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1 Introduction

The media landscape has evolved throughout history. From the press to radio, television and
the rise of the internet age, many past revolutions gave rise to concerns about news quality.
Nowadays, social media are under the spotlight. The idea that the online news market may
be worse than traditional media is puzzling as it arises in a highly competitive environment.
Standard theory would predict that competition enhances news precision. Has social media
metamorphosed the news market in a way that makes standard theory unapplicable?

While advertisement revenues and producers’ reduced cost of entry date back to more than a
century ago, online outlets brought something new: sharing. With social media, consumers play
an active role in spreading news’ article, raising their visibility, thereby producers’ advertisement
revenues. Hence, news producers behind ad-funded online outlets respond to new incentives.
Because of advertisement revenues, their articles now need to be shared online. In this sense,
the very presence of a news sharing network changes the effects of the previously existing market
environment. In this paper, I evaluate the performance of such ad-funded online outlets, focusing
on the incentives linked to sharing behaviors. Three dimensions of the market environment are
explored: the amount of private knowledge, the connectivity of the communication network and
the presence of competition. After studying the effects of the environment on the provision
of qualitative information, I question whether such outlets are welfare enhancing and propose
possible interventions.

I explore this question by introducing a general setup to represent the online news market.
The market is populated by consumers on one side and producers on the other. The agents
communicate about some state of the world. In addition to private signals, some consumers,
called influencers, come across news’ articles directly and can decide to share it on an exogenous
network to other consumers, called followers. Influencers care about sharing true news ; followers
read articles that influencers share and are not strategic. Given influencers’ sharing behavior,
producers decide on the quality of their outlet, i.e. the probability for an article from their outlet
to be true. Each producer publishes only one article. They do not chose articles’ content. They
only care about how many consumers view their article. While the number of influencers reading
a producer’s outlet is exogenous, the number of followers seeing their article is endogenous. The
producers’ incentive to invest thus results from the additional views a true article would bring
about as compared to a false piece of news, which would be shared less. When several producers
co-exist in the market, they compete through influencers to reach other consumers, as each
consumer is restricted to see only one article.

This model brings interesting insights. Even when consumers are not behavioral, the market
fails to deliver precise news. Therefore, incentives created by social media do not suffice to
induce qualitative online news, even in a market populated by rational and unbiased agents.
The market environment has counter intuitive effects on news quality: lack of private knowledge
is not substituted by better articles and the performance of a competitive market is tied to its
connectivity. Furthermore, the presence of news outlets has ambiguous welfare consequences,
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that not all interventions can overcome. These four results can be further discussed.

First, ad-funded online outlets tend to fail when informative news would be the most benefi-
cial. News quality is less valuable for a producer in an environment with low private knowledge:
either because the consumers are not well-informed by their signals, or because the state of the
world is ex ante very uncertain. The former effect results from consumers having difficulties
distinguishing true news from false information, leading them to treat any news article very sim-
ilarly. The latter result follows from the producers’ benefits being greater when the most likely
state of the world realizes, pushing up the ex ante investment.

Second, competition can be detrimental; its effects depends on the network connectivity. For
any market structure, high connectivity negatively affects news quality. A monopolist’s incentive
to invest vanishes as the network gets very dense: one node sharing would reach almost all other
consumers. The monopolist can thus create false content and rely on a few influencers receiving
an erroneous private signal to reach many followers. This does not follow through in competitive
markets. Producers cannot rely on these few influencers anymore; they need to be sufficiently
shared in order to survive in the network. The tension between coexisting articles in the network
indeed forces producers to compete inside the network to reach followers through influencers.

Yet, the effect of competition is ambiguous. Indeed, splitting the market might be detrimental
to investment, since the cost of investment does not depend on the size of the market served.
For instance, in a network arranged in pair, a monopolist could potentially reach twice as many
followers has a duopolist who would serve half as many influencers. As the connectivity increases,
competition of information inside the network is more biting and pushes the producers to increase
their investments. Therefore, below a connectivity threshold, competition is detrimental.

Third, the welfare value of ad-funded online news is ambiguous. Any equilibrium is Pareto
inefficient. I consider different measures of consumers’ welfare to further the analysis. Enter-
tainment – the utility derived from sharing – increases with news quality. To capture the value
of information, I introduce an additional action, a bet, in which consumers must match the true
state of the world. For symmetric priors, the market fails to let influencers take better decisions.
This does not rely on the presence of competition or the timing of the game. A producer has
no incentive to outperform a consumers’ private signal. Hence, the influencers are always as well
off following their private signal. Followers, however, might take better decisions if the market
is competitive as the network tends to filter out false articles.

Introducing a cost to the bet allows to analyze whether online news pushes consumers towards
action. As expected, there exists a range of costs for which online news indeed helps agents
betting when it is beneficial. More suprisingly, there also exists a range of costs for which news
outlets are detrimental. When an article contradicts agents’ private signal, news outlets can
discourage consumers to take the bet. Because articles are not more precise than private signals,
more agents are wrong than right to opt out.

Fourth, I propose several interventions. The first one relates to flagging false articles be-
fore influencers decide to share it. This reduces the value of producing false information and
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removes the bound placed on the news outlet’s precision. With flagging, news outlets let agents
take better decisions. Interestingly, competition dilutes the effect of flagging. Actually, for any
environment, there exists a level of flagging that makes competition detrimental. The second
intervention relates to certifying a news outlet’s quality. While this allows producers to inter-
nalize the effects of their investment on the influencers’ sharing strategy, news quality is still
bounded by the consumers’ private information. Finally, moving to subscription-based news
outlets has ambiguous welfare effects. The efficient level of investment in quality can be reached,
but consumers now need to pay for news that was previously financed by ads.

Related literature

I contribute to several strands of the literature. I particularly relate to theoretical works on news
markets, media economics and the spread of news in networks.

First, as to news markets, the existing theoretical literature accounts for the existence of
bad quality news in a competitive but unconnected world. Allcott and Gentzkow [2017] find
that uninformative news can survive if news quality is costly and if consumers cannot perfectly
infer accuracy or if they enjoy partisan news. My setup is similar in that quality is costly and
consumers cannot perfectly distinguish true from false articles. However, my mechanism does
not fundamentally rely on outlets’ quality being hidden. Furthermore, I introduce to such models
an explicit network of information sharing to catalyze the spread of information.

In such unconnected news markets, the ambiguous effects of competition between news
providers has been widely explored. Namely, Gentzkow and Shapiro [2008] find that compe-
tition is effective at reducing supply-driven biases, while its effects when demand-driven biases
are ambiguous. Consistently with this conclusion, other authors find that competition has am-
biguous effects when news consumers lack sophistication. For instance, Levy et al. [2017] study
how media companies can exploit consumers’ correlation neglect. They find that competition
reduces the producers’ ability to bias readers’ beliefs, but that diversity has a cost in terms of
optimal consumers’ responses. Hu and Li [2018] and Perego and Yuksel [2018] study how ratio-
nal inattention biases the provision of political information. Both find that competition inflates
disagreement. Chen and Suen [2016] also find that competition is detrimental to the accuracy
and clarity of news when readers endogenously allocate attention between outlets whose editors
are biased. Interestingly, my results on competition is not motivated by biases of either side of
the market.

Second, as to media economics, this paper relates in particular, to the influence of digital-
ization on media. Representative of this literature are the following papers. AndersonAnderson
[2012] combines empirical and theoretical insights to offer an overview of the ad-financed business
model in the internet age. Wilbur [2015] documents trends following digitalization for the mass
media and how their business models has evolved. Finally, Peitz and Reisinger [2015] review
various novel features resulting from new Internet media. I contribute to this literature by ex-
plicitly modelling one such new feature of online news market: shared content. I study its effects
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on producers incentives and equilibrium outcomes.

Note that Peitz and Reisinger [2015] briefly discuss how sharing decision might affect available
content and link it to more general media biases. In this perspective, Hu [2021] studies the
impact of media regulation in the digital age and finds that government regulation is rendered
less effective by media biases inherent to the digital age. Because their model does not take into
account any communication network, their analysis does not study interventions targeting the
sharing behavior of consumers. My intervention evaluations, in contrast, only accounts for such
incentives resulting from consumers’ sharing decisions.

Third, as to news in networks, a connected world has rarely been the setup for news market
models in the literature. To the best of my knowledge, only Kranton and McAdams [2020] study
the effect of communication networks on the quality of information provided on the news market.
My model is largely inspired by the setup they propose. While Kranton and McAdams [2020]
give a compelling argument on how a network of consumer can change a producer’s investment
incentives, their mechanism abstracts from the role of competition. Furthermore, they do not
address welfare effects of market outcomes. A key contribution of this paper is the introduction
of competition and welfare considerations to the model.

Following the cascade literature1, the recent working paper Hsu et al. [2019] provide opti-
mal conditions on a signal’s precision for a cascade to occur when sharing is endogenous and
strategic. This could, in term, relate to a producer’s objective, although no producer is featured
in their setup. However, just as Kranton and McAdams [2020], Hsu et al. [2019] is set in an
uncompetitive world. Finally, recent works explore the particular setup of learning on social
media. Bowen et al. [2021] study learning via shared news and find that polarization emerges
when agents hold misconceptions about their friends’ sharing behavior. They find that news
aggregators help curb polarization. Neither of these papers addresses the effects of competition
between news providers in a connected world.

The remainder of the paper is organized as follow. The general model is presented in Section
2. Section 3 analyzes the equilibrium resulting from a monopoly and a duopoly respectively.
Section 4 proposes a framework to assess welfare. Section 5 evaluates possible interventions.
Section 6 concludes. Further extensions are provided in the Appendices A,B, D and E. Appendix
C presents the proofs omitted in the main text.

2 Model

2.1 Environment

The market is populated by news’ producers on one side and news’ consumers on the other.
Consumers learn about an unknown state of the world ω ∈ {0,1} through news articles and

1This literature is studies learning in networks when agents learn from actions. See Bikhchandani et al. [1992],
Banerjee [1992] for their seminal work.
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private signals.2. There is a common prior across all agents, Pr(ω = 0) = w0. All agents are
Bayesian.

I denote the set of news’ consumers N . All consumers receive an informative private signal
ς = s about ω.These signals are i.i.d. among consumers with Pr(ς = w∣w) = γ for w = 0,1. I
further impose γ ≥ w0, so that consumers trust their private signal more than their prior.

In addition to private signals, the consumers can come across news articles in the following
ways: they can be exposed to it directly – in such a case they are called influencers and denoted
i; or they can read such news because an influencer shared it. If consumers are not influencers,
they are called followers and denoted f . All consumers are exposed to at most one article, but
some followers might be exposed to none. When I do not want to explicitly distinguish influencers
from followers, I denote the news’ consumers j.

The consumers are arranged on a regular network of degree d. Consumers are randomly
drawn to be influencers with probability b. Hence, all consumers, regardless of their role, have
the same number of random neighbors d. The network allows followers to see articles shared by
neighboring influencers. A follower is not exposed to any news if none of its neighbors shared
content – either because the neighbors are not influencers or because they decided not to share.
If several neighbors shared content from different sources, the article that a followers ends up
seeing is determined stochastically. The probability with which the follower sees a given source is
proportional to the number of neighbors sharing this source relative to the number of neighbors
having shared any article. Thus, the probability that f sees a given article u is:

Pr(f sees u∣A neighbors shared u,B neighbors shared) = A
B

For instance, say four of f ’s neighbors shared a piece of information, but only one of them
shared u, then, f sees u with probability one fourth, although f does see some piece of news
with probability one.

On the other side of the market, I consider a finite set of producers U . Each producer,
denoted by u, publishes exactly one article.3 Each producer reaches an influencer with the same
exogenous probability b

∣U ∣ . The producer chooses the overall quality of the news that is published.
However, he does not choose the article’s content, which is randomly determined. The content
of producer u’s article is denoted ηu = n.

Example. As a leading example throughout the exposition, I will consider vaccination. Vaccines
can either be safe (w = 0) or unsafe (w = 1). News’ consumers receive private signals, for instance
through the number of their friends having suffered side effects after a shot. In addition, agents
can read articles about the risks linked to vaccines. Producers all report on vaccines risk.

2w denotes the outcome of ω. For the remainder of the paper, random variables are denoted by greek letters,
while the outcomes of stochastic processes are denoted by latin letters.

3Therefore, I can abuse notation by also denoting articles by u.
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2.2 Timing, Objectives and Equilibrium Concept

All strategic interactions are assumed to be simultaneous.4 The only strategic agents in this
setup are influencers and producers.

The producers choose the quality of their outlet to maximize their profits. The quality of
outlet u is defined as the probability of documenting the true state of the world, xu ∶= Pr(ηu =
w∣w) for w = 0,1. Producers derive revenue from advertisement, hence from the visibility of their
outlet. Their revenue is thus defined as the share of the network that sees their article 5. Their
(total) cost is determined by cost function C. C is common to all producers. I denote c the
marginal cost function. I assume C increasing and strictly convex, i.e. c(x) > 0 and c′(x) > 0.
Finally, I assume that without any investment in quality, the outlet produces uninformative
content, that is, xu = 1/2. Furthermore, c(1/2) = 0.

Influencers like sharing true information and to dislike sharing false information. Accordingly,
they choose the probability with which they share an article. This can depend on the content
of the article they read and the private signal they received. The probability with which the
influencers share an article u whose content is n after having received private signal s is denoted
by zu∣n,s. Therefore, the influencers’ strategy is a vector: (zu∣n,s)(u,n,s)∈U×{0,1}2 ∈ [0,1]4∣U ∣. As
influencers want to share an article only when its content is truthful, they are assumed to
receive a positive payoff from sharing true information and a negative payoff when sharing false
information.6 Influencers have the following payoff from sharing:7

u(sharing article with content n∣ω = w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if n = w

−1 otherwise

They receive payoff 0 if they do not share.

I focus on Nash Equilibria. As will be clearly indicated, only some particular subset of all
NE will be discussed.

Following this game, we assume that a further non-strategic action takes place. Once the
strategic interactions are played out, consumers can take an action a ∈ {0,1} to match the state
of the world. I think of this as a financial bet, but it can capture a wider range of utility
derived from information. This action can depend on the content of the article they read (if any)
and their private signal. I assume that this bet has price r. I represent the case in which the
consumers cannot opt out of this bet with r = 0. The benefits from matching the state of the

4Comparisons between equilibria for simultaneous and sequential games when w0 = 1/2 are provided in the
Appendix E

5Intuitively, the revenues are scaled for size population because they relate to advertisement revenues. One
might expect advertisers to be interested in the portion of the population a given news outlet is able to reach.
Furthermore, with this representation, the model becomes scale-free. Finally, it allows their profits to be bounded
below 1

6This assumption can represent the interests of truth-seeking consumers. Implicitly, it also accounts for
wider concerns such as reputation or attention. In fact, Appendix B assumes that influencers seek attention for
themselves. The results are qualitatively similar.

7In Appendix A, we consider a more general payoffs. Most of the results follow through, but additional
equilibria might appear.
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world is assumed to be the same as their loss from a mismatch:

uj(aj ∣ω = w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if aj = w

−1 otherwise

Example. Producers reporting on vaccination risks only chose how many journalists to hire for
their outlets, but not what these journalists would report. The more journalists, the higher the
likelihood of reporting the true risks of vaccines. Furthermore, after sharing decision have been
made, and all uncertainty has resolved, all consumers take a bet about vaccines risk. We can
consider two bets: one from which consumers cannot opt out, for instance, whether or not to
vaccinate; and one from which consumers can opt out, e.g. whether to invest in a pharmaceutical
group, a homeopathy company, or not to invest at all.

2.3 Best Responses

2.3.1 Influencers’ Problem

Take an influencer i who received private signal s and read a news article from producer u having
content n. Let this influencer attribute prior probability xu to an article from u being true. Then,
the influencers expected utility from sharing is:

p(n, s;xu,w0) + (1 − p(n, s;xu,w0))(−1)

where p(n, s;xu,w0) is i’s posterior on the probability that u published a true piece of informa-
tion.

A piece of news is true if it matches the state of the world. Hence, the posterior is the
probability that the state of the world is the one prescribed by the news, given what was writ-
ten in the news and what the consumers themselves experienced from the world. That is,
p(n, s;xu,w0) ∶= Pr(ω = n∣η = n, ς = s). Using Bayes’ rule, we find:

Pr(ω = n∣η = n, ς = s) = Pr(η=n,ς=s∣ω=n)Pr(ω=n)
Pr(η=n,ς=s) = Pr(ω=n)Pr(ς=s∣ω=n)xu

∑w Pr(ω=w)Pr(ς=s∣ω=w)Pr(η=n∣ω=w)

Therefore:

p(0,0;xu,w0) = w0γxu
w0γxu+(1−w0)(1−γ)(1−xu) and p(0,1;xu,w0) = w0(1−γ)xu

w0(1−γ)xu+(1−w0)γ(1−xu)

p(1,0;xu,w0) = (1−w0)(1−γ)xu
(1−w0)(1−γ)xu+w0γ(1−xu) and p(1,1;xu,w0) = (1−w0)γxu

w0(1−γ)(1−xu)+(1−w0)γxu

As one would expect, all posteriors are increasing in xu. Furthermore, the probability for
a news to be true is higher if the influencer got a private signal that corresponds to what the
article reports. Finally, an article is believed more easily if it reports the most likely state of the
world: p(0,0;xu,w0) > p(1,1;xu,w0) for w0 > 1

2 .
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An influencer prefers sharing an article when its expected utility from doing so is greater
than the outside option 0. Therefore, i shares news n from producer u upon receiving signal s
when:

p(n, s;xu,w0) ≥ 1/2

It follows that the best response to news’ content n = 0 is:

(z∗u∣0,0(xu), z
∗
u∣0,1(xu)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if xu < t0
(b,0) if xu = t0
(1,0) if xu ∈ (t0, t̄0)

(1, b) if xu = t̄0

(1,1) if xu > t̄0

for any b ∈ [0,1], where t0 =
(1−γ)(1−w0)

(1−γ)(1−w0)+γw0
and t̄0 = γ(1−w0)

γ(1−w0)+(1−γ)w0
.

And the best response to news’ content n = 1 is:

(z∗u∣0,0(xu), z
∗
u∣0,1(xu)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if xu < t1
(b,0) if xu = t1
(1,0) if xu ∈ (t1, t̄1)

(1, b) if xu = t̄1

(1,1) if xu > t̄1

for any b ∈ [0,1], where t1 =
(1−γ)w0

(1−γ)w0+γ(1−w0) and t̄1 = γw0

γw0+(1−γ)(1−w0) .

For w0 ∈ (1/2, γ), t0 > t1 > t̄0 > t̄1: the influencers’ best response are weakly monotonic in
xu. Therefore, although zu = (zu∣0,0, zu∣1,1, zu∣0,1, zu∣1,0) is a four-dimensional object, its set of
undominated strategies can be represented on a line.

t0 t1 t̄0 t̄1
xu

zu = (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)

share: l never l if n = s = 0 if n = s if n = 0 or n = s always

Figure 1: Sharing Decisions of Influencers for Different Quality of News

In particular, z∗0,1 ≥ 0 if and only if z∗0,0 = 1 and z∗1,0 ≥ 0 if and only if z∗1,1 = 1. That is, one
shares an article reporting the opposite of their private signal only if one would be ready to share
this article, were it to report the same as their private signal. Furthermore, for w0 /= 1/2, z∗1,1 ≥ 0

if and only if z∗0,0 = 1 and z∗1,0 ≥ 0 if and only if z∗0,1 = 1. That is, one shares an article reporting
the least likely state of the world only if one would be ready to share this article, were it to
report the most likely state of the world, given the same (dis)agreement with private signals. It
follows that the best response to an article published by producer u, z∗u(x), can be represented
on the line connecting (0,0,0,0) to (1,0,0,0) to (1,1,0,0) to (1,1,1,0) to (1,1,1,1). Figure 1
represents how sharing decisions is affected by different news quality, and the monotone aspect
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of it; Figure 2 displays influencers’ best response. The same applies for each producer u.

t0 t1 t̄0 t̄1 1
(0,0,0,0)

(1,0,0,0)

(1,1,0,0)

(1,1,1,0)

(1,1,1,1) z∗u(x)

xu

zu

Figure 2: Best Response of Influencers as a Function of xu

2.3.2 Producers’ Problem

Consider a producer u. Let Rju take value 1 if consumer j sees producer u’s article. Assume
that u is facing influencers who have strategy z, while the other producers are investing x−u.
Then, the expected profits for producer u who invests to reach quality xu is:

E(∑j Rju∣xu;z,x−u)
∣N ∣

−C(xu) = E(Rju∣xu;z,x−u) −C(xu)

where the last equality follows from all consumers being ex ante identical.

The expected share of reader as a function of u’s investment in quality is found as follows. For
a random node to share the article from producer u requires: the consumer to be an influencer
– with probability b –, to come across u’s article – with probability ∣U ∣−1 – and to share. The
probability to share z depends on the news content n and the private signal s. A random
influencer coming across news n will receive private signal s = w with probability γ and s = −w
with probability 1 − γ. Thus the probability for a random node to share information content n
from producer u given state of the world w is:

pu∣w,n =
b

∣U ∣
(γzu∣n,w + (1 − γ)zu∣n,−w)

The ex ante probability that a consumer reads u’s article, whose content is n in state of the
world w represents the value of such article and is denoted Vu∣w,n. If the producer was alone,
this would simply be:

Vu∣w,n(z) ∶= Pr(j influencer) +Pr(j follower ∧ ≥ 1 j’s neigh. shared) = b + (1 − b)(1 − (1 − pw,n)d)

However, when the news producer u is not alone in the market, it is not enough that a
followers’ neighbor shared u’s article; this followers also needs to see u against all other producers
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−u’s articles. Therefore:

Vu∣w,n(z) ∶= Pr(j influencer) +Pr(j follower)Pr(≥ 1 j’s neigh. shared)Pr(j sees u against − u)

Pr(j sees u against −u) depends on the number of j’s neighbors having shared u against −u. The
number of j’s neighbors having shared −u depends on the content produced by other producers,
which we denote m ∶= (mv)v/=u. The ex ante probability that a consumer reads u’s article, whose
content is n in state of the world w, Vu∣w,n(z) is then:

Vu∣w,n(z) = E(Rju∣w,n) = ∑
m

E(Rju∣w,n,m)Pr(m∣w).8

Where (see Appendix C):

E(Rju∣w,n,m) = b

∣U ∣
+ (1 − b)

pu∣w,n

pu∣w,n + p−u∣w,m
(1 − (1 − pu∣w,n − p−u∣w,m)d)

denoting p−u∣w,m = ∑v/=u pv∣w,mv .

The probability for a follower to read information a has two factors. The former, pu∣w,n
pu∣w,n+p−u∣w,m

represents the expected share of followers u would get, conditional on them being reached by any
news, whereas the latter factor 1−(1−pu∣w,n−p−u∣w,m)d represents the probability of news reaching
followers. It means that sharing affects the producer’s revenue through two channels: the size of
the total readership and the portion of readers viewing a given producers. For instance, if the
influencers of a producers’ competitor start sharing more often, the total readership increases
but the portion of the readership viewing said producer decreases. The relative strength of this
two effects depends on the connectivity of the network d. Both factors are however increasing
in pu∣w,n. Hence, as long as true articles are shared more than false articles, i.e. zu∣n,n ≥ zu∣n,−n,
true information is more visible, no matter the outcome of the competitor.

Finally, the expected portion fo the network reached given an investment xu is:

E(Rjv ∣x) = w0[xuVu∣0,0(z) + (1 − xu)Vu∣0,1(z)] + (1 −w0)[xuVu∣1,1(z) + (1 − xu)Vu∣1,0(z)]

Because the profits are E(Rjv ∣xu) −C(xu), the maximization of profits implies:

x∗(z) = c−1(w0[Vu∣0,0 − Vu∣0,1] + (1 −w0)[Vu∣1,1 − Vu∣1,0]) ∶= c−1(∆Vu(z;x−u))

Because c′(x) ≥ 0, the equilibrium investment x∗(z) is (weakly) increasing in ∆Vu(z;x−u).
Thus, ∆Vu(z) denotes producer u’s incentive to invest. Section 3 analyzes the function shape
under more restrictive assumptions.

8Pr(m∣w) = ∏v∶mv=w xv ⋅∏v∶mv /=w(1−xv). For instance, with two other producers in addition to u, Pr((0,1)∣ω =

0) = x1(1 − x2).
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3 Equilibrium

In this section, I restrict my attention to some specific assumptions about the agents setup so
to characterize possible equilibria. In particular, I consider a non-competitive environment with
asymmetric priors; and a competitive market with symmetric priors. I say that an environment
is competitive when followers are restricted to see less articles than the amount available on the
market. Indeed, in such case, producers are forced to compete through influencers to capture fol-
lowers’ views. Because in this setup, I restrict consumers to receive only one piece of information,
I analyze the effects of competition using a duopoly.

3.1 Equilibrium without Competition

Let us assume only one producer on the market. For clarity purposes, I omit the u indice in this
section.

We can rewrite explicitly the producer’s best response:

∆V (z)/(1 − b) = w0 [(1 − p0,1)d − (1 − p0,0)d] + (1 −w0) [(1 − p1,0)d − (1 − p1,1)d]

= w0(1 − b(γz1,0 + (1 − γ)z1,1))
d − (1 −w0)(1 − b(γz1,1 + (1 − γ)z1,0))

d

+ (1 −w0)(1 − b(γz0,1 + (1 − γ)z0,0))
d −w0(1 − b(γz0,0 + (1 − γ)z0,1))

d

Let us now analyze the shape of such best-response:

Lemma 1. Shape of the Monopolist’s Best Response to Sharing

(i) x∗(z) is strictly decreasing in z0,1 and z1,0 .

(ii) x∗(z) is single-peaked in z0,0 (respectively, z1,1), with local maxima ¯z0,0 ¯z1,1 ∈ (0; 1].

(iii) There exists a non-empty set of priors W such that arg maxz x
∗(z) = {(1, ¯z1,1,0,0)} ∀w0 ∈

W and arg maxz x
∗(z) = {( ¯z0,0,0,0,0)} ∀w0 ∈ [0,1] −W

(iv) x∗(z) is continuous in z.

Figure 3 and 4 illustrate the shape of the producer’s best response. Because the influencers’
strategy is not a unidimensional object, I illustrate the shape of the producer’s best-response on
the set of influencers’ undominated strategy. As before, I represent the influencers’ strategy on
a line and map the corresponding image as if the argument was unidimensional. The resulting
function is non-monotonic. Each hump shaped segment is explained by the effect of the network.
At first, when few agents are sharing, every additional share reaches an almost constant number
of additional followers; because the probability that this share occurs after having issued a true
article is higher, true information gains much more followers than false information – the best-
response is increasing. But when enough shares have occurred, any additional share is likely to
reach followers that would have been reached anyways; hence the marginal value of the share
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Figure 3: Producer’s Best Response, x̄00 < x̄11
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Figure 4: Producer’s Best Response, x̄00 > x̄11

is decreasing, because of redundant path to followers in the network. Therefore, the number of
followers reached with a false article is increasing faster than those reached with true news; and
the best-response is decreasing. The two humps follow from the same mechanism applying in two
different cases: when news 0 is produced first, and then when news 1 is published. Subsequent to
this, the best response is decreasing. Agents there start sharing news that does not correspond
to their private signals. Therefore, the probability this concerns a false article is higher than
the probability that is applies to true information. It follows that false information accumulates
views faster than true news. The difference between the value of true and false information thus
decreases, making the best-response decreasing.

Now, recall that x∗ ≥ 1/2, as zero investment would lead to x = 1/2. Furthermore, t0 < t1 < 1/2.
Therefore, we can characterize the NE of the monopoly:

Proposition 1. There exists a unique Nash equilibrium. It displays positive investment and is
characterized by news’ quality xM = max{min{x∗(1,1,0,0), t̄0},min{x∗(1,1,1,0), t̄1}}

Proof. First, notice that any positive equilibrium investment has to achieve x ≤ t̄1. Indeed, x = t̄1
is enough to insure that the producer’s news is always share, so that any additional investment
would increase costs without increasing benefits. Furthermore, note that even if no investment
occurs, sharing can occur. Indeed, faced to completely uninformative news’ outlet, agents will
still share an article whose content matches their private signal, because the private signal is
informative. Therefore, any equilibrium displays z0,0 = z1,1 = 1; and the equlibrium will occur on
the decreasing part of the producers’ best response. Furthermore, note that x∗(1,1,1,1) = 1/2.
Indeed, if news gets systematically shared, the producer has no incentive to invest since true
news is treated as false news. Because the relevant portion of x∗(z) is strictly decreasing, while
z∗(x) is weakly increasing, any intersection has to be unique. Because both best responses are
continuous and that in z = (0,0,0,0) the producer’s best response is above the value ensuring
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some sharing, while in z = (1,1,1,1), the producer’s best response is below the value ensuring
full sharing, the intersection must be unique. Therefore, a NE must exist and is unique.
Because the cost function will determine different levels for x∗(1,1,0,0) and x∗(1,1,1,0), we
need to understand how these values compare to t̄0 < t̄1. If x∗(1,1,0,0) < t̄0, from the shapes
of the best responses, we have x∗(1,1,1,0) < x∗(1,1,0,0) < t̄0 < t̄1 so that xM = x∗(1,1,0,0).
Indeed, in such a case, because xM < t̄0, the influencers will share an article only if its content
matches their private signal: z∗(xM) = (1,1,0,0). This is also optimal for the producer, as, by
definition c(xM) = c(∆V (1,1,0,0)). Furthermore, no other investment is optimal as c is strictly
increasing. The same reasoning applies for t̄0 < x∗(1,1,1,0) < t̄1. Now, consider t̄0 < x∗(1,1,0,0)
but x∗(1,1,1,0) < t̄0. Then, xM = t̄0. Indeed, as x∗(1,1,1,0) < t̄0 < x∗(1,1,0,0), and because
x∗(z) continuous, there must exist some z∗0,1 such that c−1(∆V (1,1, z∗0,1,0)) = t̄0. It is easy to
verify that this constitutes a NE. The same reasoning applies for t̄1 < x∗(1,1,1,0).

t0

t1

t̄0

t̄1

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)

x∗(z)

z∗(x)

z

x

Figure 5: Investment Eq. with xM = t̄0

t0

t1
t̄0

t̄1

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)

x∗(z)

z∗(x)

z

x

Figure 6: Investment Eq. with xM =
x∗(1,1,1,0)

Figure 5 and 6 illustrate two cases. Figure 5 shows the equilibrium with x∗(1,1,0,0) > t̄0 >
x∗(1,1,1,0). Figure 6 shows the equilibrium with t̄1 > x∗(1,1,1,0) > t̄0.

There are several important points to note on these results. First, xM < maxz{x∗(z)}, so
that maximal veracity is never achievable. Furthermore, very high connectivity is generally bad
for investment. In fact:

Proposition 2. ∆V (z;d) is single peaked in d, i.e.: ∃d̄ ∶ ∆V (z;d) ≥ ∆V (z;d′) ≥ ∆V (z; d̄)∀d >
d′ > d̄ and ∆V (z;d) ≤ ∆V (z;d′) ≤ ∆V (z; d̄)∀d > d′ > d̄

In particular notice that ∆VM(z) → (2w0 − 1)1z00>0,z11=0 when d → ∞. This means that as
the network grows more connected, the producer’s incentive to invest vanishes. Take a complete
network for instance, that is a network in which every node is connected with every node. In
such a context, a monopolist would need to convince only a single influencer to share in order to
reach every single consumers.
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3.1.1 The role of the prior about the state of the world

An increase in the prior probability of witnessing a 0 state of the world has ambiguous effects,
although it generally leads to an increase in equilibrium investment for both marginal and sub-
stantial increases in w0.

First, we notice the following effects of w0 on the agents’ best responses:

Lemma 2.

(i) w0 as an ambiguous role on the influencers’ best response. The thresholds t0 and t̄0 decrease
when w0 increase while t1 and t̄1 increase with w0. In fact, t0 ∈ [ (1−γ)2

(1−γ)2+γ2 ,1 − γ] and

t̄0 ∈ [1/2, γ] while t1 ∈ [1 − γ,1/2] and t̄1 ∈ [γ, γ2

γ2+(1−γ)2 ]

(ii) w0 has a (weakly) positive effect on the producer’s incentive to invest. In fact, it has the
biggest effect in z = (1,0,0,0) while it has no strict effect in z = (0,0,0,0), z = (1,1,0,0)
and z = (1,1,1,1).

Proof. See Appendix C

Notice that the producer’s incentive to invest increases with w0. Indeed, because influencers
are easier to convince if the article content corresponds to the most likely state of the world, true
news is always more beneficial to the producer when the state of the world is 0. Therefore, his
expected profits from a given investment increases when the most beneficial state becomes more
likely.

Because the requirement in order for influencers to share has an ambiguous reaction to a
change in w0, the overall effect is ambiguous. However, we can assess the condition under which
the overall equilibrium investment decreases in more uncertain situation.

Corollary 1. For any increase in w0, the inequalities detailed in Proposition 1 do not change,
so that the maximal equilibrium investment xM increases iff xM /= t̄0.

Proof. See Appendix C

Interestingly, a more certain state of the world generally leads to better provision of informa-
tion. It also means that the inefficiencies linked to monopolist revenues from ads are the highest
when quality information is the most useful: for very uncertain state of the world. A proper
setup to formally study such inefficiencies is introduced in Section 4.

3.2 Equilibrium with Competition

I now assume that two producers coexist on the market. However, for tractability purposes, I
restrict my attention to w0 = 1/2. In this case, t0 = t1, that I can now denote t; likewise, t̄0 = t̄1,
now denoted t̄. Therefore, the set of undominated strategy cannot necessarily be projected on
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a line. I thus select the undominated strategies zu such that zu∣0,0 = zu∣1,1 and zu∣0,1 = zu∣1,0.
Because the both types of content are ex ante as likely, it is intuitive that both types of news’
content would be treated similarly. I denote the strategy upon receiving a news’ article congruent
with one’s private message by zuT ; while the probability of sharing an article whose content is
opposite to one’s private signal is denoted zuF . Likewise, rather than pu∣0,0 = pu∣1,1, I denote the
probability with which any article matching the state of the world is shared by puT ; puF becomes
the probability with which a false information is shared.

Let me denote the two competitors by u and v. We rewrite producer u’s best response given
v’s investment and sharing strategy z:

∆Vu(z;x∗v) = (1 − b)[x∗v(z)Sxv + (1 − x∗v(z))S1−xv]

Where:

Sxv =
puT

puT + pvT
(1 − (1 − puT − pvT )d) −

puF
puF + pvT

(1 − (1 − puF − pvT )d)

S1−xv =
puT

puT + pvF
(1 − (1 − puT − pvF )d) −

puF
puF + pvF

(1 − (1 − puF − pvF )d)

Because E(Rju∣ω = w,ηu = w,ηv = m) ≥ E(Rju = 1∣ω = w,ηu = −w,ηv = m), we know that
Sxv ≥ 0, S1−xv ≥ 0, so that ∆Vu(z;x∗v) ≥ 0.

The shape of ∆Vu(z;x∗v) in zu is similar to the monopoly case:

Lemma 3. Shape of the duopolists’ best response to sharing

(i) x∗u(z;xv) is strictly decreasing in zuF .

(ii) x∗u(z;xv) is single-peaked in zuT ; the function is maximized for some ¯zuT ∈ (0; 1].

(iii) For any xv, investment occurs as long as zuT > zuF , while x∗u(z;xv) = 1/2 for zuT = zuF

(iv) x∗u(z;xv) is continuous in zu.

Proof. See Appendix C

Furthermore, ∆Vu(z;x∗v) also depends on zv and xv. In fact:

Lemma 4. (i) ∆Vu(zu, zv;xv) relation with zv depends on d. For small d, it is decreasing for
any zu, zv. For large d, it is decreasing for zv such that p2

vF > puT puF . (ii) ∆Vu(zu, zv;xv) is
decreasing in xv for any zuX ≤ zvX . (iii) ∆Vu(zu, zv;xv) is continuous in zv and xv.

Proof. See Appendix C

I can now characterize the NE. I call symmetric equilibria any equilibrium in which zu = zv and
xu = xv. Note that in this case, ∆Vu = ∆Vv. I denote this common function ∆V D((zT , zF ), x).
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Proposition 3. The only symmetric equilibrium features positive investment and is characterized
by news precision xD = arg minx∈[1/2,γ] ∣∆V D((1,0);x) − c(x)∣.

Proof. First note that any equilibrium news’ quality lies in [1/2, t̄]. Indeed, recall that ∆V D((0,0), x) =
∆V D((1,1), x) = 0. Clearly, for any x > t̄, c(x) > 0 = ∆V D(z∗(x), x), which would be suboptimal
for the producer.

First I prove that a symmetric equilibrium exists. Then, I show it is unique.

Consider two cases:

1. If c(t̄) > ∆V D((1,0), t̄), then ∃x̃ ∈ [1/2, t̄]: c(x̃) = ∆V ((1,0), x̃). Indeed, recall that c is
weakly increasing in x and ∆V D((1,0), x) strictly decreasing in x. We also notice that
c(x̃) = ∆V ((1,0), x̃) while c(x̃) = ∆V ((1,0), x̃). Because both c and ∆V are continuous in
x, they must intersect on [1/2, t̄]. Clearly, (x̃, (1,0)) is a NE.
This equilibrium is unique. First notice that for z = (1,0), the intersection must be unique
given the shape of the respective best responses. Let us show that no other undominated
sharing rule can be consistent with an equilibrium in this case. A sharing rule (z,0) with
z < 1 would require x < 1/2, which is impossible. A sharing rule (1, z) with z > 0 would
require x ≥ t̄. This cannot occur in equilibrium since, for any z ∈ [0,1], ∆V D((1, z), t̄) <
∆V D((1, z), xD) = c(xD) < c(t̄). Hence, c(t̄) > ∆V D((1, z), t̄), so that x∗((1, z), t̄) < t̄ for
any z.

2. If c(t̄) < ∆V D((1,0), t̄), then ∃z̃F ∈ [0,1]: c(t̄) = ∆V ((1, z̃F ), t̄). Indeed, by assumption
c(t̄) < ∆V D((1,0); t̄) and we know that c(t̄) > 0 = ∆V D((1,1); t̄). Because ∆V D(z;x) is
continuous in zF , there must exist such z̃F . Because V D(z;x) is strictly decreasing in zF ,
this equilibrium is unique.

∆V D((1,0), x)

c(x)

xD

1/2

t̄

c,∆V D

x

t

t̄

(0,0) (1,0) (1,1)

x∗(z, xD)

z∗(x)

xD

z

x

Figure 7: Illustration of a case for which xD ∈ (1/2, t̄)
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Figure 7 illustrates the first case of the proof, i.e. when c(t̄) > ∆V D((1,0), t̄). It means
that there exists an intersection between c(x) and ∆V D((1,0), x) in the interval (1/2, t̄) (left
panel). Now, given that −v invests xD, v′s best response crosses the influencers’ best response
in ((1,0), xD)). Therefore, it is a NE.

c(x) ∆V D((1,0), x)

∆V D((1, zDF ), x)

1/2

t̄

zF ↗
xD

c,∆V D

x

zDF

t

t̄

(0,0) (1,0) (1,1)

x′↗

z∗(x)

x∗(z, t̄)

xD

x∗(z, x′)

z

x

Figure 8: Illustration of a case for which xD = t̄

Figure 8 represents the second case of the proof, i.e. when c(t̄) < ∆V D((1,0), t̄). In this
case, c(x) lies completely on the left of ∆V D((1,0), x), without ever intersecting in the interval
x ∈ (1/2, t̄) (left panel). Equivalently, u’s best response to z given that v invests x < t̄ does not
intersect the influencers’ best response z below t̄ (right panel). This means that there does not
exist a NE in which z∗ = (1,0). However, if zF > 0, ∆V D(z, x) is shifted to the left in the space
(∆V D, x), so that it now crosses c(x) (left panel). Furthermore, because x′ increases to t̄, the
curve x∗(z, x) is shifted downwards in the space (z, x) (right panel). Still, note that ((1,0), t̄)
is not an equilibrium as ∆V D((1,0), t̄) > c(t̄). However, for zDF > 0, ∆V D(1, zDF ), t̄) = c(t̄); we
found the NE.

While the symmetric equilibrium is unique, asymmetric equilibria still exist and are not
generally unique.

Remark 1. If the cost function is linear, there are no equilibrium with xu /= xv and (xu, xv) ∈
(1/2, γ) as long as c(x)’s slope is different from S.

Proof. Assume xD ∈ (1/2, γ). Assume that there exists an xu > xv, with (xu, xv) ∈ (1/2, γ).
Then, c(xu) = ∆Vu((1,0), (1,0), xv) and c(xv) = ∆Vv((1,0), (1,0), xu), so that c(xu) − c(xv) =
S(xu − xv), which is impossible if c has a slope different from S.

3.2.1 Effects of Competition

For cases to be comparable, we restrict our attention to the monopoly equilibrium with w0 = 1/2.

We can now compare the symmetric equilibrium xD with xM . Depending on the parameters
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d, b, γ, xD > xM or xD < xM . We compare the two types of markets under the lights of
connectivity and signal precision in particular.

The Role of Connectivity

Because xM(d) ≥ xD(d) if and only if ∆VM(z;d) > ∆V D(z, xD;d), we mainly focus on ∆VM(z;d)
and ∆V D(z, xD;d) in this section.

I begin by presenting two representative cases, d = 1 and d→∞, to illustrate the mechanism at
stake before formally proving the principal result. Take d = 1. Then, there is no real competition
of information inside the network. The network can be represented by isolated pairs of nodes,
and a producer reaches portion of followers exactly proportional to the number of influencers
who shares. Therefore, producers’ incentive to invest is proportional to the number of influencers
they would convince to share, as they would get exactly one more view from the one follower
connected to each "convinced influencer". Because the monopolist has initially access to more
influencers than the duopolists – 2 against 1 – his incentive to invest is higher by a factor of two.
We indeed have:

∆VM(z; 1) = (1 − b)(2γ − 1)(zT − zF ) > (1 − b)1
2(2γ − 1)(zT − zF ) = ∆V D(z, x; 1) ∀zT > zF

Now take d → ∞. This requires the network to be infinite. Because the finiteness of the
network is not essential to our specification, let us assume, for convenience, that ∣N ∣ → ∞, and
that d grows as fast as ∣N ∣. Having d → ∞ means that all nodes are connected to each other,
so that all followers are sure to be reached by at least one news as soon as the probability that
sharing occurs is positive, however arbitrarily small. For a monopolist, the incentive to invest
then vanishes, since having only one influencer (out of an infinity) sharing is enough for the
entire network to be reached. It is quite the opposite in a duopoly. Because in this case, the
competition of two coexisting information is all that matters for the producers, the incentive
for the producer is proportional to the ratio of his influencers sharing, to all sharing influencers,
which is positive and does not depend on d. We indeed have;

∆VM(z;∞) = 0 < (1 − b) (2γ−1)(zT−zF )
zT+zF = ∆V D(z, x;∞) as (1 − ε)d → 0 ∀ε > 0

The comparison between monopoly and duopoly investments’ thus relies on a tradeoff between
the two effect described above: on the one hand, as seen when d=1, because the quantity of
influencer a producer reaches is exogenous, competition gives less "seeds" (influencer) to each
producer; then the share of the network each producer could reach, even in the best case scenario,
is lower, and so becomes his incentive to invest. On the other hand, as seen when d → ∞,
coexistence of competing news on the network itself pushes the producer to convince as many
influencers as possible, and not only a few seeds who can freely spread the news. Which of these
two forces dominates is linked to d.

Theorem 1. There exists a unique threshold d̄ such that xM(d) ≥ xD(d) for all d < d̄ and
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xM(d) ≤ xD(d) for all d > d̄

Proof. Define DV (d) ∶= ∆VM (z;d)−∆V D(z,x;d)
1−b . First, notice it that for d = 1, DV (d) > 0; however

for d→∞, DV (d) < 0. Therefore, there must exist some d0 such that DV (d0) ≥ 0 >DV (d0 + 1).
All that is left to do is to show that such d0 is unique. This is the case because if DV (d1) >
DV (d1 + 1) for some d1, then DV is decreasing for all subsequent d > d1. (See Appendix C for
the details).

Note that the threshold d̄ depends on the parameters b, γ. As a rule of thumb, higher b and
lower γ pushes d̄ downward.

Remark 2. (Preliminary) A further increase in competition, beyond two producers, is either
always detrimental, or detrimental for sparser networks.

Proof. Take any competition with ∣U ∣ competitors and a symmetric incentive to invest. Add one
producer u′. The difference in the incentive to invest between the two can be proportional to:

∑
m

Pr(m)
⎧⎪⎪⎨⎪⎪⎩
[ puT
puT+p−uM

(1 − (1 − puT+p−uM
∣U ∣ )d) − puF

puF+p−uM
(1 − (1 − puT+p−uM

∣U ∣ )d)]

−x[x puT
puT+pu′T+p−uM

(1 − (1 − puT+pu′T+p−uM
∣U ∣+1 )d) − puF

puF+pu′T+p−uM
(1 − (1 − puT+pu′T+p−uM

∣U ∣+1 )d)]

− (1 − x)[ puT
puT+pu′F+p−uM

(1 − (1 − puT+pu′F+p−uM
∣U ∣+1 )d) − puF

puF+pu′F+p−uM
(1 − (1 − puT+pu′F+p−uM

∣U ∣+1 )d)]
⎫⎪⎪⎬⎪⎪⎭

Whose sign is positive in d = 1, meaning that the incentive to invest with ∣U ∣ + 1 producer is
smaller in the symmetric case than the incentive to invest with ∣U ∣ producers. The expression’s
sign depends on the parameters for d→∞.

The Role of Signal Precision

Proposition 4. (i) When the influencers get perfectly informative private signal, monopoly
yields higher investments than duopoly.

(ii) When the influencers get perfectly uninformative private signal, neither a monopoly nor a
duopoly would feature any investment.

Proof. (i) When γ → 1, note that the set of the influencers’ best response reduces to {(1,0)}.
Then, we have:

∆VM((1,0); 1) = (1−b)(1−(1−b)d) > (1−b)1
2x(1−(1−b)

d)+(1−x)(1−(1−1
2b)

d) = ∆Vv((1,0), x; 1)

Because 1−(1−b)d

1−(1− 1
b
)d

> 1−x
1− 1

2
x
∀x ∈ [0,1].

(ii) When γ → 1
2 , pT = pF for any z, so that the incentive to invest vanishes on both types of

market: ∆VM(z; 1
2) = 0 = ∆Vv(z, x; 1

2)
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When the signal is perfectly informative, influencers only share true information. Then, the
monopolist has the highest possible incentive to invest: false information is worthless; with true
information, he reaches all the followers the network allows him to reach. For the duopolist, false
information is also worthless, but true information is less beneficial. Indeed, if the competitor
released true information, they together reach the same portion of followers as the monopolist,
but they split this audience in two; if the competitor released false information, the duopolist
gets the whole share of followers he reaches, but he reaches less followers than the competitor,
given that he is read by less influencers.

When the signal is perfectly uninformative, the result is very intuitive: as the private signal
is noisy, the agents are not able to tell true from false information, so that they treat both type of
news without accounting for their private signal. Because the game is simultaneous, the producer
does not internalize the effect of his investment on the consumers’ prior, so that no investment
is featured in equilibrium.

Numerically, it seems that if b or d are high, there exists a threshold γt(b, d) such that duopoly
is yielding a higher investment than monopoly for any private signal with precision γ ∈ [1

2 , γ̄t].
Furthermore, as a rule of thumb, it appears that γt(b, d) exists as soon as bd ≈ 4, roughly. Further
analysis is required.

4 Welfare

So far, I have only been interested in the market outcomes, as measured by investment. Welfare
has not been addressed. While the welfare criteria are introduced below, let us start by noting
that the market outcome is inefficient.

Proposition 5. Any equilibrium outcome on the news market with revenues derived from ads is
Pareto inefficient

Proof. Take the case of a monopoly, with equilibrium e∗ = (x∗, z∗). Define xc(z; e∗) as the level
of news quality that makes a consumer whose sharing decision is z indifferent between (xc, z)
and e∗. Likewise, define xp(z; e∗) as the level of news quality that insures to the producer
faced with sharing decision z the same revenue as e∗. If ∂xc

∂z < ∂xp

∂z
9, there is room for Pareto

improvement since the consumer requires less investment to marginally increase their sharing
than the producer is ready to offer for the same marginal increase in sharing. Now, using the
FOC of equilibrium, we know that 0 ≤ ∂xc

∂z < ∞ while ∂xp

∂z → ∞. The same reasoning applies to
duopolists.

9We abuse notation here in order to keep the intuition as clear as possible. While z is a vector, recall that,
when x increases, the consumers would first share the most likely congruent news, then any congruent news, then
the most likely news anyways, and then any news. Therefore, with ∂z, we mean to designate a marginal change
in the sharing probability in the relevant dimension. So for instance if z=(1,0,0,0), ∂z is actually ∂z1,1; if
z = (0.5,0,0,0), then we mean ∂z0,0.
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To analyze the welfare resulting from this game, I propose two approaches. The first one
relates to the entertainment purposes of possible sharing behavior. In this sense, only influencers
and producers are part of the analysis. The influencers’ decision to share an article depends on
the utility of sharing as defined above. However, this does not capture how informative the
article was. In particular, it does not allow us to judge whether agents are making, on average,
better choices. To address this question, I use the expected benefits from the financial bet
introduced above. This allows us to analyze whether, on average, agents are able to take better
decision; as well as whether the information contained in articles published in online outlets that
derive revenues from advertisement can motivate agents to take actions they would have opted
out from, were they informed only privately. Furthermore, this measure of welfare can reflect
followers’ well-being as well.

4.1 Framework of Analysis

4.1.1 Sharing utility

As developed above, the expect utility from sharing news’ content n after private signal s is
2p(n, s;xu,w0)−1. Therefore, the expected utility of an influencer reading an article from u and
who plays strategy zu is:

E(u(zu)) = ∑
(n,s)

zu∣n,s(2p(n, s;xu,w0) − 1)Pr(n, s)

= ∑
(n,s)

zu∣n,s[xuPr(s∣ω = n)Pr(ω = n) − (1 − xu)Pr(s∣ω /= n)Pr(ω /= n)]

For any strategy for which the influencers shares at least sometimes, this expected utility is
strictly increasing in xu.

It naturally follows that the utility of a random influencer is thus ∑u 1
∣U ∣E(u(zu)); while the

ex ante utility of a random consumer is: ∑u b
∣U ∣E(u(zu))

4.1.2 Consumers’ Bet

Conditional on participating to the bet, the consumers’ payoff structure of resembles that of
sharing. In particular, for influencers, the matching decision will follow the same threshold rule
as the sharing decision: the influencer will bet what is expressed in the article if the probability for
the true state of the world to correspond to the news is greater than 1/2. When p(n, s;xu,w0) =
1/2, the influencers are indifferent between betting the news’ content or its opposite. In order
to keep consistency, we assume the following tie rule10: ai(n, s) = n is played with probability
zu∣n,s.11 By a slight abuse of notation, we refer to this strategy as zu∣n,s

10Because when indifferent between several strategies, by definition, their utility is equal among all strategies,
this assumption does not influence the welfare analysis.

11Formally, we define E(1ai=n∣η=n,ς=s) = zu∣n,s, so that E(1ai /=n∣η=n,ς=s) = 1 − zu∣n,s.
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Despite the similarity in strategies, there is a key difference with respect to sharing decision:
the influencer’s expected payoff with the bet is zero if and only if p(n, s;xu,w0) = 1/2, while it
is null for any p(n, s;xu,w0) ≤ 1/2 when the influencer is bounded to choose between sharing or
the outside option 0. This difference influences the respective expected utilities and the role of
xu on it. Indeed, the expected utility from this betting strategy is:

E(ui(zu)) = ∑
n,s

(2zu∣n,s − 1)[xuPr(s∣ω = n)Pr(ω = n) − (1 − xu)Pr(s∣ω /= n)Pr(ω /= n)]

We now notice that this utility is not necessarily increasing in xu. To understand this, we can
notice that an outlet that would systematically report an erroneous content, i.e. xu = 0, would
lead to no sharing, and so no utility from it; while it would be perfectly informative as betting
the opposite than the article argues would always ensure to correctly match the state of the
world.

In addition, we need to define the betting decision of followers. All consumers share the same
preferences and priors; however, in competitive markets, the precision of articles received by
followers is higher than that of the outlets that issues them. Indeed, as true articles are shared
more, they have a higher probability to reach a follower than false articles. Under the assumption
that followers are sufficiently sophisticated to internalize the sharing behavior of influencers, they
start betting what is expressed by an article they would read for lower precision than influencers.
The decision rule can be defined implicitly as zf

u∣n,s = 1 when the expected utility from betting
the news content is higher than that from betting the private signal.12 Consistently with the
action of influencers, we assume that followers play af(n, s) = n with probability zf

u∣n,s.

Hence, conditional on receiving some news’ article, the expected utility from the follower’s
strategy is:

∑
(u,n,m,s)

(2zf
u∣n,s − 1) [xuPr(m,s,ω = n) pu∣n,n

pu∣n,n+p−u∣n,m
− (1 − xu)Pr(m,s,ω /= n) pu∣−n,n

pu∣−n,n+p−u∣−n,m
]

where, as before, n is the content created by the producer seen u, while m denotes the outcome
for all other producers −u.

When receiving no news’ article, a follower, who trusts their private signal more than their
prior by assumption, will simply bet according to their private signal. Hence, conditional on not
receiving any news’ article, the expected utility from the follower’s strategy is simple 2γ−1. This
happens with probability:

Pr(f sees ∅) = ∑
w
∑
n,m

(1 − pu∣w,n − p−u∣w,m)dPr(n∣w)Pr(m∣w)Pr(w)

If agents cannot opt out of the bet, or if the bet has a free cost of entry r = 0, the expected
12That is:

zf
u∣n,s

= 1⇔∑m xuPr(m,s∣ω = n)
pu∣n,n

pu∣n,n+p−u∣n,m
Pr(ω = n) − (1 − xu)Pr(m,s∣ω /= n)

pu∣−n,n
pu∣−n,n+p−u∣−n,m

Pr(ω /= n) > 0
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benefits from the bet is defined for a random consumer as:

E(u(a)) = b

∣U ∣ ∑u
E(ui(zu)) + (1 − b)(2γ − 1)Pr(f sees ∅)

+ (1 − b) ∑
u,n,m,s

(2zf
u∣n,s − 1) [xuPr(m,s∣ω = n) pu∣n,n

pu∣n,n+pu∣n,m
[1 − (1 − pu∣n,n − p−u∣n,m)d]Pr(ω = n)

− (1 − xu)Pr(m,s∣ω /= n) pu∣−n,n
pu∣−n,n+p−u∣−n,m

[1 − (1 − pu∣−n,n − p−u∣−n,m)d]Pr(ω /= n)]

To understand whether news drives agent to take a bet they would have otherwise opted
out from, consider a cost of entry r > 0. Agents participate to the bet if E(uj(a)) ≥ r, where
E(uj(a)) incorporate a consumer’s role, and whether they encounter an article. The net benefits
are E(uj(a)) − r.

4.2 Welfare for symmetric priors

The framework proposed above makes welfare quantifiable for all agents. By design, the equi-
librium outcome for any type of actor is bounded between 0 and 1. Therefore, these values are
comparable without any need to resort to exogenous weighting factors.

In this section, I evaluate the welfare benefits from news production when w0 = 1/2. and
compare different market structure. Furthermore, I discuss the potential benefits from competi-
tion.

First, I study whether the presence of news articles brings welfare to consumers by increasing
their expected gains from betting. This would allow consumers to take better decisions.

Proposition 6. When there is no state of the world ex ante more likely:

(i) Influencers are not brought to better decisions by news articles.

(ii) Followers take better decisions if and only if the market is competitive and xD > γ−
√
γ(1−γ)

2γ−1 .
The maximal gain from the bet is still bounded by the precision of their private signal.

Proof. See Appendix C

With w0 = 1/2, the news quality in equilibrium is such that x∗ ≤ t̄. Influencers are thus either
better off betting their private signal, or indifferent between betting their signal or the news
content. Therefore, news’ outlets are not improving on their choice. In a competitive market
however, followers might be better off following the news rather than their private signal. With
competition, true news is more visible as the network filters out false articles. This raises the
quality of the articles read by followers; if the news quality is sufficiently close to t̄, followers take
better decisions by trusting news’ articles.

The welfare consequences of competition can now be assessed more carefully, by comparing
consumers’ expected gains from betting in a monopoly and a duopoly.
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Theorem 2. (Preliminary) xD > xM is neither sufficient nor necessary for competition to be
welfare improving.

Proof. To appear in further versions

When considering the total welfare effect of competition, both sides of the markets have
to be considered. Influencers are not made better off and their quantity does not change in
expectation. Followers might be better off if xD is close enough to t̄; however, the number of
followers encountering an article might be affected by competition. As influencers share more
types of news, more followers come across possibly informative news, but the least informative
becomes the news, as the network fails to filter out wrong articles. Producers split their readership
while the total production cost doubles. Therefore, the effect of competition on welfare depends
on the level of news quality, the connectivity of the network and the ratio of influencers in the
population.

Finally, I study whether news’ outlets help consumers better decide whether to participate
to the bet.

Proposition 7. When there is no state of the world ex ante more likely, news’ outlets have
ambiguous welfare effects on the agents’ capacity to decide to enter the bet.

(i) if the entry cost for the bet is high, that is r ∈ (rs, r̄], news outlets help influencers decide
whether to enter the bet;

(ii) if the entry cost for the bet is low, that is r ∈ [r, rs], news outlets reduce influencers’ capacity
to decide to enter the bet.

where r = 2
γ(1−x)

γ(1−x)+(1−γ)x − 1; rs = 2γ − 1; r̄ = 2 γx
γx+(1−γ)(1−x) − 1.

Similar thresholds exist for followers if the market is competitive and xD < γ−
√
γ(1−γ)

2γ−1 .

Proof. Again w0 = 1/2. Let us compare the decision to enter the bet with and without news.
Without news, all consumers take the same action: they opt out of the bet if r > rs and enter
the bet for r ≤ rs. With news, influencers would opt out for r > r̄, enter following any news with
r ≤ r and enter only for n = s with r < r ≤ r̄. Their behavior changes only in the interval [r, r̄].

• For r ∈ (rs, r̄], news articles push agents to enter the bet. All agents with n = s place a
bet. Given any state of the world, there are γx agents receiving n = s corresponding to the
right state of the world, i.e. who win the bet; and (1 − γ)(1 − x) influencers who lose the
bet. As γx > (1 − γ)(1 − x), there are more winners than losers.

• For r ∈ [r, rs], news articles discourage agents to enter the bet. All agents with n /= s opt
out. Given any state of the world, there are (1 − γ)x agents receiving n /= s who had the
wrong private signal so who are better off opting out; and γ(1 − x) influencers who are
worse off. As γ(1 − x) > (1 − γ)x, there are more losers than winners.
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Figure 9: Illustration of Proposition 7’s proof

4.3 Welfare for asymmetric priors

Corollary 2. In uncompetitive markets, for any prior on the state of the world:

(i) Consumers are brought to better decisions if x∗ > γ.

(ii) The betting gains are still bounded by the precision of the private signal. In particular,
E(uj(a)) ∈ [2γ − 1; 2γ−1

1−2γ(1−γ)]

5 Evaluation of Interventions

In this section, I study three feasible interventions and their potential welfare benefits. In partic-
ular, I wonder about the effects of flagging false information before it is shared; and in particular
its differential results in non-competitive and competitive markets. Furthermore, I question how
much can quality certification improve the outlets’ investment. Finally, I introduce a different
business model in which producers rely exclusively on subscriptions for their revenues.

5.1 Flagging

I wonder here how flagging false information helps the provision of information on the market. In
particular, let us assume that with some probability q, an information that does not correspond
to the state of the world would be flagged by the platform on which influencers share before
they decide whether to share. Because they care about truth only, such flagged information will
never be shared. Hence, we can see flagging as perfectly informative signals, substituting the
need for private signal. Therefore, one would expect this intervention to improve the outcome
by decreasing the value of false information.

Remark 3. The presence of flagging removes the bound placed on news quality from the preci-
sion of private information.
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Another interesting feature of flagging is that the marginal benefit of increasing the proba-
bility of being flagged depends on the market structure; in particular, when there is competition,
there are strategic consideration to take into accounts. On one hand, an increased q makes false
information relatively less valuable than true information; on the other hand, an increased q

might make one’s competitor more prone to being flagged, which in term decreases one’s incen-
tive to invest, as false information might be enough to survived faced to a flagged competitor.

To see this, let us rewrite the producers’ best responses in a monopoly and duopoly when
facing a probability q that false information is flagged. For the monopolist it is proportional to:

∆VM(z; q) = VT − (1 − q)VF

with VT = 1 − (1 − pT )d and VF = 1 − (1 − pF )d.

For duopolists that behave symmetrically, it is proportional to:

∆V D(z, x; q) = xVTT +(1−x)[(1−q)VTF +qVT∅]−x(1−q)VFT −(1−x)(1−q)[(1−q)VFF +qVF∅]

with VTT = pT
pT+pT

(1−(1−pT )d), VTF = pT
pT+pF

(1−(1− pT+pF
2 )d), and VT∅ = 1−(1− pT

2 )d; likewise
VFT = pF

pF+pT
(1 − (1 − pF+pT

2 )d), VFF = pF
pF+pF

(1 − (1 − pF )d), and VT∅ = 1 − (1 − pF
2 )d

To analyze the tradeoff described above, we study how ∆VM(z, x; q) −∆V D(z, x; q) evolves
with q. As expected, we find that flagging is more efficient in a monopoly.

Proposition 8. (i) Flagging has a stronger effect in a monopoly than a duopoly

(ii) When flagging never occurs, q = 0, the tradeoff between monopoly and duopoly is modulated
by d as described above. When flagging systematically occurs, q = 1, monopoly yields higher
investments than duopoly.

Proof. (i) In Appendix C we show that
∂(∆VM (z;q)−∆V D(z,x;q))

∂q > 0

(ii) It is enough to replace in the above expressions q with 0 and 1 respectively. With q = 1,
we find: ∆VM(z; 1) −∆V D(z, x; 1) = VT − xVTT − (1 − x)VT∅ > 0.

These results echo that on the role of signal precision. In fact, when q = 1 just as when
γ = 1, false information is useless. Now, recall that competition can be positive in that it forces
producers to survive in the network by convincing enough influencers to share, and this worsen
the value of false information. But if false information is useless anyways, this effect vanishes.
Only the negative effect of competition, that of reducing the number of viewers that can be
captured by the duopolists in the best case scenario, remains.

However, beyond this similarity, flagging information allows to substitute consumers (often
noisy) private signal. In this sense, it could force for news’ outlets to provide news that goes
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beyond consumers private information, and thus create informative content. Of course, this
conclusions ignore any type of partisanship or other distrust of flagging institutions.

5.2 Quality Certification

I now wonder how welfare could be improved upon if the consumers were observing the actual
quality of information. In terms of policy, this could for instance correspond to the role of a
third party institution in charge of certifying the average quality of a news source, or an average
fact checking score to be displayed on the online outlet.

To understand the implication of such a policy, we need to assume a sequential move game.
Appendix E presents the SPE of the monopoly when w0 = 1/2. Because the outcome depends
on the shape of the total cost function C(x), our analysis in this section requires some stricter
specification of the costs. Our strategy is to provide insights for C(x) approximated by a third
degree polynomial.

However, in a sequential move game, the influencers’ best-responses would not change. There-
fore, the threshold on news’ quality for which they would share any type of information, regardless
of their private signal, does not change. This threshold is also the maximum achievable quality
in a sequential game, which is set by the consumers’ private information.

Remark 4. Observable news’ quality imposes the same bounds on outlets’ informativeness.

Note however that, if news’ quality improves, utility derived from the entertainment of sharing
might improve as well.

It is interesting to notice that while both flagging and quality certification seem to rely on
the same type of policy, and both relate to fact checking, their implications seem diametrically
opposed.

5.3 Subscription-Based Revenues

Given the financial bet specified above, one could see the expected utility that consumers gain
from more precise information as their willingness to pay for information. Therefore, a question
naturally arises: can we do better if the revenues were not extracted from advertisement? In
particular, would a business model that allows the producer to internalize the value of information
for the consumer decrease inefficiencies? The obvious candidate is to allow the producers to
charge consumers as a function of the news quality. I call this transfer subscription.

I have not yet fully characterize the conditions under which a news market with subscription
based-revenue outperforms the case in which the producer profits are derived from the number
of views. However, I propose the following setup. We move to a sequential game in which x is
first decided by the producers, before being observed by influencers; furthermore, the producer
proposes a price t(x) to access to the news. Upon observing news quality x, influencers decide
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whether to access to the information at price t(x). If they do, as before, they decide whether to
share the news given their private signal.

In equilibrium, the marginal cost of investment for the producer equates the marginal value for
the consumer; therefore, we can reach a Pareto optimal outcome in this framework. This comes at
the cost of losing advertisement revenues. Assuming that such advertisement creates a surplus
for the society, it is not clear which business model should be preferred. In particular, could
the loss in advertisement revenue be compensated by an increased in efficiency? I thus wonder
whether the total welfare in a news market working on subscriptions is greater than welfare with
the ad-based outcome. This would imply that, under some redistribution between producers and
consumers, the news market with subscription-based revenues is a Pareto improvement from the
market with advertisement revenues. My preliminary results – to be presented here soon – seem
to indicate that the total welfare in a monopoly with ad-based revenue can be achieved through
a business model with subscriptions.

6 Conclusion

In this paper, I evaluate how good ad-based online news market can get. I find that, without
any interventions, they tend to be highly inefficient. First, news quality on a topic is bounded
by the amount of external knowledge existing on this topic. In particular, high news quality is
achieved only when the topic documented is already well known: either because the outcome
about this topic is rather certain; or because consumers are privately informed about it. This
result from the incentive created by sharing behaviors. Indeed, all that matters to producer is
the amount of sharing. But influencers rely on their knowledge to judge whether a content is
worth sharing. Hence, convincing influencers to share is very easy when they are ill-informed.
This further implies that producers’ investment in news quality is more valuable when the more
likely state of the world is realized, as influencers are more ready to share news documenting an
expected state of the world then. Thus, a more uncertain topic would lead to lower investment
that more certain issues for which news is hardly needed.

I additionally show that competition does not necessarily lead to better news quality. By
comparing the outcomes of a monopoly and a duopoly, we conclude that neither market structure
dominates the other. Rather, they complete each other: monopoly does well where duopoly fails.
Overall, monopoly is preferable in less dense networks composed of agents with a good capacity
to discern true from false information. This result puts into light important forces appearing with
competition. In essence, the competition operates inside the network: by constraining the free
spread of news through the network, the producers needs to convince enough, and not only a few,
influencers. This reduces the value of false information, as it would barely survive in the network
while competing with true information. On the one hand, competition reduces the value of true
information, as it would not reach as many consumers even if it is shared enough. Because,
for news, the cost of production is independent on the size of the market served, competition
might be detrimental to news quality. This shows the limits of competition as a mean towards
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efficiency.

Finally, I show that the news market based on advertisement revenue is inefficient in the
Pareto sense. I provide a framework to study welfare considerations. I find that online news
market might create value from entertainment but are generally bad at being informative. I
evaluate three possible interventions to improve upon informativeness. Flagging false information
helps by reducing the value of false information. However, this intervention is less efficient in
competitive markets, where strategic interactions between competitors have to be taken into
account. Finally, I propose an alternative business model in which the producers’ unique source
of revenue is consumers’ subscriptions. Although I do not characterize the conditions under
which subscription-based outlets outperform markets in which the revenues are derived from
ads, I believe this business model comparison to be tractable and compelling enough to open
ways to more complete analysis.

Note that I introduce in the appendix an alternative objective for the influencers, and study
its consequences. In particular, I assume that influencers only seek attention, not truth, which
creates a trade-off between visibility and trustworthiness of the news they want to share. Because,
qualitatively, the results in the monopoly are similar to those obtained with the naive influencers’
objective function, we keep this extension in the appendix. However, the inherent tradeoff
between attention and truthfulness is an interesting feature, which promises exciting ventures
for this project.

I think of this analysis as attractive because it gives consumers an endogenous control over
information flow but not on news content; furthermore, distortions that are inherent to a social
network should be essential in underlining the differences between social media and other his-
torical instances of ad-based business models for news. The central role of competition in this
paper is reflected by its predominance in online outlets, as well as online networks. This allows
my analysis to put in perspective the limits of ad-based online news market as a reliable source
of information.
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Appendix

A. Asymmetric Loss From Sharing

A.1 Best Response

In this section of the appendix, we generalize the results derived in the main text for more general
payoffs from sharing. In particular, while we restrict the benefit from sharing true news to 1, we
consider a loss ` when false news is shared. The influencers’ payoff thus becomes:

u(sharing article with content n∣ω = w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if n = w

−` otherwise

This changes the influencers’ best-response. In particular, it modifies the thresholds according
to which they start sharing different news content after their private signal. We can redefine:

t`0 =
`(1 − γ)(1 −w0)

`(1 − γ)(1 −w0) + γw0
t̄`0 =

`γ(1 −w0)
`γ(1 −w0) + (1 − γ)w0

t`1 =
`(1 − γ)w0

`(1 − γ)w0 + γ(1 −w0)
t̄`1 =

`γw0

`γw0 + (1 − γ)(1 −w0)

The producers’ best response does not change.

A.2 Equilibrium without Competition

The Nash equilibria might change. In particular, because the thresholds can now be all above or
all below the no investment quality 1/2, the two best responses might cross in many ways. We
define x̄00 ∶= x∗( ¯z0,0,0,0,0); x̄11 = x∗(1, ¯z1,1,0,0)} and x̃00 ∶= x∗(1,0,0,0); x̃11 ∶= x∗(1,1,0,0).

. Proposition 1. A If either 1/2 ≥ t̄`1; or both x̄00 < t`0 and x̄11 < t`1, then there is a unique set
of equilibria with zero investment and xM = 1/2. Otherwise, an equilibrium exists with positive
investment, which is determined as follows:

• xM = max{x̃00, t
`
0} if x̄11 < t`1,

• xM = max{x̃11, t
`
1}} if t`1 ≤ x̄11 and x̃11 ≤ t̄`0

• xM = max{t̄`0,min{x∗(1,1,1,0), t̄`1}} otherwise.

Proof. First notice that any positive equilibrium investment has to lie within [t`0, t̄`1]. Indeed, it
is easy to see that for any x < t`0, no news is ever shared so that the producer has no incentive
to invest; likewise, x = t̄`1 is enough to insure that the producer’s news is always share, so that
investing more than this does not increase the producer’s benefit.
It follows that, if 1/2 ≥ t̄`1, the producer will never want to invest more than 1/2 – intuitively, the
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producer’s best response lies above the influencers’ best response. If x̄00 < t`0 and x̄11 < t`1, it is
too costly for the producer to invest more than 1/2, as for any sharing strategy z, the marginal
benefit from investing x > 1/2 is lower than its marginal cost – intuitively, the producer’s best
response lies below the influencers’ best response. Indeed, we know that x < t`0 cannot be an
equilibrium. For any x ∈ [t`0, t`1), by definition x̄00 = c−1(∆V ( ¯z0,0,0,0,0)) ≥ c(∆V (z∗(x)) so
that c(x) ≥ c(t`0) > c(x̄00) ≥ c(∆V (z∗(x)). Likewise, for x ∈ [t`1, t̄`0), as x̄11 < t`1, we have c(x) ≥
c(t`1) > c(x̄11) ≥ c(∆V (z∗(x)). For any x ≥ t̄`0, c(x) ≥ c(t̄`0) > c(max{x̄00, x̄11}) ≥ c(∆V (z∗(x))
Now, let us understand what happens if positive investment is possible. If x̄11 < t`1, as argued
above, the investment has to be such that x ∈ [t`0, t`1). Because x̄00 > t`0, and x∗(z) continuous,
there there must exist some z∗00 such that c−1(∆V (z∗00,0,0,0)) = t`0. If x̃00 < t`0, the maximal
investment equilibrium is thus t`0; otherwise, x̃00 is an equilibrium as x̃00 ∈ [t`0, t`1) and by
definition, c(x̃00) = ∆V (1,0,0,0), and leads to more investment. A similar reasoning applies to
x̄11 ≥ t`1 and x̃11 ≤ t̄`0.
Finally, if x̄11 ≥ t`1 and x̃11 > t̄`0, because x∗(z) is decreasing in z01 and z10, and contiunous,
there must exist a x′ ≥ t̄`0 and a z′ = (1,1, z01, z10) such that c(x′) = ∆V (z′). It is easy to verify
that max{t̄`0,min{x∗(1,1,1,0), t̄`1}} yield the highest x on [t`0, t`1] such that c(x′) = ∆V (z′).

The consequences on the comparative statistics are overall the same. We can note:

. Corollary 1.A Take any increase in w0.

• For a marginal increase, the inequalities detailed in Proposition 1.A do not change, so that
the maximal equilibrium investment xM increases iff xM /= t00 and xM /= t01

• For bigger increases, the maximal equilibrium investment xM increases iff xM /= t00, xM /=
t01 and c−1 is steep enough, i.e. c−1 is such that, for any w′

0 > w0, x̄11 > t11 implies
x̄11

′ > t′11.

Proof. See Appendix C

A.2 Equilibrium with Competition

We now must define more possible cases for the equilibrium with competition. We define x̄mv ∶=
maxzvT x

∗
v((zvT ,0), ) and x̃m = x∗((1,0), (0,0); 0)

. Additional Equilibria (i) There always exist a set of equilibria with zero investment x∗v ∈
[0,1/2]∀v ∈K.
(ii) If 1/2 < t̄` and minv x̄v ≥ (t`), there exists a set of equilibria in which exactly one producer
invests xm = max{t`),min{x̃m, t̄`}, and the other does not invest.

Proof.

(i) x∗v(((0,0), z−v), x−v) ∈ [0,min{1/2, t`}] and zvT (xv) = zvF (xv) = 0 for xv ∈ [0,min{1/2, t`}].
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(ii) Notice that for p−vX = x−v = 0, ∆Vv(z, x−v) = (1 − b) [(1 − 1/2bt`)d − (1 − 1/2bt̄`)d], which
corresponds to the monopoly case up to 1/2, which is accounted for when defining x̄v.
Furthermore, it is a best response for −v to not invest if z−v = (0,0), which is a best
response if xv ∈ [0,min{1/2, t`}].

Define z̄DT ∶= arg maxzT {∆V ((zT ,0), t`)} and x̄D = ∆V (z̄DT , t`).

. Proposition 3. A If 1/2 < t̄` and t` ≤ x̄D, there exists a symmetric equilibrium that features
positive investment and xD = arg minx∈[t`,t̄`] ∣∆V D((1,0);x) − c(x)∣.

Proof. First note that any equilibrium investment bigger than 1/2 has to lie in [t`, t̄`]. Indeed,
recall that ∆V D((0,0), x) = ∆V D((1,1), x) = 0. Hence, clearly, for any x < min{t`, x̄} or
x > max{t̄`,1/2}, c(x) > 0 = ∆V D(z∗(x), x), which would be suboptimal for the producer.

Given 1/2 < t̄` and t` ≤ x̄D, different parameters allow for three cases:

1. If c(t`) < ∆V D((1,0), t`) and ∆V D((1,0), t̄`) < c(t̄`), then ∃x̃ ∈ [t`, t̄`]: c(x̃) = ∆V ((1,0), x̃).
Indeed, recall that c is weakly increasing in x and ∆V D((1,0), x) strictly decreasing in x.
Clearly, (x̃, (1,0)) is a NE.
It is the symmetric NE which leads to the highest investment. Indeed, assume there exists
another symmetric equilibrium with investment x′ > xD. As argued above, x′ ∈ {t`, t̄`}.

For x′ = t̄` > xD to be part of an equilibrium, there must exist a z′ = (1, z′F ) with z′F > 0

such that V D(z′, x′) = c(t̄`). It is impossible, because c(t̄`) > c(xD) = ∆V D((1,0), xD) >
∆V D((1,0), t̄`) > ∆V D((1, zF ), t̄`) ∀zF > 0, where the last inequality uses that ∆V D(z;x)
is decreasing in zF .

2. If c(t`) > ∆V D((1,0), t`), then ∃z̃T ∈ [z̄DT ,1]: c(t`) = ∆V (z̃T , t`). Indeed, by assumption
∆V D((z̄DT ,0); t`) > c(t`) > ∆V D((1,0); t`), and ∆V D(z;x) is continuous and decreasing
on [z̄DT ,1]. Clearly, (t`, (z̃T ,0)) is a NE.

3. If c(t̄`) < ∆V D((1,0), t̄`), then ∃z̃F ∈ [0,1]: c(t̄`) = ∆V ((1, z̃F ), t`). Indeed, by assumption
∆V D((0,0); t̄`) = 0 < c(t̄`) < ∆V D((1,0); t`), and ∆V D(z;x) is continuous and decreasing
in zF . Clearly, (t̄`, (1, z̃F )) is a NE.

Furthermore, we can distinguish equilibria with respect to their stability.

. Additional Corollary xD is the only stable equilibrium with symmetric positive investment.

Proof. First if 1/2 > t`, ∆V D(z, t`) > t` for any z. Because ∆V D(z̄T , x) is continuous and in-
creasing on [0, z̄T ], we know that, given any x, c−1(∆V D(z, t`)) crosses z∗v (x) only once. So for
any x0, there is a unique x′, z∗(x′). We pick the x0 that leads to equilibrium x0, z

∗(x0), which
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must be unique.
If x̄D ≥ t` > 1/2, then given any x = t`, c−1(∆V D(z, x)) crosses z∗v (x) twice: once for some
z′T < z̄T with ∆V D(z′T , x)) = c(t`); and once afterwards. The slope of ∆V D(z, x)) in z′T < z̄T < 1

is strictly increasing. The investment required for influencers to share upon receiving congru-
ent private signal with probability z′T is equal to t` with slope 0. Therefore, the equilibrium
(t`, (z′T ,0)) cannot be stable. In particular, any stable equilibrium must have zu, zv > z′T .
Finally, we prove that xD is the only stable equilibrium with symmetric investment by not-
ing that xu = xv = x∗ implies zu = zv > z′T . Indeed, any equilibrium investment x∗ requires
∆Vu(zu, zv;x∗) = ∆Vv(zv, zu;x∗). Now, because ∂∆Vu

∂zu
/= −∂∆Vu

∂zv
for every zu, zv > z′T , the unique

zu, zv supporting xD must be defined by ∆V (z, x); therefore, zu = zv.

Finally, we wonder about other asymmetric equilibria and find:

. Remark 1.A (i) If x̄m < t`, the unique equilibrium is that featuring no investment. (ii) If
x̄D < t` ≤ x̄m, the only equilibria with positive investment have one producer investing xm while
the other does not invest. (iii) If x̄D ≥ t` = xm, the only equilibria with positive investment for
both producers feature xD = t`. (iv) If the cost function is linear, there are no equilibrium with
xu /= xv and (xu, xv) ∈ (t`, t̄`) as long as c(x)’s slope is different from S.

Proof. (i) x̄m < t` means that, even if the network is free of competition, there is no sharing rule
that could convince a producer to invest. Therefore, no investment can occur.
(ii) x̄D < t` means that there does not exist a symmetric equilibrium with positive investment,
i.e. ∀zu, t` > ∆Vu(zu, zu; t`). Furthermore, no other equilibrium with positive investment can
exist. By using Corollary ??’s proof, zu = zv if xu = xv, so zu /= zv is inconsistent with xu < xv.
Finally, zu < zv and xu = t` < xv cannot be an equilibrium as t` > ∆Vu(zu, zu; t`) > ∆Vu(zu, zv;xv)
for zv > zu xv > t̄`.
(iii) t` = xm implies that ∆Vu(zu, zv;xv) < ∆Vu(zu, (0,0); 0) < t` for any zu. Hence xu cannot
exceed t`. As the same applies to xv, both producers must be investing the minimum t` if
they do invest. Furthermore, xu = xv implies zu = zv. (iv) Assume xD ∈ (t`, t̄`). Assume
that there exists an xu > xv, with (xu, xv) ∈ (t`, t̄`). Then, c(xu) = ∆Vu((1,0), (1,0), xv) and
c(xv) = ∆Vv((1,0), (1,0), xu), so that c(xu) − c(xv) = S(xu − xv), which is impossible if c has a
slope different from S.
If xD ∈ {t`, t̄`}, then for any xv, c(xu) /= ∆Vu((1,0), (1,0), xv) so there cannot be any equilibrium
where both producer invest away from the minimum.

Because the following comparison between monopoly and duopoly focuses on the producers’
best-responses, all results follow through.
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B. Attention-Seeking Influencers

In this part of the appendix, we explore an extension of the benchmark monopolisitic model
with w0, z0,0 = z1,1 = zT and z0,1 = z1,0 = zF . We try to understand the effect of attention-
seeking influencers on the producer incentives. In particular, we assume that influencers do not
intrinsically care whether the news they share is true or false; but they do care about receiving
good feedback about it, e.g. a lot of likes. Hence, there is a potential trade-off between visibility
and veracity of a news. For the rest of this section, we assume that all influencers are attention-
seekers.

B.1 The Attention-Seeker Problem

We assume that influencers, contrary to producers, cannot observe the actual number of followers
they reach; however, they can observe how many followers reacted to their shared post, as,
typically, social media feature some sort of feedbacks, be it comments, likes, or reshares. We
focus on positive reactions, that we call likes, and assume that followers like a post if they receive
a private signal consistent with it. In the context exposed previously, it means that followers
receive a binary signal indicating whether the information is true or false, and like only if they
receive a positive signal – regardless of the prior probability for news to be true.

As before, influencers simultaneously choose whether to share the piece of news issued by v,
given their private signal si. Influencers decide to share if the amount of likes they expect to
collect with their post exceeds a threshold τ ≤ d. It can be interpreted as the value of an outside
option – e.g. posting another type of article would yield τ likes – or, simply, the cost of sharing.

For consistency, we still denote Rfi the random variable which is one if f sees the post from
i. As before, a follower sees only one post. If more than one neighbor shared a post, the follower
sees the post from one random sharing neighbor, with uniform probability, that is:

Pr(Rfi = 1∣ s neighbors of f shared) = 1

s

where s is the outcome of the random variable S counting the number of f ’s neighbors who
shared.

Define the random variable Lfi which is one if f likes the post shared by i. Recall that sf is
the random private signal that a follower receives. Then:

Pr(Lfi = 1) = Pr(Lfi = 1∣Rfi = 1)Pr(Rfi = 1) = Pr(sf = T )Pr(Rfi = 1)

An influencer expects a different amount of likes for true and false information because, if
read, true news gets more likes than false information. The expected number of likes also depends
on the visibility of the news, which in turn depends on the sharing decisions of all neighbors of
each followers. Define n as the random variable counting the number of shares from f ’s neighbors,
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excluding i. The expected number of likes i gets from sharing a piece of information which is
X ∈ {T,F} is thus:

E
⎛
⎝ ∑f∈Ni

Lfi = 1∣X
⎞
⎠
= dPr(f is a follower)Pr(sf = T ∣X)E( 1

S + 1
∣X)

Now recall, upon reading a piece of news, influencer i, too, gets a private signal about the
truthfulness of the news, whose precision is γ. As before, all influencers have a common prior
xv about the probability for producer v to release true information. Let pv(si;xv) denote i’s
posterior upon receiving signal si. Then, an influencer decides to share a piece of information if
and only if:

pv(si;xv)d(1 − b)γE( 1

S + 1
∣T) + (1 − pv(si;xv))d(1 − b)(1 − γ)E( 1

S + 1
∣F) ≥ τ

Notice that the influencers’ utility now depends on more than the producers’ investment; it
also depends on the behavior of other influencers. In particular, because influencers compete
for likes, which occur only upon being seen, they would prefer a situation in which they are the
only sharer. If true information is shared more, then this coordination concern would make them
less prone to share true news; however, true information also brings more likes. Thus, there is a
trade-off between visibility and veracity.

B.2 Influencer Best Response in a Monopoly

In this section, we focus on symmetric strategies zi = z ∀i and, by a slight misuse of language,
we call best-response the pair of functions (z∗T (x), z∗F (x)) which maps x into [0,1] such that
z∗(x,z∗(x)) = z∗(x).13 Hence, given any investment x, we look at the subset of strategies which
can be consistent with a symmetric equilibrium on the influencers’ side.

As usual, pX denotes the probability that a news that isX gets shared. Then, n ∼ B(pX , d − 1)
We can rewrite:

E
⎛
⎝ ∑f∈Ni

Lfi = 1∣X
⎞
⎠
= d(1 − b)Pr(sf = T ∣X) 1

dpX
(1 − (1 − pX)d)

Thus, the expected number of like is:

pv(si;xv)γ
1 − b
pT

(1 − (1 − pT )d) + (1 − pv(si;xv))(1 − γ)
1 − b
pF

(1 − (1 − pF )d)

Proposition 9. For any x, z∗T (x) ≥ z∗F (x).

Proof. By contradiction, suppose that z∗F (x) > z∗T (x), so that pF > pT . For this to be sustainable,
13Technically, each influencer’s best response would be a pair of (I +1)-dimensional function, that each maps x

and z−i into [0,1], with I the random variable counting the number of influencers, and whose expectation is bN .
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we need E(#likes∣si = T ) ≤ τ ≤ E(#likes∣si = F ). However, this happens only when:

γ

1 − γ
< pT

(1 − (1 − pT )d)
(1 − (1 − pF )d)

pF

Because γ
1−γ > 1, we need pT

(1−(1−pT )d)
(1−(1−pF )d)

pF
> 1. Because f(x) = x

(1−(1−x)d) is an increasing
function, it means pT > pF , a contradiction.

Corollary 3. E( # likes ∣X) is increasing in pv(si;x), for any si ∈ {T,F},X ∈ {T,F}.

Proof. It is enough to notice that, since pT > pF :

pT
(1 − (1 − pT )d)

(1 − (1 − pF )d)
pF

> 1

so that the coefficient of pv(sv;x) is positive.

Theorem 3.

(i) For any τ ≤ γδ, z∗T (x; τ) = z∗F (x; τ) = 1 if and only if x ≥ x̂(τ).

(ii) For any τ ≥ (1 − γ)d(1 − b), z∗T (x; τ) = z∗F (x; τ) = 0 if and only if x ≤
ˇ
x(τ).

(iii) For any τ ∈ [τ1, τ2], z∗T (x; τ) = 1, z∗F (x; τ) = 0 if only if x ∈ [x1(τ), x2(τ)].

Where:

δ(b) = 1−b
b [1 − (1 − b)d], τ1(b) = 1−b

b [1 − (1 − b(1 − γ))d], τ2(b) = 1−b
b [1 − (1 − bγ)d]

And, given T =
bτ
1−b

−1+(1−b(1−γ))d

(1−b(1−γ))d−(1−bγ)d ,

x̂(τ) = γ
2γ−1

τ−(1−γ)δ
τ ,

ˇ
x(τ) = 1−γ

2γ−1
τ−(1−γ)d(1−b)
d(1−b)−τ , x1(τ) = (1−γ)T

(1−γ)T+γ(1−T ) , x2(τ) = γT
γT+(1−γ)(1−T )

Proof. The details can be found in Appendix C.

(i) Given τ ≤ γδ, if x ≥ x̂(τ), it is easy to verify that always sharing is a best response, i.e.
E(# likes ∣T,z−i = (1,1)) > E(# likes ∣F,z−i = (1,1)) ≥ τ . For proving the converse, recall
that 1−(1−p)d

p is decreasing in p. Suppose there exists another p′ < b that is sustained in
equilibrium. Then, E(# likes ∣F, p′ < b) > E(# likes ∣F, p = b) ≥ τ so that i would have an
incentive to deviate towards pi = 1.

(ii) Likewise, given τ ≥ (1−γ)d(1−b), if x ≤
ˇ
x(τ), then even d(1−b)[p(T,x)γ+(1−p(T,x))(1−

γ)] likes are not enough for anyone to share, so that (0,0) is a the best response to any p
given x and τ .

(iii) Again, we can simply verify that, given τ ∈ [τ1, τ2], if x ∈ [x1(τ), x2(τ)] and every −i influ-
encer is sharing only when they receive a positive signal, E(# likes ∣T ) ≥ τ ≥ E(# likes ∣F ).
Any z−i,F > 0 would lower the E(# likes ∣F ) further away from τ , making i set zi,F = 0;
any z−i,T < 1 would increase the E(# likes ∣T ) further away from τ , making i set zi,T = 1.
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Corollary 4.

(i) For any τ ≤ γδ, if x ≥ x̂(τ), zT (x,z−i; τ) = zF (x,z−i; τ) = 1 is the only best response for
any (non symmetric) vector of influencers −i /= i’s actions.

(ii) For any τ ≥ (1 − γ)d, if x ≤
ˇ
x(τ), zT (x,z−i; τ) = zF (x,z−i; τ) = 0 is the only best response

for any (non symmetric) vector of influencers −i /= i’s actions.

Proof. Again, it is enough to recall that the number of likes is decreasing in the probability for
another influencer to share
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Figure 10: Illustration of z∗ps(x; τ) with b = 0.2, γ = 0.75, d = 5

Corollary 5. Define zps as the restriction of z to pure strategies. For any (x, τ), z∗ps(x; τ) either
does not exist or is unique.

Proof. Consider the parameter space (τ, x). Theorem 3 describes three subsets of best-responses
that do not intersect. No other pure strategies is sustainable, as, by proposition 9, (0,1) is never
a best-response.

Figure 10 illustrates the different region of pure strategy best-responses in space (τ, x). First,
one can notice that for some values of τ , the investment of the producer has no effect on the
sharing decision of influencers. If τ is too low, influencers are not very demanding in terms of
likes, so that they are always willing to share. If τ is too high, influencers are too demanding in
terms of likes, and they never share any information.

For intermediate values of τ , however, the symmetric best-response of influencers is fairly
similar to that studied in the benchmark model. To understand so, let us fix a particular value
for τ ; we want to understand z∗ as a function of x. This means fixing one value of τ on Figure 10
and translating the different areas in term of z. This results in Figure 11, which illustrates the
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1 − ρ

ρ

(0,0) (1,0) (1,1)

z∗(x; τ1+τ22 )

Never Share

Share only

if si = T

Always Share

z

x

Figure 11: Illustration of z∗(x; τ) in τ = τ1+τ2
2 with b = 0.2, γ = 0.75, d = 5

symmetric best-response z∗(x) for τ = τ1+τ2
2 . Notice that, for this particular τ , x1 = 1 − γ and

x2 = γ. It means that, for x between 1 − γ and γ, the symmetric best-response of attention
seeking influencers exactly corresponds to that of naive influencers in the benchmark model.

However, for x /∈ [1−γ, γ], attention-seekers’ best response changes. Say the producer invests
exactly 1 − γ. In the benchmark model, upon receiving a positive private signal, influencers
were indifferent between sharing or not, as the probability the news was true in such a case was
exactly one half. But now, attention seekers’ strategies are substitutes; therefore, upon receiving
a positive private signal, they can be indifferent between sharing or not only for one particular
sharing strategies of the other influencers. This latter strategy is the unique only symmetric
best-response to x. For

ˇ
x ( τ1+τ2

2
) < x < 1−γ, z∗T is strictly increasing in x14; for x̂ ( τ1+τ2

2
) > x > γ,

z∗F is strictly increasing in x 15

Because, in a monopoly, the best-response of attention-seeking influencer is fairly similar to
that of naive influencers for the right value of τ , similar equilibrium results are to be expecting.
Of course, studying attention-seeking objective in a duopoly should prove more insightful.

14z∗T is implicitly determined by:

γx

(1 − γ)(1 − x)
= −

τ1+τ2
2

b
1−b
−

1−(1−b(1−γ)zT )
d

zT

τ1+τ2
2

b
1−b
−

1−(1−bγzT )
d

zT

15z∗F is implicitly determined by:

(1 − γ)x

γ(1 − x)
= −

τ1+τ2
2

b
1−b
−

1−(1−b(1−γ)−bγzF )
d

1+
γ

1−γ
zF

τ1+τ2
2

b
1−b
−

1−(1−bγ−b(1−γ)zF )
d

1+
1−γ
γ
zF

40



C. Proofs and computations

2.3.2 The Producers’ Best Responses

Multinomial: the Distribution of an Outcome conditional on the Sum of a Subset
of Outcomes

Consider a random vector X ∼Multi(n, p) of dimension k. By definition, we have:

Pr(X1 = a,X2 = b) = p1
ap2

b(1 − p1 − p2)n−a−b
n!

a!b!(n − a − b)!

Now, because each trial is independent, we have that X1 +X2 ∼ B(p1 + p2, n). Hence:

Pr(X1 +X2 = s) = (p1 + p2)s(1 − p1 − p2)n−s
n!

s!(n − s)!

Therefore, we find the following conditional distribution:

Pr(X1 = a∣X1 +X2 = s) =
Pr(X1 = a,X2 = s − a)
Pr(X1 +X2 = s)

=
p1
ap2

s−a(1 − p1 − p2)n−s n!
a!(s−a)!(n−s)!

(p1 + p2)s(1 − p1 − p2)n−s n!
s!(n−s)!

= p1
ap2

s−a

(p1 + p2)s
s!

a!(s − a)!

Note that it can be rewritten as:

Pr(X1 = a∣X1 +X2 = s) =
p1
ap2

s−a

(p1 + p2)s−a+a
s!

a!(s − a)!
= ( p1

p1 + p2
)
a

( p2

p1 + p2
)
s−a s!

a!(s − a)!

Hence, the conditional random variable X1∣X1+X2 ∼ B (n, p1
p1+p2 ).

The Probability of Being Read by a Follower (as a Producer)

First, note that:

Pr(follower sees v) =
d

∑
s=0

Pr(follower sees v and s neighbors shared)

=
d

∑
s=0

Pr(follower sees v | s shares)Pr(s shares)
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Now, we also have:

Pr(follower sees v | s shares) =
d

∑
ν=s

Pr(follower sees v and ν neighbors shared v | s shares)

=
d

∑
u=s

Pr(follower sees v | ν and s)Pr(ν shares of v | s shares)

Finally, using the conditional probability derived above, we rewrite the probability for a
follower to see a piece of news n from producer a, given b produced m and the state of the world
is w, as:

d

∑
s=1

s

∑
ν=0

ν

s
(

pu∣w,n

pu∣w,n + pv∣w,m
)
ν

(
pv∣w,m

pu∣w,n + pv∣w,m
)
s−ν

s!

ν!(s − ν)!
(pu∣w,n+pv∣w,m)s(1−pu∣w,n−pv∣w,m)d−s d!

s!(d − s)!

where pu∣w,n and pv∣w,m are the probability that a neighbor shares a piece of news from a, b,
given it is true. Defining f(ν) as the pmf of a B(s, pu∣w,n

pu∣w,n+pv∣w,m
), we simplify the latter expression

by:

d

∑
s=1

1

s
(pu∣w,n + pv∣w,m)s(1 − pu∣w,n − pv∣w,m)d−s d!

s!(d − s)!

s

∑
ν=0

νf(ν)

=
d

∑
s=1

1

s
(pu∣w,n + pv∣w,m)s(1 − pu∣w,n − pv∣w,m)d−s d!

s!(d − s)!
s

pu∣w,n

pu∣w,n + pv∣w,m

=
pu∣w,n

pu∣w,n + pv∣w,m

d

∑
s=1

(pu∣w,n + pv∣w,m)s(1 − pu∣w,n − pv∣w,m)d−s d!

s!(d − s)!

=
pu∣w,n

pu∣w,n + pv∣w,m
(
d

∑
s=0

(pu∣w,n + pv∣w,m)s(1 − pu∣w,n − pv∣w,m)d−s d!

s!(d − s)!

−(pu∣w,n + pv∣w,m)0(1 − pu∣w,n − pv∣w,m)d−0 d!

0!(d − 0)!
)

=
pu∣w,n

pu∣w,n + pv∣w,m
(1 − (1 − pu∣w,n − pv∣w,m)d)

We conclude by writing:

Pr(Rja = 1∣w,n,m) = αb +
pu∣w,n

pu∣w,n + pv∣w,m
(1 − (1 − pu∣w,n − pv∣w,m)d)
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3 Equilibrium

3.1 Equilibrium without Competition

Shape of Monopolist Best Response in z: Lemma 1

(i) Because c−1(x) is increasing in x by assumption, x∗(z) is decreasing in z0,1 and z1,0 iff
∆V (z) is decreasing in z0,1 and z1,0. Now, we have:

∂∆V (z)
∂z0,1

1

1 − b
= −dγ(1 −w0)(1 − b(γz0,1 + (1 − γ)))d−1 + dw0γ(1 − b(γ + (1 − γ)z0,1))

d−1 < 0

Where the last inequality comes from γ
1−γ >

w0

1−w0
≥ 1. The derivation is similar for z1,0.

(ii) Again, it suffices to show that ∆V (z) is single peaked in z0,0 and z1,1. We call single
peaked a function which admits a single maximum point; therefore, any non-constant
concave function f(x) defined on a closed interval is single-peaked. Hence, we can simply
show that ∆V (z)’s first derivative is decreasing in z0,0 and z1,1.

For z0,0, we have:

∂∆V (z)
∂z0,0

1

1 − b
= −d(1 − γ)(1 −w0)(1 − b(1 − γ)z0,0))

d−1 + dw0γ(1 − bγz0,0)
d−1

Whose sign is ambiguous. It is positive for z0,0 = 0 and decreasing in z0,0 since
1−bγz0,0

1−b(1−γ)z0,0 ≤ 1

and decreases with z0,0

The derivation is similar for z1,1.

The effects of w0: Lemma 2 and Corollary 1

(i) It is easy to verify that ∂t0
∂w0

< 0, ∂t̄0
∂w0

< 0, ∂t̄1∂w0
> 0, ∂t1∂w0

> 0. The intervals are the values of
tns for w0 = 1/2 and w0 = γ

(ii) Again, it is easy to verify that ∂∆V (z)
∂w0

> 0 as (1− b(γz1,0 +(1−γ)z1,1))
d −(1− b(γz0,1 +(1−

γ)z0,0))
d > 0 and (1 − b(γz1,1 + (1 − γ)z1,0))

d − (1 − b(γz0,0 + (1 − γ)z0,1))
d > 0.

Because from Lemma 2, x̃00 and x̃11, t1, x
∗(1,1,1,0)and t̄1 are increasing in w0, it is easy to see

that xM decreases with an increase in w0 if and only if xM = t0 or xM = t̄0

3.2 Equilibrium with Competition

Shape of Duopolist Best Response in zu: Lemma 3

(i) If zuT > zuF , puT > puF so that Sxv > 0 and S1−xv > 0. Therefore, ∆Vu(z;xv) > 0 and
x∗u(z;xv) = c−1(∆Vu(z;xv)) > 1/2 as c(x) > iff x > 1/2 by assumption. If zuT = zuF ,
∆Vu(z;xv) = 0 so that x∗u(z;xv) ∈ [0,1/2].
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(ii) Because c−1(x) is increasing in x by assumption, x∗u(z;xv) is decreasing in zuF iff ∆Vu(z;xv)
is decreasing in zuF . Now, we have:

∂∆Vu(z;xv)
∂zuF

= (1 − b) (xv
∂Sxv
∂zuF

+ (1 − xv)
∂S1−xv
∂zuF

) < 0 because
∂Sxv
∂zuF

< 0,
∂S1−xv
∂zuF

< 0

Indeed,

∂Sxv
∂zuF

= 1

2
b [pvT ( (1 − γ)

(puT + pvT )2
(1 − (1 − puT − pvT ))

d − γ

(puF + pvT )2
(1 − (1 − puF − pvT )d))

+d(1 − γ)puT
puT + pvT

(1 − puT − pvT )d−1 − d γpuF
puF + pvT

(1 − puF − pvT )d−1)]

Which is a sum of negative terms. Indeed, the first term is negative because 1−(1−x)d
x2

is
decreasing in x and puT ≥ puF . We know that 1−(1−x)d

x2
is decreasing in x because:

∂
1−(1−x)d

x2

∂x
x4 = d(1−x)d−1x2−2x(1−(1−x)d) = (1−x)d−1x(dx+2(1−x))−2x < x(−x+2)−2x < 0

where the first inequality follows from (1−x)d−1((d−2)x+2) being decreasing in d so that
among all d, d = 1 maximizes the expression.

The second term is negative as (1−puT −pvT )d−1 < (1−puF −pvT )d−1; and (1−γ)puT
puT+pvT < γpuF

puF+pvT .
The last inequality holds because:

(1 − γ)puT (puF + pvT ) − γpuF (puT + pvT ) = puF puT (1 − 2γ) + pvT ((1 − γ)puT − γpuF )

is the sum of two negative terms; indeed: 1 − 2γ < 0 and

(1− γ)puT − γpuF = 1

2
b[(1− γ)(γ + (1− γ)zuF ) − γ(1− γ + γzuF )] =

1

2
b[(1− γ)2 − γ2]zuF < 0

Replacing pvT by pvF above, we can conclude that ∂S1−xv

∂zuF
< 0

(iii) Again, it suffices to show that ∆Vu(z;xv) is single-peaked in zuT . In particular, we show
that Sxv and S1−xv are concave in zuT for zuT ∈ [0,1]. Consider Sxv . We have:

Sxv =
puT

puT + pvT
(1 − (1 − puT − pvT )d) −

puF
puF + pvT

(1 − (1 − puF − pvT )d)

= puT
puT + pvT

((1 − puF − pvT )d − (1 − puT − pvT )d) + ( puT
puT + pvT

− puF
puF + pvT

)(1 − (1 − puF − pvT )d)

We know that puT
puT+pvT and (1 − (1 − puF − pvT )d) are both strictly increasing and weakly

concave in zuT . From the analysis of the monopolist’s best response, we also know that
((1 − puF − pvT )d − (1 − puT − pvT )d) is single-peaked. As the product of weakly concave
functions is weakly concave, all that is left to do is to show that puT

puT+pvT −
puF

puF+pvT is single
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peaked. We have:

∂ puT
puT+pvT −

puF
puF+pvT

∂zuT
=
∂

pvT (puT−puF )
(puT+pvT )(puF+pvT )

∂zuT
=
∂

pvT ( 1
2
b(2γ−1)zuT )

( 1
2
bγzuT+pvT )( 1

2
b(1−γ)zuT+pvT )

∂zuT

=
pvT [1

2b(2γ − 1)(1
4b

2γ(1 − γ)zuT 2 + 1
2bpvT zuT + pvT

2) − (1
2b

2γ(1 − γ)zuT + 1
2bpvT )

1
2b(2γ − 1)zuT ]

(puT + pvT )2(puF + pvT )2

=
pvT

1
2b(2γ − 1)[pvT − 1

4b
2γ(1 − γ)zuT 2]

2(puT + pvT )2(puF + pvT )2

Which is positive for zuT = 0 and decreases with zuT .

The same applies to ∂S1−xv

∂zuT

Shape of Duopolist Best Response in zv and xv: Lemma 4

(i) For d = 2, ∂Sxv∂zvX
and ∂S1−xv

∂zvX
are decreasing in zvX for X = T,F . We have:

∂Sxv
∂pvT

= − puT
(puT + pvT )2

[1 − (1 − puT − pvT )d−1(1 + (d − 1)(puT + pvT ))]

+ puF
(puF + pvT )2

[1 − (1 − puF − pvT )d−1(1 + (d − 1)(puF + pvT ))] < 0

If − puT
(puT+pvT )2 ( − (puT + pvT )2) > puF

(puF+pvF )2 ( − (puF + pvF )2) which is ensured by puT ≥ puF . The
same applies for ∂S1−xv

∂pvF
.16

When d → ∞, the expression is determined by the sign of − puT
(puT+pvT )2 +

puF
(puF+pvT )2 which is

negative for p2
vT > puF puT . Likewise, S1−xv is decreasing in zvX for p2

vF > puF puT .

(ii) It is enough to prove that Sxv − S1−xv ≤ 0. We have:

Sxv − S1−xv =
puT

puT+pvT
(1 − (1 − puT − pvT )d) − puF

puF+pvT
(1 − (1 − puF − pvT )d)

− puT
puT+pvF

(1 − (1 − puT − pvF )d) + puF
puF+pF

(1 − (1 − puF − pvF )d)

= puT
(puT+pvT )(puT+pvF ) (pvF − pvT − (1 − puT − pvT )d(puT + pvF ) + (1 − puT − pvF )d(puT + pvT ))

− puF
(puF+pvT )(puF+pvF ) (pvF − pvT − (1 − puF − pvT )d(puF + pvF ) + (1 − puF − pvF )d(puF + pvT ))

Let us define α such that puT + pvF = α(puT + pvT ) + (1 − α)(puF + pvF ); therefore puF + pvT =
16Notice that a similar inequality holds for d = 3. From numerical insights, the difference is expected to be

increasing then decreasing in d.
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(1 − α)(puT + pvT ) + α(puF + pvF ). Because (1 − x)d is convex, we have:

(1 − puT − pvF )d(puT + pvT ) + (1 − puF − pvT )d(puF + pvF )

− (1 − puT − pvT )d(puT + pvF ) − (1 − puF − pvF )d(puF + pvT )

< α(1 − puT − pvT )d(puT + pvT ) + (1 − α)(1 − puF − pvF )d(puT + pvT )

+ (1 − α)(1 − puT − pvT )d(puF + pvF ) + α(1 − puF − pvF )d(puF + pvF )

− (1 − puT − pvT )d(puT + pvF ) − (1 − puF − pvF )d(puF + pvT ) = 0

Therefore the second factor of the first term of the sum is lower than the second factor of
the second term of the sum, which is itself negative. If the first factor of the first term is greater
than the first factor of the second term, we are done. And indeed, if puX < pvX , we have:

puT
p2
uT + puT (pvT + pvF ) + pvT pvF

> puF
p2
uF + puF (pvT + pvF ) + pvT pvF

pvT pvF (puT − puF ) > puT puF (puT − puF ) = p2
uT puF − puT p2

uF

3.2.1 The role of Connectivity

Shape of ∆VM(z;d) −∆V D(z, x;d) in d: Theorem 1

We want to show that DV (d) > DV (d + 1) ⇒ DV (d + 1) > DV (d + 2). For readability, let us
define for this proof:

c1 = 1 − x
2

c2 =
1 + x

2
c3 =

pT
pT + pF

− x

Note that c1 > 0, c2 > 0 and c3’s sign depends on z and x.

We begin by rewriting the assumption DV (d) −DV (d + 1) > 0 as:

−c1 ((1 − pT )d − (1 − pT )d+1)+c2 ((1 − pF )d − (1 − pF )d+1)+c3 ((1 − pT+pF
2

)d − (1 − pT+pF
2

)d+1) > 0

−c1 ((1 − pT )dpT ) + c2 ((1 − pF )dpF ) + c3 ((1 − pT + pF
2

)
d pT + pF

2
) > 0

Therefore, defining for readability again:

A ∶= c1 ((1 − pT )dpT ) − 1
2c3 ((1 − pT+pF

2
)d pT+pF

2 )

B ∶= c2 ((1 − pF )dpF ) + 1
2c3 ((1 − pT+pF

2
)d pT+pF

2 )

DV (d + 1) −DV (d) < 0 is equivalent to B > A. Notice that B > 0 because when c3 > 0 makes B
a sum of positive term, and when c3 < 0 A is a sum of positive term so that B > A > 0.

Likewise we develop DV (d + 2) −DV (d + 1) as:

−c1 ((1 − pT )dpT (1 − pT )) + c2 ((1 − pF )dpF (1 − pF )) + c3 ((1 − pT + pF
2

)
d pT + pF

2

1

2
(1 − pT + 1 − pF ))
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Therefore:
DV (d + 1) −DV (d + 2) = −(1 − pT )A + (1 − pF )B > 0

where the last inequality follows from pT > pF

5 Evaluation of Intervention

5.1 Flagging

Differential effect of flagging with or without competition: Proposition 8

We define the difference of incentive to invest with flagging FDV (z, x; q) ∶= ∆VM(z; q)−∆V D(z, x; q).
Let us first rewrite:

∂FDV (z, x; q)
∂q

= VF + (1 − x)VTF − (1 − x)VT∅ − xVFT − 2(1 − x)(1 − q)VFF + (1 − x)(1 − 2q)VF∅

To prove that this derivative is positive, we show that ∂2FDV (z,x;q)
∂q∂x ≥ 0, so that ∂FDV (z,x;q)

∂q ≥
∂FDV (z,x;q)

∂q ∣
x=1/2

We then move to show that ∂FDV (z,x;q)
∂q ∣

x=1/2
> 0.

To show that ∂2FDV (z,x;q)
∂q∂x ≥ 0, we rewrite:

∂2FDV (z, x; q)
∂q∂x

= −VTF + VT∅ − VFT + 2(1 − q)VFF − (1 − 2q)VF∅

= − pT
pT+pF (1 − (1 − pT+pF

2 )d) + (1 − (1 − pT
2 )d) − pF

pT+pF (1 − (1 − pT+pF
2 )d)

+ (1 − q)(1 − (1 − pF )d) − (1 − 2q)(1 − (1 − pF
2

)d)

= q + (1 − pT+pF
2 )d − (1 − pT

2 )d − (1 − q)(1 − pF )d + (1 − 2q)(1 − pF
2 )d

= q[1 + (1 − pF )d − 2(1 − pF
2 )d] + [(1 − pT+pF

2 )d − (1 − pT
2 )d − (1 − pF )d + (1 − pF

2 )d]

Now, this expression is the sum of two positive terms. Indeed:

• the first term is increasing in pF so that 1+(1−pF )d−2(1−pF2 )d ≥ 1 + (1 − pF )d − 2(1 − pF
2 )d∣

pF =0
= 0

• the second term is increasing in pT so that (1 − pT+pF
2 )d − (1 − pT

2 )d − (1 − pF )d + (1 − pF
2 )d ≥

(1 − pT+pF
2 )d − (1 − pT

2 )d − (1 − pF )d + (1 − pF
2 )d∣

pT =pF
= 0

We can thus conclude that
∂2(∆VM (z;q)−∆V D(z,x;q))

∂q∂x ≥ 0

Let us now show that ∂FDV (z,x;q)
∂q ∣

x=1/2
> 0. We can rewrite:

∂FDV (z, x; q)
∂q

∣
x=1/2

= VF +
1

2
VTF −

1

2
VT∅ −

1

2
VFT − (1 − q)VFF +

1

2
(1 − 2q)VF∅
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Noting that VFF = 1
2VF , we get:

∂FDV (z, x; q)
∂q

∣
x=1/2

= [(1 + q)
2

VF − qVF∅] +
1

2
[VTF − VFT − VT∅ + VF∅]

= [1+q
2 VF − qVF∅] + 1

2 [pT−pFpT+pF (1 − (1 − pT+pF
2 )d) + (1 − pT

2 )d − (1 − pF
2 )d]

Again, this is the sum of two positive terms.

• The first term is positive as 1+q
2 > q and VF ≥ VF∅. Note that the term is strictly positive

for pF > 0.

• It is more cumbersome to show that the second term is positive. We show that it is non-
decreasing in d and then show it is weakly positive for d = 1.To show that it is non-decreasing
in d, we proceed by induction. For ease of notation, let us define for this proof:

E(d) ∶= pT−pF
pT+pF (1 − (1 − pT+pF

2 )d) + (1 − pT
2 )d − (1 − pF

2 )d

Then,

E(d) −E(d + 1) = −pT−pFpT+pF
pT+pF

2 (1 − pT+pF
2 )d + pT

2 (1 − pT
2 )d − pF

2 (1 − pF
2 )d

= pT
2

[(1 − pT
2 )d − (1 − pT+pF

2 )d]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=A

− pF
2

[(1 − pF
2 )d − (1 − pT+pF

2 )d]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=B

Therefore E(d)−E(d+1) < 0 for A < B. We want to show that if E(d) it is non-decreasing
at some d′, then it is non-decreasing for all subsequent d > d′. The inductive step requires
us to show that for A ≤ B, E(d + 1) −E(d + 2) ≤ 0. This is indeed the case as:

E(d + 1) −E(d + 2) = pT
2

[(1 − pT
2 )d(1 − pT

2 ) − (1 − pT+pF
2 )d(1 − pT

2 ) + (1 − pT+pF
2 )d(−pF2 )]

− pF
2

[(1 − pF
2 )d(1 − pF

2 ) − (1 − pT+pF
2 )d(1 − pF

2 ) + (1 − pT+pF
2 )d(−pT2 )]

= (1 − pT
2 )A − (1 − pT

2 )B

Because (1− pT
2 ) ≤ (1− pF

2 ) and A ≥ 0, we do have: A ≤ B ⇒ (1− pT
2 )A ≤ (1− pT

2 )B. Finally,
it is easy to verify that for d = 1, A = B, so that E(1) −E(2) = 0. 17

We can thus conclude ∂FDV (z,x;q)
∂q ∣

x=1/2
≥ 0 for any pF ≥ 0 and ∂FDV (z,x;q)

∂q ∣
x=1/2

> 0 for any

pF > 0, which concludes our proof.
17Note that if A > 0 and pT > pF , A ≤ B ⇒ (1− pT

2
)A > (1− pT

2
)B. Therefore, the term is strictly increasing for

any d ≥ 2, pT > pF .
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B Attention-Seeking Influencers

B.1 Influencer Best Response in Monopoly

The Probability of Being Read by a Follower (as an Influencer)

Because we take the perspective of a given influencer i, we now define the random variable
S ∼ B(d − 1, pX) as the number of times i’s followers’ neighbors’ have shared, in addition to i.

E( 1

S + 1
) =

d−1

∑
s=0

1

s + 1
(pX)s(1 − pX)d−1−s (d − 1)!

s!(d − 1 − s)!

= 1

dpX

d−1

∑
s=0

(pX)s+1(1 − pX)d−s−1 d!

(s + 1)!(d − s − 1)!

= 1

dpX

d

∑
s̃=1

(pX)s̃(1 − pX)d−s̃ d!

s̃!(d − s̃)!

= 1

dpX
[
d

∑
s̃=0

(pX)s̃(1 − pX)d−s̃ d!

s̃!(d − s̃)!
− (pX)0(1 − pX)d−0 d!

0!d!
]

= 1

dpX
[1 − (1 − pX)d]

where s̃ = s + 1.

Proof of Proposition 9

1. E( #likes)∣si = T ) ≤ τ ≤ E( #likes)∣si = T ) ⇒ ρ
1−ρ <

pT
(1−(1−pT )d)

(1−(1−pF )d)
pF

We have:

pv(T ;xv)ρ
1 − b
pT

(1−(1−pT )d)+(1−pv(T ;xv))(1−ρ)
1 − b
pF

(1−(1−pF )d) < pv(F ;xv)ρ
1

pT
(1−(1−pT )d)+(1−pv(F ;xv))(1−ρ)

1

pF
(1−(1−pF )d)

[pv(T ;xv) − pv(F ;xv)]ρ
1

pT
(1− (1− pT )d) < [pv(T ;xv) − pv(F ;xv)](1− ρ)

1

pF
(1− (1− pF )d)

ρ
1

pT
(1 − (1 − pT )d) < (1 − ρ) 1

pF
(1 − (1 − pF )d)

2. f(x) = x
1−(1−x)d is an increasing function. We have:

sign( ∂f
∂x

∣
x∈(0,1)

) = sign(1 − (1 − x)d − xd(1 − x)d−1

(1 − (1 − x)d)2
) = sign (1 − (1 − x)d − xd(1 − x)d−1)

Now, g(x) ∶= (1 − x)d − xd(1 − x)d−1 < 1 over x ∈ [0,1]. Indeed, g(0) = 1, g(1) = 0, and g

strictly decreasing in-between. Indeed,

∂g

∂x
∣
x∈[0,1]

= (d − 1)(1 − x)d−2[(1 − x) − (1 + x(d − 1))] = (d − 1)(1 − x)d−2[−xd] ≤ 0

49



Finally note that f is continuous on [0,1]. Indeed: f(0) = 1
d and f(1) = 1.

Proof of Theorem 3

(i) If every other influencers always share, pT = pF = b Then, the expected number of likes
upon receiving a false signal is:

[p(F ;x)ρ + (1 − p(F,x))(1 − ρ)]1 − b
b

(1 − (1 − b)d)

Which is higher than τ iff:

p(F ;x) ≥
τ
δ(b) − (1 − ρ)

2ρ − 1

Given that p(F ;x) = (1−ρ)x
(1−ρ)x+ρx , this happens iff:

x ≥ ρ

2ρ − 1

τ − (1 − ρ)δ
τ

= x̂(τ)

Note that because τ ≤ ρδ, x̂(τ) ≤ 1; for τ < (1 − ρ)δ, x̂(τ) < 0, so that the condition is
always fulfilled.

(ii) If every other influencers never share, pT = pF = 0. Then, the expected number of likes
upon receiving a true signal is:

[p(T ;x)ρ + (1 − p(T,x))(1 − ρ)]d(1 − b)

Which is lower than τ iff:

p(T ;x) ≤
τ

d(1−b) − (1 − ρ)
2ρ − 1

Given that p(T ;x) = ρx
ρx+(1−ρ)x , this happens iff:

x ≤ 1 − ρ
2ρ − 1

τ − (1 − ρ)d(1 − b)
d(1 − b) − τ

=
ˇ
x(τ)

Note that because τ ≥ (1 − ρ)d(1 − b),
ˇ
x(τ) ≥ 0; for τ > ρd(1 − b), x̂(τ) > 1, so that the

condition is always fulfilled.

(iii) If every other influencers share only upon receiving a positive signal, pT = 1, pF = 0. Then,
i also only shares upon receiving a positive signal iff:

p(T ;x)1−(1−bρ)d
b +(1−p(T,x))1−(1−b(1−ρ))d

b ) > τ > p(F ;x)1−(1−bρ)d
b +(1−p(F,x))1−(1−b(1−ρ))d

b

Which is possible only if τ ∈ [τ1, τ2]. Note that if τ ∈ {τ1, τ2}, x1 = x2 ∈ {0,1}.

Replace p(T ;x) and p(F ;x) by the adequate expression to find the range x1, x2.
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C. Second Period Bet with w0 /= 1/2

Because the followers are not necessarily exposed to an article, we define n ∈ {∅,0,1}. Further-
more, the identity of the news producer also matters. We define a random variable describing the
identity of the producer whose news’ article a follower is exposed to; to economize on notation, we
denote both the r.V. and its outcome by e, with e ∈ {∅, a, b}. Finally, we note p(n, s, e;xu, z,w0)
the followers’ posterior probability with which the followers believe the news’ content to be true.

Following the analysis of the influencer’s problem, the follower’s optimal action given her
information set is a(n, s) = ∣n − 1p(n,s,w;xu,z,w0)<1/2∣.

If a follower sees some news article, he only sees one piece of information, drawn at random
from their sharing neighborhood. This means that he can never observe how many neighbors
shared, and thus cannot perfectly infer the distribution of their private signal. However, he
accounts for the fact that one type of content might be more visible than another, and that one
producer might be more shared than another.

Upon observing a piece of news n /= ∅ from producer e = u, and receiving a private signal s,
the followers’ posteriors on the news’ truthfulness are:

Pr(ω = n∣ηu = n, ς = s, e = u) = Pr(ηu=n,ς=s∣ω=n)Pr(e=u,ηu/=∅∣η=n,ω=n)Pr(ω=n)
∑w Pr(ηu=n,ς=s∣ω=w)Pr(e=u,ηu/=∅∣η=n,ω=w)Pr(ω=w)

Now, Pr(e = u, ηu /= ∅∣ω = n) as to be expected over possible news’ content for all others
producers. As before, we denote m the vector outcome of −u’s news’ content. We find:

Pr(e = u, ηu /= ∅∣ω = w) = ∑
m

Pr(m)
pu∣w,n

pu∣w,n + p−u∣w,m
(1 − (1 − pv∣w,n + p−u∣w,m)d)

where Pr(m) and p−u∣w,m are defined as in the main text.

We thus find:

p(n, s,w;xu, z,w0) =
Pr(ς=s∣ω=n)E(Rfu∣ω=n,η=n,ς=s)xu

∑w Pr(ς=s∣ω=w)E(Rfu∣ω=w,η=n,ς=s)Pr(η=n∣ω=w)

Where E(Rfu∣ω = n, η = n, ς = s) = 1 − (1 − pn,s)d in the case of a monopoly.

Notice that even in the symmetric equilibrium, where xu = x−u and pu∣n,s = p−u∣n,s, the above
expression still needs to account for the presence of two potential sources of information. In
particular, the follower accounts for the fact that there should be a higher probability for a true
information to reach her in equilibrium.

When no news is shared in the follower’s neighborhood, he does not know which content has
been published. However, it can still be informative. Say for instance that z is such that agents
never share with η = 1 and always share with η = 0. Then, not seeing any information means
η = 1.
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Her posterior about the state of the world upon not seeing any information, i.e. η = ∅ is:

Pr(ω = 0∣ no neighbor shared) = Pr( no shares ∣ω=0)Pr(ω=0)
∑w Pr(no shares ∣ω=w)Pr(ω=w)

Now, noting m′ the set of outcome describing all producers v, we have:

Pr(no shares ∣ω = 0) = ∑
m′

Pr(no shares ∣η =m′, ω = 0)Pr(η =m′)

We find:
Pr(ω = 0∣η = ∅, ς = s) = Pr(s∣ω=0)[∑m(1−pv∣0,m)d Pr(m)]w0

∑w Pr(s∣ω=w)[∑m(1−pv∣0,m)d Pr(m)]Pr(ω=w)

Notice that if we assume z to be such that both types of information are treated the same by
the influencers, then the follower’s posterior is simply w0, because pv∣0,0 = pv∣1,1 and pv∣0,1 = pv∣1,0.
As in the main text, seeing no shares in such a case is uninformative.

The followers’ strategy directly follows from this.
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D. Equilibria with Sequential Moves

In this part, we solve the model presented in section ?? with w0 = 1/2 and zv∣0,0 = zv∣1,1 ∶= zT ,
zv∣0,0 = zv∣1,1 ∶= zF , as a sequential game. In particular, we assume the following timing:

t=1 Producers v simultaneously choose their precision level Pr(news v T) = xv.

* Network is formed. One piece of news per producer is issued. Influencers receive a private
signal about the piece of news’ truthfulness.

t=2 Influencers i simultaneously choose

Note that, as the influencer plays last, their problem does not change. x is now the actual
investment and not their prior about it; and the best-response is now their contigent strategy.
Nothing else changes. Thus, we will only analyze the choice of the producer in the first period.

6.0.1 Monopoly

Now, the producer is internalizing his effect on influencers’ action. Because their strategy is not
smooth, the producer’s consider different cases. Recall that the producer wants to maximize:

x∆V (z(x)) − VF (z) −C(x)

• If restricted to x < 1 − γ, any investment would be costly without yielding benefits, so he
would pick x = 0 and get 0 benefits.

• If restricted to x > γ, any extra investment from γ would be fruitless, so x → γ and no
x > γ can be part of an SPE.

• If restricted to x ∈ (1 − γ, γ),

– If there exists a xM
′

such that ∆V (1,0) = c(xM ′), then the producer would pick xM
′

and have benefits 1 − (1 − b)[xM ′(1 − bγ)d + (1 − xM ′)(1 − b(1 − γ))d] −C(xM ′)

– Otherwise, no x ∈ (1 − γ, γ)

• x = 1 − γ would be consistent with an equilibrium if z∗T (1 − γ) is such that
1 − (1 − b)[xM ′(1 − bγ)d + (1 − xM ′)(1 − b(1 − γ))d] −C(1 − γ) ≥ 0, which would be the ben-
efits

• x = γ would be consistent with an equilibrium if z∗F (γ) = 1; the benefits would be
1 − (1 − b)d+1 −C(γ).

Note that if there exists xM
′ > 1− γ such that ∆V (1,0) = c(xM ′), x = 1− γ cannot be part of

a SPE, since in 1−γ there is a deviation to x′ > 1−γ – at 1−γ marginal benefits are higher than
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marginal cost. Furthermore, with such xM
′

existing, we know that ∆V (z∗(xM)) − C(xM) ≥ 0.
Indeed, by assuming free entry and because c is increasing, we know that:

∆V (z∗(xM)) −C(xM) = ∫
xM

0
∆V (z∗(xM)) − c(x)dx ≥ 0

We thus specify the possible SPE as follows:

• If there exists xM
′ ∈ (1 − γ, γ) such that ∆V (1,0) = c(xM ′)

– If V (1,1)−V (1,0) > C(γ)−C(xM ′), then the SPE are such that the producer invests

γ and the influencers set (z∗T (x), z∗F (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if x < 1 − γ

(a,0) if x = 1 − γ

(1,0) if x ∈ (1 − γ, γ)

(1,1) if x≥γ

– If V (1,1)−V (1,0) ≤ C(γ)−C(xM ′), then the SPE are such that the producer invests

xM
′

and the influencers set (z∗T (x), z∗F (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if x < 1 − γ

(a,0) if x = 1 − γ

(1,0) if x ∈ (1 − γ, γ)

(1, a) if x = γ

(1,1) if x > γ

– If V (1,1) − V (1,0) ≤ C(γ) −C(xM ′) then both set of SPE described above exist

• If there exists no such xM
′

:

– If ∆V (1,0) > c(x) ∀x ∈ (1 − γ, γ), then the SPE are such that the producer invests γ

and the influencers set (z∗T (x), z∗F (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if x < 1 − γ

(a,0) if x = 1 − γ

(1,0) if x ∈ (1 − γ, γ)

(1,1) if x≥γ

– If ∆V (1,0) < c(x) ∀x ∈ (1 − γ, γ), there exists two set of SPE:

∗ The producer invests 1−γ and the influencers set (z∗T (x), z∗F (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if x < 1 − γ

(a1,0) if x = 1 − γ

(1,0) if x ∈ (1 − γ, γ)

(1, a2) if x = γ

(1,1) if x > γ
for all a2 and with a1 such that
1 − (1 − b)[xM ′(1 − bγ)d + (1 − xM ′)(1 − b(1 − γ))d] −C(1 − γ) ≥ 0
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∗ The producer invests 0 and the influencers set (z∗T (x), z∗F (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) if x < 1 − γ

(a1,0) if x = 1 − γ

(1,0) if x ∈ (1 − γ, γ)

(1, a2) if x = γ

(1,1) if x > γ
for all a2 and with a1 such that
1 − (1 − b)[xM ′(1 − bγ)d + (1 − xM ′)(1 − b(1 − γ))d] −C(1 − γ) ≤ 0
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