the water price.

Intuitively, at the steady state, the higher inflows, the higher are the outflows of the

system. This drives up marginal costs. The overall effect on demand and costs decreases

the incentive to exploit artesian groundwater, thus leading to a higher water column in

the long run. Table 2 summarizes these comparative statics results.

Table 2: Effects of the economic and hydrological parameters on the optimal long-run water column

Parameter Effect

Cost of a well (c) +
Size of the well (k) −
Discount rate (δ) −
Recharge area (Ar) −
Recharge (R) +
Infiltration rate (ρ) +

Let us now analyze the effect of the variations in each parameter on the long-run

water consumption, wo. Eq. (18) shows that only the recharge and infiltration rate

matter. In fact, a higher potential recharge, R, or a larger infiltration rate, ρ, increases

the net recharge and thus the water consumption.

Concerning the long-run water yield of a well, Eq. (20) shows that all the pa-

rameters except k indirectly modify the yield after a change in the water column, which

is positively related to the yield. It follows that for the parameters {c, δ, Ar, R, ρ}, the

signs of the effects are those found in Table 2. Finally, a single parameter has an a priori

ambiguous impact: a larger drill hole results in a positive direct impact on yields and a

negative indirect impact because of an abatement of the water column level. However,

both effects alter the cost structure and the impacts of these opposite variations offset

such that we observe a positive overall effect. Consequently, an increased drill hole size

raises the long-run water yield.

The analysis of the impacts on the long-run number of wells is trickier. Recall
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that n(ho) = wo

r(ho)
. The variations in the number of wells thus depend on the simultaneous

changes in the water consumption and water yield. For the parameters θ = {c, δ, Ar}, this

is fairly straightforward since they only depend on the effects on the water column. More

precisely, we observe a decline in the number of wells in the long run. Recall from our

previous result that changes in the size of the drill hole, k, positively affect the water yield

and thus decrease the number of wells. The effect of an increase in the recharge R or in

the infiltration rate ρ is more ambiguous. Both increase the long-run water consumption

and yield of a well. It is therefore difficult to estimate which effect dominates the other.

To illustrate this ambiguity, we provide in Section Appendix C a class of examples in

which this effect can be either positive or negative.

Table 3 summarizes the results.

Table 3: Variations in the water consumption, water yield, and number of wells

Parameter Impact on water Impact on Impact on the
consumption (w) water yield (r) number of wells (n)

Marginal cost (c) 0 + -
Size of the drill hole (k) 0 + −
Recharge area (Ar) 0 - +
Discount rate (δ) 0 - +
Recharge (R) + + ?
Infiltration rate (ρ) + + ?

6. Pressure externality

We now show that the behaviors of economic agents under open access are not aligned

with the socially optimal outcome. Well owners are not rivals in water exploitation in the

artesian aquifer since this aquifer never dewaters. However, this activity does reduce the

water column in the outcrop area, which decreases the pressure in the artesian aquifer

and reduces the water yields for other well owners. The extra decline in pressure that

arises under an open-access regime is the pressure externality. This externality has a
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fairly intuitive interpretation. As the owners do not take this pressure externality into

account, they have an incentive to drill more wells than the number required by the social

optimum. However, at the steady state, the water consumption is the same in both cases.

With more active wells for the same consumption, yields must be lower in the open-access

case. Moreover, according to Torricelli’s theorem (Eq. (1)), which links yields to the water

column, this water column is lower. Therefore, under open access, there is less pressure

on an artesian aquifer.

The question is now how to measure the impact of this externality. We can measure

either the hydrological consequences or the economic consequences. First, it would be

interesting to know the yield reduction rate of a well at the steady state with respect to

optimal management. Using Eq. (10), which describes the steady-state yield under open

access, and Eq. (20) for the optimal management regime (h0 being the solution to Eq.

(23)), this rate is given by

∆−Y ield (c, k, δ, Ar, R, ρ) = 1− rm (c, R, ρ)

ro (c, k, δ, Ar, R, ρ)
(25)

Second, we know that under open access, there are more wells in the long run for the

same water consumption. It would thus be interesting to know the rate at which the cost

of one unit of water rises with respect to optimal management. Without a pumping cost

due to artesianism, this rate is

∆+
Cost =

(
cnm

wm

)
�
(
cno

wo

)
− 1 (26)

with nm, wm, no, and wo given by, respectively, Eqs. (8), (11), (22), and (23). If we now

recall that the water consumption is the same at both steady states, this rate of increase
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in the water cost coincides with the proportion of additional wells, that is,

∆+
Cost (c, k, δ, Ar, R, ρ) =

nm (c, R, ρ)

no (c, k, δ, Ar, R, ρ)
− 1 (27)

We can go a step further by examining the impact of the different parameters on these

two rates. Concerning the size of the well, k, discount rate, δ, and size of the outcrop

area, Ar, the results are fairly straightforward since these parameters only modify the

steady-state yield and number of wells under optimal management. Since ∆−Y ield and

∆+
Cost increase and decrease r0, respectively, we can immediately assert, using Table 3,

that the rate of yield losses, ∆−Y ield, and rate of additional water costs, ∆+
Cost, both increase

with the size of the well, k, and decrease with the discount rate, δ, and size of the outcrop

area, Ar. However, the effect of the cost per well, c, or that of the net recharge, ρR, is less

obvious since these quantities modify the yield and the number of wells in both steady

states. Nevertheless, we can show that an increase in c reduces both rates, while the sign

of the effect of an increase in the net recharge depends again on the elasticity of inverse

demand assessed at the net recharge, ε(ρR) = P ′(ρR)ρR
P (ρR)

.

The following proposition summarizes our discussion.

Proposition 3. Comparing the open-access steady-state values with those of the socially
optimal one, there are more wells, nm > n0, a lower yield, rm < ro, and a lower water
column, hm < h0, in the outcrop area. Table 4 describes the effects of the parameters on
the rate of yield losses and the rate of increase in the water cost. The notation +/− means
that the effect can be either positive or negative depending on whether the elasticity, εP (w),
of inverse demand evaluated at the steady-state consumption, ρR, is higher or lower than
−1/2.

Table 4 also suggests that the Gisser–Sanchez effect is again at work since the rate of

yield losses and rate of additional social costs both decrease with the area, Ar. However,

contrary to the Gisser–Sanchez effect, this quantity is not the size of the artesian aquifer,

but rather the size of only the recharge area, which, in the case of artesian systems, is
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Table 4: Impact of the parameters on the rate of yield losses and additional social cost rate

Parameter Yield losses, ∆−Y ield Additional water cost, ∆+
Cost

Marginal cost (c) − −
Size of the drill hole (k) + +
Recharge area (Ar) − −
Discount rate (δ) − −
Recharge (R) +/− +/−
Runoff (ρ) +/− +/−

often relatively narrow with respect to the area covered by the artesian aquifer. This

last observation suggests that the two equilibria would be different, thus requiring public

regulation.

If a policy aims to limit this additional water cost, it should, on the basis of Eq.

(27), refrain from providing an incentive to drill new wells and instead ensure that their

number does not exceed that recommended by the steady state of an optimal management

policy. This means that under open access, either well extension is limited by a standard

command-and-control policy or the profitability of an addition well is reduced (see Eq.

(5)) by imposing a fee to be paid for each new well. However, this last incentive-based

policy must provide some signals related to pressure losses. Since pressure is inversely

proportional to the height of the water column in the outcrop area, h(t), this tax rate

must decrease with h(t). More precisely, we can claim the following.

Proposition 4. A state-dependent fee per new well given by τ (h(t)) = cρR
2δh(t)sAr

ensures
that the steady state of the open-access management of an aquifer coincides with the steady
state under optimal management.

7. Further discussions

To sharpen our analysis of the pressure externality, we make some simplifications,

especially about the behavior of well owners and technology choices. Here, we discuss

alternative water policies, particularly when agents do not behave myopically. We also
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discuss our entry mechanism when agents are heterogeneous. Finally, we provide some

insights into the significance to our model for the introduction of pumping.

7.1. Alternative water policies

In this study, we have proposed a resource with open access (i.e., free and unregulated

exploitation) and with myopic decisions based on current profits. In this case, only simple

regulation tools can be considered such as the direct control of the number of wells and

a fee for each new well. However, in practice, few resources are open access and most are

collectively owned. Consequently, resource access is restricted to some users, who account

for the evolution of stock over time; however, there may be no rule limiting extraction.

In our case, this would mean a finite number of landowners, i = 1...M , who can choose

the number of wells, ni(t), they drill on their own land by maximizing their discounted

sum of profits:

max
ni(t)

∫ +∞

0

(∫ ri(t)ni(t)

0

P (ω)dω − cni(t)

)
e−δtdt (28)

s.t. ṙ(t) = k2g
r(t)sAr

[
ρR−

M∑
i=1

ri(t)ni(t)

]
(29)

Let us assume, for simplicity, that farmers follow open-loop strategies since we know they

account for their impact on the resource, but not on others, such that externalities arise.

On this basis, we may consider alternative rules to manage such unregulated common-

property resources . First, we can assume that a local institution exists that grants permits

or licenses subject to fees such that the total amount of water collectively exploited is

defined by the optimal level. The fees should recover the social costs of marginal reductions

in pressure. Other measures can be introduced to control the number of wells, including

taxes, quotas, property rights over the resource, and limits on demand.

Aside from such institutional regulation, voluntary cooperation between landowners
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may overcome overexploitation. A large part of the literature examines cooperation and

contracting between oil and gas users (e.g., Libecap and Wiggins [25], [26], Smith [43]).

This literature offers a new array of voluntary solutions. For instance, Libecap and Wig-

gins ([25]) analyze the use of prorationing contracts to control output production. Some

examples of profit-sharing systems in fisheries demonstrate that cooperation can coordi-

nate resource exploitation. For instance, Kaffine and Costello [21] propose a system under

which users contribute a part of their profits to a pool, which is then redistributed among

them.

All these alternatives are, nevertheless, implemented to internalize a range of external-

ities, including stock effects, strategic interactions, and spatial externalities if they exist.

Our model allows us to design a simple instrument to address the pressure externality.

7.2. The entry mechanism

In line with Smith [44] [45], we have assumed that well owners decide to exploit the

resource based only on the profitability condition of Eq. (6): a condition under which only

the number of entrants matters. This means that we can examine entry using a simple

counting device and that future entry conditions are influenced only by the number of

pre-existing firms. This ideally requires that all the entrants are symmetric, which is

the case in our mechanism, or at least that the water price and dynamics of artesian

yields change after entry in proportion to the new number of installed well owners. Our

model, for instance, does not readily extend to the situation in which well owners have

the ability to choose, before entry, the size of their borehole for a cost that increases with

borehole size. This choice, which is dictated by observations of current yields, creates

heterogeneity between the installed well owners, which then affects both the water price

and the dynamics of the yield, and hence future entrance conditions.

A radical solution is to forget the entry issue by moving to the “landowner” problem

(Eq. (28)), allowing the choice of borehole size k for an additional cost c(k), and replacing
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the dynamics of the yields (Eq. (29)) with the dynamics of the water column of the

recharge area (Eq. (2)) exerting pressure on the artesian aquifer. In fact, maintaining the

entry assumption becomes a real challenge, requiring a dynamic model for a competitive

industry with heterogeneous firms that endogenously determine the processes for entry

and exit. This approach has been used in real business-cycle models to show how entry

and exit propagate the effects of aggregate shocks in line with Hopenhayn [18] [19]. There

are also several applications of fishery management to understand fleet evolutions (see

Weninger and Just [51], Da-Rocha and Sempere [11], and Da-Rocha et al. [12]). However,

to the best of our knowledge, no equivalent modeling has been developed for aquifer

management.

We are, nevertheless, confident that this does not change our basic result. In fact, we

might expect a social planner to reach, in a steady state, a borehole size allocation that is

globally cost-minimizing with regard to the water consumption. By contrast, the steady-

state allocation of borehole size using an entry mechanism would inherit the history of the

different entries and would not necessarily converge toward a cost-minimizing allocation.

The misalignment with a socially optimal scenario will only increase in situations in which

there is no choice of borehole size.

7.3. Pumping opportunities

To focus on the pressure externality, we do not introduce pumping. This makes sense

in our study because with the artesian property, water flows naturally out of a well in

contrast to the general perception that pumping is the only way to harvest groundwater.

This, however, raises the question of what happens when the potentiometric line reaches

ground level. In other words, the issue of the exploitation of the aquifer arises when water

no longer flows when there is no pumping. This clear-cut extension is challenging.

First, in our model without pumping, we show that the potentiometric line never

reaches ground level because although the long-run water price is a finite number, P (ρR),
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the cost of a drop of water may tend to infinity for very low water column levels, regardless

of the management regime.14 This implies that pumping must start before the artesian

property disappears. However, we need to understand how to model pumping in an

artesian aquifer as well as the optimal time to start pumping.

Second, if pumping drives the potentiometric line to below ground level, we must be

able to define when this line drops below the upper confining layer. The first shift has no

real consequences on the dynamics of the model since the aquifer is still a confined type

whose water is under pressure. However, this is not the case for the second shift when we

move from a confined to an unconfined aquifer. The dynamics of the water column in the

recharge area are consequently replaced with the standard dynamics of the water height

in the whole aquifer. In other words, the dynamics of the system should incorporate a

potential regime shift (e.g., Polasky et al. [33], Boucekkine et al. [4], Prieur et al. [35],

and De Zeeuw [13]).

Although the second problem is comparatively more technical and well documented,

the first one induces global changes in the modeling. Introducing pumping at the well level

is relatively easy. On the one hand, each pump has a gauge pressure that can be expressed

as an additional water head, hp, and therefore additional yields (r = k
√

2g(h+ hp) in

our formulation). On the other hand, pumping requires energy proportional to each unit

of water lifted to this additional head as well as investment and maintenance costs (e.g.,

in the Gisser–Sanchez [15] formulation). However, the central question is to determine,

especially in the optimal management problem, the time when the pumps are activated

and which existing wells are involved. For artesian aquifers, this raises the more general

question of moving from extensive water harvesting based on the development of new

wells to a more intensive use based on pumping, which brings with it the risk of altering

14Recall that under open access, the unit cost is c
rm(h) from the simple transformation of Eq. (10),

while under socially optimal management, it is c
k
√

2gho

(
1 + ρR

2δhosAr

)
using Eq. (23).
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ecological systems due to regime shifting. This important issue could be addressed in

further work.

8. Concluding remarks

This study contributes to the literature on CPRs and the externalities arising from the

exploitation of these resources as well as to the literature on groundwater management.

We analyzed the role of public policy when CPRs exhibit a low degree of rivalry in terms

of consumption. We introduced a specific type of CPR, artesian aquifers, whose stock

remains fully saturated even when the resource is exploited. Moreover, if such an aquifer is

tapped by a well, the water naturally rises above the land surface since it is stored under

pressure. A loss of pressure consequently alters the outflow at the surface. Economic

agents therefore do not compete to appropriate part of the resource stock, but do suffer

from a reduction in artesian pressure as the number of wells increases. The tragedy of

the commons results here from the existence of a pressure externality. We evaluated the

impact of this externality as the difference between the open-access outcome and socially

optimal solution. We used fluid mechanics, particularly Torricelli’s theorem, to introduce

the water pressure and water yields flowing out at the surface in a dynamic optimization

model. We showed that the number of wells depends on the level to which water will rise,

which corresponds to the water column in the recharge area. In the long run, the height

of this water column is therefore lower under open access than under socially optimal

management. This externality results in the long run in additional wells for the same

water consumption, and hence in additional costs, thus requiring public regulation. We

even provide a state-dependent tax scheme that corrects this externality at the steady

state.

We considered a simple setting in which the pressure externality is isolated and our

analysis could be expanded in a number of directions by future research. First, it would be
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interesting to extend this analysis to the case of other management regimes (e.g., including

rational agents and strategic externality) to analyze, for instance, how water users compete

for a resource that never depletes. Second, we could also consider more complex dynamics

of such aquifers by introducing an endogenous infiltration rate or leakages. Finally, we

only characterized situations in which artesian properties hold in the long run. It may

thus be interesting to analyze situations in which these properties disappear, that is, when

an artesian aquifer becomes an unconfined aquifer in the long run, implying the need for

pumping.
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Appendix A. Proof of Proposition 1

(i) Local stability

From Eq. (7), observe that the linear approximation of these dynamics around the steady state is

given by

 ṅ

ḣ

 =

 αP ′ (wm) k22ghm α
(
P ′ (wm)nmk2g + P (wm) k

√
g (2hm)

−1/2
)

−k
√

2ghm

sAr
− 1
sAr

(
nmk
√
g (2hm)

−1/2
)


︸ ︷︷ ︸

=Dm

 ṅ− nm

ḣ− hm

 (A.1)

Under our assumption, it is immediate that

trace(Dm) = αP ′ (wm) k22ghm − 1

sAr

(
nmk
√
g (2hm)

−1/2
)
< 0 (A.2)

Moreover, after some computation

det(Dm) =
αP (wm) k2g

sAr
> 0 (A.3)

We can therefore conclude that our dynamical system is locally asymptotically stable.

(ii) Comparative statics at the steady state
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From Eqs. (8), (9), (10), and (11), we immediately obtain

∂c ∂k ∂R ∂ρ

∂hm c
g

(
1

kP (wm)

)2

> 0 − 1
gk3

(
c

P (wm)

)2

< 0 − ( ck )
2
P ′(wm)ρ

g(P ((wm))3
> 0 − ( ck )

2
RP ′(wm)

g(P (wm))3
> 0

∂wm 0 0 ρ > 0 R > 0

∂rm 1
P (wm) > 0 0 − cρP

′(wm)

(P (ρR))2
> 0 − cRP

′(ρR)

(P (wm))2
> 0

∂nm −w
mP (wm)
c2 < 0 0 ρ

c (P (wm) + wmP ′ (wm)) R
c (P (wm) + wmP ′ (wm))

Finally, remark that ∂nm

∂R Q 0⇔ εP (wm) := wmP ′(wm)
P (wm) Q −1 and ∂nm

∂ρ Q 0⇔ εP (wm) Q −1.

Appendix B. Proof of Proposition 2

(i) Existence and uniqueness of the steady state

From our discussion, there exists a unique state if and only if Eq. (23), given by

P (ρR)− c
k
√

2gh

(
1 + ρR

2hδsAr

)
= 0 (B.1)

admits a unique solution in h. Setting x = 1√
2h

, this equation becomes

P (ρR)−
(

c
k
√
g

)
x−

(
cρR

kδsAr
√
g

)
x3 = 0⇔ x3 + δsAr

ρR︸︷︷︸
=p>0

x+
(
−kδsAr

√
gP (ρR)

cρR

)
︸ ︷︷ ︸

=q<0

= 0 (B.2)

Since 4p3 + 27q2 > 0, we know from the Cardano formula that this equation admits a unique solution in

the reals and since p > 0 and q < 0, this solution, xo, is strictly positive and is given by

xo =
3

√
− q

2

2 +

√
q2

4 + p3

27 +
3

√
− q

2

2 −
√

q2

4 + p3

27 (B.3)

As a consequence, ho = 1
2(xo)2

and the consistency assumption on our parameters now becomes 1
2(xo)2

<

hmax.

(ii) Local saddle point stability

Let us first remember that the dynamics are given by

 λ̇ = δλ− ∂hH (w, h, λ)|w=w(h,λ)

ḣ = ∂λH (w, h, λ)|w=w(h,λ)

with w(h, λ) solution to ∂wH (w, h, λ) = 0 (B.4)
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It follows that the dynamics around the steady state can be approximated by

 λ̇

ḣ

 =

 δ −
(
∂2
h,λH−∂2

h,wH
∂2
w,λH
∂2
w,wH

)
−
(
∂2
h,hH−∂2

h,wH
∂2
w,hH
∂2
w,wH

)
−∂2

λ,wH
∂2
w,λH
∂2
w,wH

∂2
λ,hH−∂2

λ,wH
∂2
w,hH
∂2
w,wH


∣∣∣∣∣∣∣
(wo,ho,λo)︸ ︷︷ ︸

=Do

 λ̇− λo

ḣ− ho

 (B.5)

with  ∂2
h,λH = 0 ∂2

h,wH = c
k
√
g (2h)

− 3
2 ∂2

h,hH = − 3cw
k
√
g (2h)

− 5
2

∂2
λ,wH = − 1

sAr
∂2
w,wH =P ′(w) ∂2

λ,λH = 0
(B.6)

By substitution,

Do =

 δ − c(2h)−
3
2

sArk
√
gP ′(w)

3cw(2h)−
5
2

k
√
g +

(
c(2h)−

3
2

k
√
g

)2
1

P ′(w)

−
(

1
sAr

)2
1

P ′(w)
c(2h)−

3
2

sArk
√
gP ′(w)

 (B.7)

It follows that trace(Do) = δ > 0 and, after some simplifications, that

det (Do) =

(
c(2h)−

3
2

sArk
√
g

)(
δ +

3w

2sArh

)
1

P ′(w)
< 0 (B.8)

Finally, since trace(Do) > 0 and det (Do) < 0, we know that our steady state is a locally stable saddle

point.

Appendix C. Proof of the sensitivity analysis of Section 5

Let us introduce

φ (h, c, k, δ, Ar, R, ρ) = P (ρR)− c
k
√

2gh

(
1 + ρR

2hδsAr

)
(C.1)

Impact on the water column level

Let us first observe that

∂φ
∂h = c

k
√
g (2h)

−3/2
(

1 + 3ρR
2hδsAr

)
> 0 (C.2)

This means that for all θ ∈ {c, k, δ, Ar, R, ρ}, sign
(
∂h
∂θ

)
= sign

(
−∂φ∂θ�

∂φ
∂h

)
= −sign{∂φ∂θ }. Moreover, by

computation,


∂φ
∂c = − 1

k
√

2gh

(
1 + ρR

2hδsAr

)
< 0 ∂φ

∂Ar
= cρR

(2h)3/2k
√
gδs(Ar)2

> 0

∂φ
∂k = c

k2
√

2gh

(
1 + ρR

2hδsAr

)
> 0 ∂φ

∂R = ρP ′ (w)− c
k
√

2gh

(
ρ

2hδsAr

)
< 0

∂φ
∂δ = c

k
√

2gh

(
ρR

2hδ2sAr

)
> 0 ∂φ

∂ρ = RP ′ (w)− c
k
√

2gh

(
R

2hδsAr

)
< 0

(C.3)
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Hence, {
∂ho

∂c > 0 ∂ho

∂k < 0 ∂ho

∂δ < 0 ∂ho

∂Ar
< 0 ∂ho

∂R > 0 ∂ho

∂ρ > 0 (C.4)

Impact on the water consumption

At the steady state, wo = ρR; thus, all θ 6= R, ρ ∂wo

∂θ = 0. Moreover, ∂wo

∂R = ρ > 0 and ∂wo

∂ρ = R > 0.

Impact on the yield of an artesian well

At the steady state, ro = k
√

2gho. It follows that for all θ 6= k, ∂ro

∂θ = kg√
2gho

· ∂h
o

∂θ . From Eq. (C.4),

we immediately obtain

{
∂ho

∂c > 0 ∂ho

∂δ < 0 ∂ho

∂Ar
< 0 ∂ho

∂R > 0 ∂ho

∂ρ > 0 (C.5)

It remains to study ∂ro

∂k = kg√
2gho

· ∂h
o

∂k +
√

2gho with ∂ho

∂k = −∂φ∂k�
∂φ
∂h and ∂φ

∂h > 0 (see Eq. (C.2)). We

can therefore say that

sign
{
∂ro

∂k

}
= signe


√

g
2ho︸ ︷︷ ︸
>0

× sign
{
k ∂h

o

∂k + 2ho
}

= sign

−k ∂φ∂k + 2ho ∂φ∂h︸ ︷︷ ︸
=D

 (C.6)

Using Eqs. (C.2) and (C.3), we obtain

D = − c
k
√

2gho

(
1 + ρR

2hoδsAr

)
+ c

k
√

2gho

(
1 + 3ρR

2hoδsAr

)
= c

k
√

2gho
ρR

hoδsAr
> 0 (C.7)

and conclude that ∂ro

∂k > 0.

Impact on the number of artesian wells

At the steady state, no = ρR
k
√

2gho
. It follows that ∀θ 6= R, ρ, k, ∂no

∂θ = − ρR
k
√
g (2ho)

−3/2 ∂ho

∂θ . From Eq.

(C.4), we immediately obtain {
∂no

∂c < 0 ∂no

∂δ > 0 ∂no

∂Ar
> 0 (C.8)

Let us now concentrate on ∂no

∂k . By computation,

∂no

∂k
= − ρR

k
√
g (2ho)

−3/2 ∂h
o

∂k
− ρR

k2
√

2gho
(C.9)

It follows that

sign
(
∂no

∂k

)
= −sign

(
∂ho

∂k + 2ho

k

)
= −sign

(
−∂φ∂k + 2ho

k
∂φ
∂h

)
(C.10)
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Moreover, from Eqs. (C.2) and (C.3),

−∂φ∂k + 2ho

k
∂φ
∂h = − c

k2
√

2gho

(
1 + ρR

2hoδsAr

)
+ c

k2
√

2gho

(
1 + 3ρR

2hoδsAr

)
= c

k2
√

2gho

(
ρR

hoδsAr

)
> 0 (C.11)

We can therefore say that ∂n0

∂k < 0.

To show that ∂n0

∂R and ∂n0

∂ρ are unsigned, let us introduce the following example. We set P (w) = w−a

with α > 1 and choose the parameters {c, k, δ, Ar} such that c
k
√
g = 1

2 and δsAr = 1. Under these

assumptions, we know from Eq. (C.1) that ho solves

φ1(h; ρ,R) = (ρR)−α − 1
2 (2h)−

1
2 − ρR

2 (2h)−
3
2 = 0 (C.12)

Moreover, if we take a particular configuration of ρ and R such that ρR = 1, it is easy to check that

ho = 1
2 solves Eq. (C.12). If we now change R, the change in h0, in the neighborhood of this solution, is

given by

∂ho

∂R
= −∂φ1

∂R�∂φ1

∂h

∣∣∣
h= 1

2 ,ρR=1
= −−αρ−

ρ
2

1
2 +

3
2

= ρ
2α+ 1

4
(C.13)

If we now look at the change in the number of wells (see Eq. (22)), we obtain

∂no

∂R
=

(
ρ

k
√

2gh
− ρR

k
√
g (2h)

−3/2 ∂h
o

∂R

)∣∣∣∣
h= 1

2 ,ρR=1

=
(

ρ
k
√
g −

1
k
√
gρ

2α+1
4

)
= ρ

4k
√
g (3− 2α) (C.14)

This clearly shows that ∂no

∂R can be either positive or negative depending, in this example, on the elasticity

of demand α Q 3
2 . Finally, observe that the result is identical for ∂n0

∂R as long as we replace ρ by R in Eq.

(C.14).

Appendix D. Proof of Proposition 3

The ranking of the solution

To verify that h0 > hm, let us remember that (i) h0 solves φ(h0) = 0 (see Eq. (C.1)) with φ′(h) > 0

(see Eq. (C.2)) and (ii) hm = 1
2g

(
c

kP (ρR)

)2

(see Eq. (9)). Now, observe that

φ(hm) = P (ρR)− c
k
√

2ghm

(
1 + ρR

2hmδsAr

)
= − gk

2ρR(P (ρR))3

c2δsAr
< 0 (D.1)

Since φ′(h) > 0, we deduce that h0 > hm. From Torricelli’s formula (see Eq. (1)), we also know that

r = k
√

2gh. Therefore, if h0 > hm, we must also have r0 > rm. Finally, recall that at the steady state,
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the number of wells is given by n = ρR
r . Hence, if r0 > rm, we must have n0 < nm.

The rate of yield losses

Let us now concentrate on
∂∆−Y ield
∂θ with θ ∈ {c, k, Ar, δ, R, ρ}. This computation requires some

preliminary observations. First, from Torricelli’s formula (see Eq. (1)), Eq. (B.1) can be written as

P (ρR)− c
r0 −

c
(r0)2

k2gρR
δsAr

= 0 (D.2)

Moreover, we know from Eq. (10) that rm = c
P (ρR) . Inserting this quantity into Eq. (D.2), we obtain

P (ρR)− c
(
P (ρR)
c

) (
rm

r0

)
− ck2gρR

δsAr

(
P (ρR)
c

)3 (
rm

r0

)3
= 0 (D.3)

or after some simplifications:

ψ
((
rm

r0

)
, X
)

= 1−
(
rm

r0

)
− k2gρR(P (ρR))2

c2δsAr︸ ︷︷ ︸
=X>0

(
rm

r0

)3
(D.4)

Moreover, we observe that ∂ψ
∂(rm/r0) = −1− 2X

(
rm

r0

)2
< 0 and ∂ψ

∂X = −
(
rm

r0

)3
< 0.

Now, let us return to
∂∆−Y ield
∂θ . From our previous results and the definition of ∆−Y ield = 1−

(
rm

r0

)
, we

deduce that

sign

(
∂∆−Y ield
∂θ

)
= −sign

(
∂
(
rm/r0

)
∂X

)
sign

(
∂X

∂θ

)
(D.5)

= −sign
(
− ∂ψ
∂(rm/r0)�

∂ψ
∂X

)
sign

(
∂X

∂θ

)
= sign

(
∂X

∂θ

)
(D.6)

and by computation, we easily check that


∂X
∂c = − 2k2gρR(P (ρR))2

c3δsAr
< 0 ∂X

∂k = 2kgρR(P (ρR))2

c2δsAr
> 0

∂X
∂Ar

= −k
2gρR(P (ρR))2

c2δsA2
r

< 0 ∂X
∂δ = −k

2gρR(P (ρR))2

c2δ2sAr
< 0

(D.7)

Until now, it follows that

{
∂∆−Y ield
∂c < 0

∂∆−Y ield
∂k > 0

∂∆−Y ield
∂Ar

< 0
∂∆−Y ield
∂δ < 0 (D.8)

41



Concerning ∂X
∂R and ∂X

∂ρ , let us set w = ρR. It follows that

∂X

∂w
= k2g

c2δsAr

(
P (w)

2
+ 2wP (w)P ′ (w)

)
= k2gP (w)2

c2δsAr
(1 + 2εP (w)) (D.9)

We can therefore conclude that ∂X
∂R = ρ ∂X

∂w

∣∣
w=ρR

R 0 and ∂X
∂ρ = R ∂X

∂w

∣∣
w=ρR

R 0 if and only if εP (w) =

wP ′(w)
P (w) R − 1

2 evaluated at w = ρR or equivalently that

∂∆−Y ield
∂R R 0 and

∂∆−Y ield
∂ρ R 0 if and only if εP (w) R −1

2
(D.10)

The rate of increase in the water disposal cost

Since the number of wells is in both cases given by the net recharge ρR divided by the yield and since

∆−Y ield = 1−
(
rm

r0

)
, we can say that

∆+
Cost =

nm

no
− 1 =

ρR
rm

ρR
r0

− 1 =
ro

rm
− 1 =

1

1−∆−Y ield
− 1 =

∆−Y ield
1−∆−Y ield

(D.11)

If we now observe that
∂∆+

Cost

∂∆−Y ield
> 0, we can immediately say that sign

(
∂∆+

Cost

∂θ

)
= sign

(
∂∆−Y ield
∂θ

)
for all

θ ∈ {c, k, Ar, δ, R, ρ}

Appendix E. Proof of Proposition 4

Applying a tax of τ (h(t)) = cρR
2δh(t)sAr

per well, the instantaneous profit of a well owner under free

access (see Eq. (5)) becomes

Π = p(t)r(t)− c− τ (h(t)) = p(t)r(t)− c
(

1 + ρR
2δh(t)sAr

)
(E.1)

It follows that the dynamics of the open-access system (see Eq. (7)) are

 ṅ(t) = α
(
P
(
n(t)k

√
2gh(t)

)
k
√

2gh(t)− c
(

1 + ρR
2δh(t)sAr

))
sArḣ(t) = ρR− n(t)k

√
2gh(t)

(E.2)

If we now concentrate on the new open-access steady state, we find from the second equation that nm is

given by

nm =
ρR

k
√

2ghm
(E.3)
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with hm, which solves

P
(
nmk

√
2ghm

)
k
√

2ghm − c
(

1 + ρR
2δhmsAr

)
= 0

⇐⇒ P (ρR)− c
k
√

2ghm

(
1 + ρR

2δhmsAr

)
= 0 (E.4)

However, this last equation in the same as that defined under the optimal management water column

(see Eq. (23)). It then follows that the open-access steady state coincides with the optimal management

steady state under this tax rate.
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