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Abstract

We study the joint evolution of the distributions of health and wealth under
household level shocks to health and income, and uncertainty about disease out-
breaks. We specify a model in which health and wealth are jointly determined,
under idiosyncratic income and health risk that is related to disease outbreak risk.
We calibrate the model to a number of properties of the pre-COVID-19 UK health
and income distributions, including the social mobility matrix and differences in
mean health and in health and labour income risk by professional class. We use the
model to study the likely medium-run wealth and health inequality implications of
the COVID-19 pandemic in the UK, and find that the majority of future time paths
imply significant increases in both wealth and health inequality.
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1 Introduction

Pandemics create health and economic crises that impact households heterogeneously,
increasing risk and inequality in both income and health. The inequality implications of
COVID-19 have been examined in several studies (e.g. Stantcheva (2021) for a review,
and Marmot et al. (2020) focusing on health inequality).1 Existing analysis has examined
the effects on health and income inequality during the pandemic, noting that such changes
can have long-lasting implications2. However, given that health and wealth are jointly
determined and persist, reflecting current as well as past decisions and shocks, an under-
standing of the scale of the inequality implications of a pandemic requires a quantitative
analysis of the medium-run dynamics of health and wealth inequality that are induced by
the pandemic.3 In this paper, we model and compute the dynamic evolution of the joint
distribution of health and wealth across households following the COVID-19 pandemic
shock, under recurrent disease outbreak risk.
Health and wealth inequality are determined jointly. Given the strong link between

health outcomes and income/wealth (e.g. Marmot (2004), Semyonov et al. (2013) and
Payne (2017)), quantifying the health inequality implications of the pandemic in the
medium run requires a model where health depends on wealth, which encapsulates past
income shocks. At the same time, health is in effect a utility-bearing asset whose choice
in response to shocks and to changes in risk is made simultaneously with wealth. Hence,
quantifying the wealth inequality implications of a pandemic in the medium run requires
a model where households choose the portfolio of health and wealth. This is particularly
relevant in a post-pandemic environment following large shocks to health and income and
changes in health and income risk, and thus potentially requiring significant adjustments
in the portfolio of health and wealth.
The disease outbreaks during the pandemic waves are a major aggregate-level shock

that increases idiosyncratic health risk and, by hampering economic activity directly or via
measures to contain the spread of the disease, alter possibilities for earnings, consumption
and savings asymmetrically across the population. However, the probability of significant
disease outbreaks remains high for a potentially long time period after the main pandemic
waves. Following the main waves, recurrent outbreaks may occur due to re-introduction
of the virus, new variants, waning immunity, human behaviour (e.g. vaccine refusal), or
population turnover leading to reductions in population-level immunity (e.g. Anderson
and May (1991) and for COVID-19 e.g. BMJ (2021), Nature (2021) and Kissler et al.
(2020)). This epidemiological risk is consistent with empirical evidence from the UK and
the US for the 1918-19 pandemic, and from England/Wales for the 1890-91 pandemic,
revealing several large outbreaks after the main pandemic waves in all cases. To illustrate
the empirical pattern we plot in Figure 1 mortality rates averaged across eight major cities
in the UK using data we collected from municipal public health administrative records,
the Medical Offi cer for Health reports (see Angelopoulos et al. (2021a) for more details
on the data and analysis of post-pandemic mortality risk). We analyse the mortality rate
data in Section 2 statistically and confirm that there was a higher probability of a large

1An empirical analysis of the inequality effects of pandemics is in Furceri et al. (2020).
2See e.g. Blundell et al. 2020 and Jorda et al. (2020) for economic effects, and Banks et al. (2020)

and Dennis et al. 2020 for health effects.
3The extensive review of Stantcheva (2021) identifies only an earlier version of this paper, Angelopoulos

et al. (2021a), as a study of the wealth inequality implications of COVID-19 for the near future.

1



outbreak during the two decades that followed the pandemic compared with the period
before the pandemic and two decades after the pandemic.

Figure 1: Annual Mortality from Influenza in the UK (1895 - 1950)
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Note: Cities include Birmingham, Glasgow, Liverpool, Manchester & Sheffi eld.

Source: Data obtained from the Medical Offi cer fo Health reports (see Section 5 for details).4

Therefore, analysing post-pandemic dynamics of health and wealth inequality must
account for disease outbreak risk even after the main pandemic waves. Angelopoulos et
al. (2021a) use mortality risk estimates from the different geographical regions after the
main waves of the 1918-19 and 1890-91 pandemic to inform a model of mortality dynamics
after the main pandemic waves in a procedure allowing for model uncertainty. The model
predictions imply that the risk of disease outbreaks exceeding 500 deaths per million
remains between 25% and 30% with 80% probability for a decade after the main pandemic
waves. Large outbreaks can also impact economic activity. Therefore, the post-pandemic
medium-run entails possible aggregate-level health and economic shocks that can impact
inequality in addition to the initial shock, and that increase risk which affects decision
making via precautionary incentives. The general implication of these considerations is
that pandemic-induced health and wealth inequality dynamics are stochastic.
Our main object of the quantitative analysis is a stochastic process of a measure,

namely of the cross-sectional distribution that emerges from household-level stochastic
processes under idiosyncratic and aggregate risk, initiated from the pandemic shock. In
particular, we examine the stochastic dynamic evolution of the joint distirbution of the en-
dogenous state variables health and wealth across households after 2020, under economy-
wide uncertainty regarding disease outbreaks and the process for economic recovery fol-
lowing the pandemic induced recession, and idiosyncratic, household-level income and
health risk. This gives rise to a distribution of possible joint cross-sectional distributions
for every year after 2020, depending on realisations of the epidemiological and economic
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recovery stochastic processes, which we use to make probabilistic statements regarding
the endogenous cross-sectional distributional outomes, i.e. wealth and health inequality.
To obtain the stochastic process of health and wealth inequality, we develop a model

where both health and wealth are endogenous state variables, and are affected by a com-
bination of random shocks, at the household and the economy level, to health and to
labour income, and by purposeful choices at the level of the household, which are made
in response to health and income shocks and risk, and to the current level of income and
health, and thus the history of health and income shocks received. Households belong
to different socioeconomic groups, defined by professions, and the stochastic transitions
between groups are determined by a transition matrix that we calibrate to the data.
Households receive further labour income as well as health shocks, which are socioeco-
nomic group-dependent, reflecting a social gradient in health.
The portfolio of assets that the households have access to implies that consumption

smoothing does not necessarilly imply reduction in both health and wealth, and precau-
tion does not imply building buffer stocks of both health and wealth. Indeed, househods
in the model have incentives for consumption smoothing and for a precautionary response
to (health and/or earnings) risk. However, as we show, household behaviour also incor-
porates incentives to treat health and wealth as substitutes in smoothing consumption
and in responding to risk. Therefore, allowing for both assets to adjust in response to
exogenous changes that impact income and wealth via health is important to uncover the
response of wealth net of health.
In this environment, pandemic-induced changes can have significant effects on the

cross-sectional distributions of health and wealth, and for their relationship. These are
driven by the varation in the options for stock depleting or building, in response to shocks
and risk, that is offered by the portfolio of assets, their dependence on initial health
and wealth, and because the effects of pandemic changes need not be symmetric across
households. Analysis of the model further demonstrates that in an environment with
a significant share of borrowing constrained households, the effects of increases in risk
on wealth inequality are amplified, and on health inequality likely dampended. On the
contrary, the impact effect of the pandemic shock on wealth inequality is mediated, and
on health inequality exacerbated. To evaluate the net impact of the different theroretical
channels on inequality, a quantitative analysis is required.
We focus on the UK for the quantitative analysis. The UK is characterised by severe

health inequalities and a strong link between health and socioeconomic groups and income
(see, e.g. Marmot et al. (2020)). This is reflected in national-level survey data from the
Understanding Society and the Wealth and Asset Survey that we analyse, and which show
that households in higher professional groups have higher mean income, wealth and self-
reported health, and face lower health risk, measured by the probability of suffering from
an acute illness. The data also reveal that there is more variation in terms of both wealth
and self-reported health within socioeconomic groups with lower mean income, suggesting
that when analysing health inequality, differences between socioeconomic groups is only
part of the story, especially when the interest lies in understanding outcomes for the
lower income groups. Moreover, the probability of becoming non-employed is higher for
households that have suffered from an acute illness, supporting a feedback loop in the
relationship between health and income inequality.
We calibrate the model to a number of properties of the pre-COVID UK health and

income distributional characteristics, including differences in mean health and in health
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and labour income risk by socioeconomic group, and the social mobility matrix. To eval-
uate the model, we examine its fit with respect to the differences between socioeconomic
groups in terms of within group inequality in income, wealth and health, which have not
been calibration targets. We find that household behaviour, and the mechanisms and
channels in the model structure, generate the stylised empirical properties of health and
wealth referring to within group inequality. The model, therefore, captures several im-
portant elements of the joint distribution of health and wealth prior to the COVID-19
pandemic. We then examine the stochastic dynamic following the COVID-19 shock.
We find substantial and persistent increases in both wealth/income and health in-

equalities following the COVID-19 pandemic. In particular we find that Gini coeffi cients
increase and between group means diverge, and especially that those who suffer the most
are the routine occupations socioeconomic group.

2 Health risk and inequality

We examine economy-wide and idiosyncratic health risk empirically, focusing, in the latter
case, on the link between household-level health and economic outcomes. First, we ex-
amine disease outbreak uncertainty and present evidence from historical medical records
establishing that influenza pandemics have been followed by periods of increased likelihood
of outbreaks in deaths from influenza. Second, we examine household-level health risk in
conjunction with income, and summarise empirical properties linking the distribution of
health with that of income, and the latter with that of wealth.

2.1 Post-pandemic outbreaks

Epidemiological analysis suggests that initial viral outbreaks may be followed by subse-
quent outbreaks (see e.g. Anderson and May (1991), Oxford et al. (2013)). This remains
a contemporary concern (e.g. BMJ (2021), Nature (2021) and Kissler et al. (2020) in the
context of COVID-19).5

To investigate disease outbreaks in the begining of the 20th century in the UK, we use
information included in public health records that were kept at the municipal level since
Victorian times, the "Medical Offi cer for Health" (MOH) reports.6 We use data for eight
major cities to obtain the mortality rates from influenza between 1895 and 1950 that we
plot in Figure 1.7 Inspection of this figure suggests several spikes in the average mortality
rate post-1920, across these five cities. The outbreaks in 1922, 1929, 1933 and 1937 are
particularly pronounced, especially in comparison to the mortality rates pre-1918. To
confirm increased outbreak risk post- versus pre-1918, we estimate a two-state Markov

5With respect to COVID-19, in particular, the tendency of SARS-CoV-2 to form variants has been
noted (e.g. Kemp et al. (2021), Plante et al. (2021)). For a discussion of the implications see Lauring &
Hodcroft (2021) and news articles by Gray (2021) and Fisher et al. (2021), containing further references.

6The "Medical Offi cer for Health" reports were annual administrative documents covering a range
of public health-related issues at the municipal level. The first reports begin in the mid-19th century,
and coverage extends to most municipalities in the UK until the early 1970s. Many of the reports have
been digitized and can be viewed on the Wellcome Trust Collection website. For more details, see:
https://wellcomelibrary.org/moh/about-the-reports/about-the-medical-offi cer-of-health-reports/

7Note that the mortality rates are very similar with those reported for England and Wales in Langford
(2002), for the period 1895-1920, where the two datasets overlap (see Figure 2 below).

4



switching model using mortality rates between 1895 and 1950 and reject the null of a
common distirbution of mortality charactersing the whole period (see Appendix A for
more details). In particular, the distribution for the period immediately after 1918 has a
higher mean and variance, implying increased probability of high mortality rates.

Figure 2: Annual Mortality from Influenza in England and Wales (1838 - 1920)
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Note: Death rates for 1911 - 1920 refer to females only.

Source: Data taken from Langford ((2002), Table 5, p.13).

Using data on influenza mortality for England and Wales, reported in Langford (2002),
we find a similar pattern of post-pandemic increased frequency of disease outbreaks follow-
ing the 1889-90 pandemic. This pandemic began in the last months of 1889 and claimed
over 1 million lives worldwide, making it one of the largest global pandemics of the time
(see Charles Rivers Editors (2020); see also Beveridge (1991) for an overview of historical
influenza outbreaks).8 We plot the data in Figure 2 below, noting the spikes in mortality
rates post-1890.9 The pattern of higher post-pandemic disease outbreak frequency is not
confined to the UK. Using data on vital statistics published by the Center for Disease
Control (see Linder and Grove (1943) and Grove and Hetzel (1968)), we construct a fur-
ther time series of mortality from influenza for the USA between 1900 and 1950. The
data is plotted below in Figure 3. Again, one can see a number of secondary spikes in
mortality in the two decades after the 1918/19 outbreak. Estimating the Markov chain
regime switching model for the data series for England and Wales and the US in Figures
2 and 3 also confirms that the decades immediately after 1890 and 1918, respectively, are
characterised by higher mortality risk than the decades just before the pandemics.

8Vijgen et al. (2005) suggest that the cause of the pandemic was a human coronvirus.
9See the correspondence of the British Medical Journal, from the 22nd of January 1898 (p. 249) for

a contemporary discussion of the outbreak as recrudescence of the 1890-91 pandemic.
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Figure 3: Annual Mortality from Influenza in the US (1900 - 1950)
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Source: Data constructed from CDC records (see Linder & Grove (1943) and Grove & Hetzel (1968)).

2.2 Health, Wealth and Income in the UK pre-COVID-19

We examine selected aggregate level empirical properties of inequality in wealth and
health, using data from Understanding Society (UnSoc) for the UK and the Wealth and
Asset Survey (WAS) for Great Britain.10 Understanding Society is a large longitudinal
survey covering a wide range of social and economic factors, including information about
respondent’s health, which are observed annually since 2009-2010. The Wealth and Assets
Survey is a bi-annual survey of household wealth and a range of household socioeconomic
characteristics, with the first wave in 2006-2008. Understanding Society does not include
measures of wealth, whereas WAS does not include measures of health. However, both
include information on the socioeconomic classification of the employment of respondents,
thus allowing us to examine health and wealth inequality by socioeconomic groups defined
by this classification. For both datasets, we define as household members the head of a
household, aged between 25 and 60, and their spouse or partner (if applicable). Details
on the data, sample selection and the construction of variables are in Appendix A.
The UnSoc data includes a measure of self-assessed health, SF-12 Physical Component

Summary (PCS), which is observed repeatedly for each individual. The SF-12 PCS mea-
sure is commonly used in public health research to compare different groups of individuals
(see e.g Dundas et al. (2017)). We standardise this measure to take values in the interval
[0.1, 1] and calculate the average across household members as a proxy for household-level
health.
10We aim to present results for the UK, where possible and complement these with results for Great

Britain from WAS. The results in this Section from UnSoc for the UK are very similar if we use the
sample for Great Britain instead (see Appendix A).
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In Table 1, we show the mean value of this measure of health for different socioe-
conomic groups. In particular, we follow the 8-class National Statistics Socioeconomic
Classification (NS-SEC) (for details, see Rose et al. (2005)) of professional classes and
allocate each household to the highest socioeconomic group of any member. We group
the 8 NS-SEC classes plus all those classed as economically inactive and unemployed
into four groups that have clearer differences, and make the results here comparable to
the discretisation we employ in the model analysis below. We term these four groups as
Professional, Intermediate, Routine, and Non-employed (which includes the inactive and
unemployed households; for details, see Appendix A) and calculate the mean household
income per group. Household income is the post-policy labour income from the head and
spouse (see also Appendix A for details). As can be seen in Table 1 (columns 2 and 3),
households in socioeconomic groups with higher mean income also have a higher level of
health on average.

Table 1: Income, health and health risk by socioeconomic group
[1] [2] [3] [4]

Socioeconomic Group Relative Income Health Gini Health Severe Health cond.
Professionals 1.51 0.72 0.05 1.9
Intermediate 1.07 0.71 0.07 2.0
Routine 0.75 0.68 0.08 2.3
Non-employed 0.50 0.57 0.18 6.4
All 1 0.68 0.09 2.7

Note that income is household-level labour income, after taxes and including transfers

Source: Pooled Sample UnSoc Waves 1-9, see Appendix A for details

The results in columns 2 and 3 in Table 1 are indicative of between-group health
inequality, consistent with the link between the social gradient and health inequality that
has been analysed in the literature (see, e.g. Marmot (2015, 2020) and Payne (2017)).11

We complement these results with an examination of how within-group variation in health
and health risk related to the social or income gradient. In column 4, we show the Gini
measures of health inequality within each of the socioeconomic groups. As can be seen,
groups with lower mean income also have higher health inequality between households
that belong to these groups, in the sense that good health is concentrated more among
fewer households within the group. We also calculate the proportion of households that
have a member who has suffered a severe health shock as a measure of health risk.12

Again, groups with lower mean income are also more likely to experience a severe health
shock.
Therefore, socioeconomic group, income, health risk, and the level and variation of

health are related, implying health inequality. Socioeconomic groups with higher mean
income also have a higher level of health on average, are less likely to experience a severe
health shock, and also experience more uniform allocation of health within their socioeco-
nomic group. To further quantify health inequality we calculate the Erreygers index that

11The link betwen health and income in Table 1 for the UK using Understanding Society data is also
broadly consistent with patterns in the US from the PSID data, see e.g. Cole et al. (2019).
12We look at the effects of severe health events, and in particular heart disease, heart failure, emphy-

sema, chronic bronchitis, stroke, heart attacks and cancer. See Appendix A for details.
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measure the concentration of health with regards to a household’s position in the income
distribution (Erreygers (2009); see also Appendix A for more detail). In the pooled UnSoc
sample, this index takes a value of 0.079 indicating a positive relationship between income
and health.
We also examine the relationship between socioeconomic group transitions and health.

To do so, we construct a socioeconomic mobility matrix, that shows the proportion of
households who move between the four groups we work with from one year to the next
for two groups of households, those for whom one member has received a severe health
shock, and those without experiencing health shocks. The two social mobility matrices
are shown in Table 2.

Table 2: Socioeconomic Mobility
Transitions of healthy households

t \ t+ 1 Professional Intermediate Routine Non-employed
Professional 0.903 0.083 0.008 0.006
Intermediate 0.034 0.923 0.029 0.014
Routine 0.009 0.0992 0.858 0.041
Non-employed 0.006 0.069 0.103 0.822

Transitions of households post severe illness
t \ t+ 1 Professional Intermediate Routine Non-employed

Professional 0.903 0.082 0.009 0.007
Intermediate 0.028 0.915 0.032 0.024
Routine 0.003 0.080 0.856 0.062
Non-employed 0.002 0.018 0.038 0.942
Notes: Wave to wave transitions

Source: UnSoc Waves 1-9, see Appendix A for details

The results in Table 2 first show that mobility is low, both before and after a severe
health shock. They also show that the most important household labour income risk,
namely a move to the non-employment group implying zero earnings from the highest
potential earner in the household, increases with a significant worsening in health. In
particular, the probability of moving to the non-employment group increases for all groups
when one of their members has suffered a severe illness. Hence, health risk also has labour
income risk implications. Finally, the matrices in Table 2 show that the increase in labour
income risk depends on current conditions, particularly on the current socioeconomic
group. The reason is that a household faces an increased conditional probability of moving
to the non-employment group if it currently belongs to a socioeconomic group with a lower
mean labour income.
Wealth inequality in WAS has been analysed in e.g. Angelopoulos et al. (2019, 2020).

Here, we summarise the main properties for samples (i.e. groups of households) that
are selected from WAS to match as closely as possible the selection criteria and groups
used for the results from the UnSoc data. Table 3 summarises between and within-group
wealth inequality for the same socioeconomic groups as in Tables 1 and 2. As can be seen,
there is significant between-group wealth inequality, and within-group wealth inequality
is higher for socioeconomic groups with lower mean income.
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Table 3: Wealth inequality
Socioeconomic Group relative mean gini % indebtness
Professionals 1.91 0.60 7%
Intermediate 1.08 0.66 14%
Routine 0.37 0.80 31%
Non-employed 0.23 1.01 48%
All 1.00 0.71 19%

Note: Wave to wave transitions. Gini can take values above one because

we allow for negative values of net worth. Qi, i=1,2,...,5 denote the

quintiles of the wealth distribution of each socioeconomic group.

Source: WAS Waves 1-5 and own calculations.

3 A model with health and wealth heterogeneity

We consider an economy composed of a continuum of infinitely lived household dynasties
distributed on the interval I = [0, 1] with measure 1. Households derive utility from con-
sumption and health, and they can use their income to consume, invest in a single riskless
asset, and improve their health in an environment where both income and health are
subject to exogenous shocks. In particular, households may randomly suffer a significant
illness and receive further shocks that determine their labour income. The distributions
of these shocks depend on aggregate conditions meaning that they are allowed to differ
between normal periods and periods during and after an epidemic crisis. Time is discrete
and denoted by t = 0, 1, 2, ..., which refer to annual steps. We model quantities at the
household level, assuming perfect sharing in consumption, health and asset ownership
between members.
Over time, household dynasties differ in the number and duration of significant illnesses

they have suffered, and in the spells with higher and lower labour income. We restrict
our attention to severe illnesses, which represent significant health deterioration, and
we define them as health shocks from which a household member does not fully recover.
Therefore, they may include death of a member, which is especially important in capturing
effects during periods of epidemic crisis. Although the household member does not fully
recover from a severe illness, the household may recover, stochastically, by replacing the ill
member with a new healthy member (e.g. an offspring). Therefore, severe illness shocks
are persistent at the level of the household-dynasty, but not permanent. This specification
is reflected in the modelling of the relevant stochastic processes and their calibration to
both pre- and post-COVID-19 data, which we discuss in the next section.

3.1 Household level choices and constraints

Each household13 wishes to maximise their expected lifetime utility:

E0

∞∑
t=0

βtu(ct, ht+1), (1)

13To simplify notation, to suppress the indexation of household level variables by the household iden-
tifier i ∈ I and present the problem of a “typical”household without the i superscripts.
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where β ∈ (0, 1) is a parameter capturing discounting of future periods, ct is consumption,
and ht is the level of health of the household, defined as the average level of health across
members. The level of health is a state variable, whose law of motion will be specified
below, following the convention that ht denotes the state at the beginning of the period,
and thus ht+1 incorporates the changes in the level of health during period t. Consumption
is non-negative, i.e. ct ≥ 0, and health, ht, takes values in a closed and bounded set,
reflecting the finiteness of the human body, i.e. ht ∈ H = [hmin, hmax], where hmin ≥ 0.
The utility function u : R≥0 × H → R is bounded, twice continuously differentiable,
strictly increasing and strictly concave.14

The household receives income from existing asset holdings at, determined by an inter-
est rate r(zt), where zt is a stochastic process capturing the aggregate state of the econ-
omy. It also receives labour income, w(nt, lt, zt), which is determined by idiosyncratic,
household-specific, random factors, nt and lt, as well as the aggregate state, zt. The
idiosyncratic factors determine the highest profession of the household (nt) and capture
remaining idiosyncratic variation in productivity between households (lt), for example,
determined by the profession of additional members, how well the members’skills are val-
ued in their jobs, how supportive or productive their work environment is, and personal
circumstances that may affect productivity. The stochastic processes determining these
household-specific shocks depend on the aggregate economic state zt, as well as on idio-
syncratic, household-specific health shock, st, which also depend on the aggregate state
zt.
The household uses its income in period t for consumption, buying assets at+1 that

will generate income in the next period, and expenditure to improve health, xt ∈ R≥0.
The budget constraint is given by:

ct + at+1 + xt = (1 + r(zt))at + w(nt, lt, zt), (2)

where at ∈ A = [amin,+∞), and amin ≤ 0 defines a borrowing limit. The random variables
are given by r(zt) : Z →

(
−1, 1−β

β

)
, w(nt, lt, zt) : N × L × Z → R≥0, where the state

spaces defining the domains will be defined in the next sub-section and the ranges are
chosen so that the economic problem is well defined (see e.g. Aiyagari (1994), Acikgoz
(2018) and Zhu (2018)).
Health evolves according to:

ht+1 = δ(st, zt)ht +m (xt) . (3)

The random variable δ(st, zt) : S × Z → D ∈ (0, 1), where D is a compact set, denotes
stochastic health persistence and captures the effects of adverse health shocks that work
to increase the rate at which health deteriorates. The function m (xt) : X ∈ R≥0 → R≥0,
capturing improvements in health via own activity (xt), is twice continuously differen-
tiable, increasing and concave, and satisfies limxt→0mxt = +∞.

3.2 Exogenous processes

The aggregate state zt is determined by a stochastic process that follows a Markov chain
with the (z̃ × z̃) transition matrix QZ and state space Z = [z1, z2, ..., zz̃]. We normalise z1
14For a more general introduction to health in economic models, see Grossman (2017).
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to denote a pandemic period, z2, ..., zz̃−1 to capture periods that follow a pandemic. Thus
that may incorporate epidemiological and potential economic effects of the pandemic, and
zz̃ as periods that are suffi ciently distanced from a pandemic that any pandemic effects
at the aggregate level exogenous variables are negligible.
There are three exogenous stochastic processes, (nt), (lt) and (st), which generate the

household-specific shocks. The respective state spaces are given by N = [n1, n2, ..., nñ],
L = [l1, l2, ..., lṽ], and S = [s1, s2, ..., ss̃]. Conditional on (zt)

∞
t=0 ∈ Z, the stochastic

process for the joint distribution (et)
∞
t=0 = (nt, lt, st)

∞
t=0 is assumed to follow a Markov

chain with a
((
ñ× l̃ × s̃

)
×
(
ñ× l̃ × s̃

))
transition matrix that depends on next period’s

aggregate state z′, denoted by Qz′ , and state space E = N × L× S = [e1, e2, ..., eẽ], with
ẽ = ñ × l̃ × s̃. The elements of the transition matrix Qz′ are denoted πz

′
(et+1|et), and

give the probability that in period t + 1, when the aggregate state in t + 1 is given by
zt=1 = z′, the household will be in idiosyncratic state et+1, conditional on being in state
et in period t. Therefore, the realisation of the aggregate state in period t + 1 matters
for the conditional probability of idiosyncratic shocks. In particular, the probability of
household level economic and health shocks period t + 1 differs depending on whether
t + 1 is a period of pandemic or not, for the same household-level state in period t. The
transition matrices for all z′ ∈ Z satisfy that

∑
et+1∈E

πz
′
(et+1|et) = 1 for all et ∈ E, where

the superscripts denote the dependence of conditional probabilities on the aggregate state
in period t+1. Conditional on the aggregate state, households draw idiosyncratic shocks
from (Qz′ , E) independently from each other, but, for a given household, the draws from
the underlying (nt), (vt) and (st) need not be independent.
At the level of household, uncertainty is summarised by the stochastic process (yt)

∞
t=0 =

(et, zt)
∞
t=0, which follows a Markov chain with a ((ẽ× z̃)× (ẽ× z̃)) transition matrixQ and

state space Y = E×Z = [y1, y2, ..., yỹ], with ỹ = ẽ×z̃.15 The elements of the transition ma-
trix Q are denoted π (yt+1|yt) ≡ π (et+1, zt+1|et, zt), and

∑
zt+1∈Z

∑
et+1∈E

π (et+1, zt+1|et, zt) = 1

for all et ∈ E and zt ∈ Z. We assume that the Markov chain (Q, Y ) has a unique invariant
distribution, with probability measure ξ.

3.3 Effects of pandemic-induced changes on health and wealth

A change in the aggregate-level process (zt) in period t requires adjustments in health
and wealth on the part of the household, which impact health and wealth inequality if
the change affects households asymmetrically and/or if the response depends on initial
conditions. We first examine household incentives to adjust health and wealth that the
optimal response incorporates, and then discuss factors that contribute to changes in
health and wealth inequality.

3.3.1 Household choices of health and wealth

We examine the first-order necessary conditions for optimality that link two consecutive
periods. Assuming interior solutions for health, optimality requires that the two Euler

15See also Imrohoroglu (1989) for a similar representation of household level uncertainty, in an envi-
ronment with aggregate as well as idiosyncratic uncertainty.
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conditions are satisfied16:

uct ≥ βE
[
uct+1(1 + r(zt+1)

]
, and (4)

uctxht+1(ht,ht+1)− uht+1 = βE
[
uct+1

(
−xht+1(ht+1,ht+2)

)]
, (5)

where x(ht,ht+1) = m−1 (ht+1 − δ(st, zt)ht) is obtained using (3).
Assume that −uctctxht+1(ht,ht+1)+uctht+1 > 0.17 Then, Lemma 1 in Appendix B shows

that for a given stochastic process (zt), for any (at, at+2) ∈ A, (ht, ht+2) ∈
(
hmin, hmax

)
, and

et ∈ E, if at+1 and ht+1 that satisfy (4) in period t exist, the locus of their combinations is
a downward slopping function. Similarly, the locus of combinations of at+1 and ht+1 that
satisfy (5) in period t is a downward slopping function. Moreover, when ht+1 → δ(st, zt)ht,
higher values for at+1 are required to satisfy (5), compared with (4). Denote the locus
of at+1 and ht+1 that satisfy (4) and (5) by the functions f ea, at+1 = f ea (ht+1) and f eh,
at+1 = f eh (ht+1), respectively. An example of these functions is plotted in Figure 4.

Figure 4: Choice of at+1 and ht+1.

Note:

The combination of at+1 and ht+1 that solves both (4) and (5) for given (at, ht, et, at+2, ht+2)
is an intersection point of f ea and f eh that is within the feasibility constraints. These

16In our calibration, the bounds for health do not bind, whereas the lowed bound for wealth does.
17For example, this assumption is satisfied if we assume that preferences are additively separable, or

supermodular, in health and consumption. If uctht+1 < 0, a suffi cient condition for the results below is
that uctct < uctht+1 , for every c, h, if xht+1(ht,ht+1) > 1. Our calibration satisfies this suffcient condition.
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determine an area defined by the vertical lines at δ(st, zt)ht and hmax for hmint+1 and h
max
t+1 ,

respectively, the horizontal line at amin for amint+1, and the function amaxt+1 = b (ht+1) =
(1+ r(zt))at+w(yt)− x(ht,ht+1) (see Lemma 1 in Appendix B).18 The situation depicted
in Figure 4 is an example, because, for different (at, ht, et, at+2, ht+2) there may be more
than one intersections within the permissible region, or none. However, the optimal choice
of at+1 and ht+1, for any given (at, ht, et), which is made jointly with (at+j, ht+j)∞j=2, must
be an intersection point of downward slopping f ea and f eh functions.19 Therefore, the
properties that apply to the intersection point of f ea and f eh will also appy to the optimal
choice of at+1 and ht+1 for the problem in sub-section 2.1.

3.3.2 Pandemic-induced changes and household incentives

The insight that the optimal choice of at+1 and ht+1 under a specific stochastic process (zt)
is the intersection of downward slopping f ea and f eh functions has useful implications re-
garding the analysis of pandemic effects on household choices via changes in the aggregate-
level process (zt). We study incentives incorporated in the optimal choice of health and
wealth for the household problem in sub-section 2.1 following a surprise change in (zt),
by examining the choice of at+1 and ht+1 for given (at, at+2) ∈ A, (ht, ht+2) ∈

(
hmin, hmax

)
(see Lemma 2 in Appendix B) that is, in effect, in a two-period version of the household’s
problem. Given that they are conditional on at+2 ∈ A, and ht+2 ∈

(
hmin, hmax

)
, the re-

sults below do not necessarilly characterise optimal choices of (at+1, ht+1) of the problem
in sub-section 2.1. This is because (at+j, ht+j)∞j=2 are also chosen optimally following the
change in (zt), and (at+2, ht+2) matter for the choice of (at+1, ht+1) (see Lemma 3 in Ap-
pendix B). However, because the results apply for any at+2 ∈ A, and ht+2 ∈

(
hmin, hmax

)
,

the incentives incorporated in the choice of (at+1, ht+1) are also included in the optimal
choice of (at+1, ht+1) of the fully dynamic problem in sub-section 2.1.
We make use of Lemma 2 in Appendix B, which shows that if a household in period

t under process (zst ) chooses (a
s
t+1, h

s
t+1) ∈

((
amin,+∞

)
,
(
hmin, hmax

))
that satisfy (4)

and (5), then under a different aggregate-level stochastic process (zpt ) that implies higher
rhs relative to the lhs for (4) and (5) conditional on (at, at+2) ∈ A, and (ht, ht+2) ∈(
hmin, hmax

)
, at least one of at+1 and ht+1 increase (decrease) relative to (ast+1, h

s
t+1). In

terms of Figure 4, an increase (decrease) in the rhs of (4) and (5) relative to the lhs shifts
the f ea and f eh functions outwards (inwards).20

Consider changes in the process (zst ) at period t that are associated with effects of
a pandemic, in period t, and/or as a result of increased post-pandemic epidemiological
uncertainty. In particular, assume that the household chose ast and h

s
t in period t − 1

under the process (zst ) and then, at the beginning of period t (z
s
t ) changes to (z

p
t ), also

implying changes in idiosyncratic processes to (ept ). The household draws the period t
idiosyncratic shock from (ept ), and makes choices given (a

s
t , h

s
t , e

p
t ) and assuming future

shocks will be determined by (zst , e
s
t). Proposition 1 in Appendix B summarises the effects

of some of these changes, conditinal on at+2 ∈ A, and ht+2 ∈
(
hmin, hmax

)
. In particular:

18Note that, given at and ht, amaxt+1 is a negative and concave function of ht+1, as a result of the
assumptions imposed on the m (xt) function.
19This is because the optimal choice of at+1 and ht+1 must be the choice of at+1 and ht+1 for some

(at, ht, et, at+2, ht+2) and Lemma 1 implies that the choice of at+1 and ht+1 is an intersection point of
downward slopping fea and feh functions for any (at, ht, et, at+2, ht+2).
20An example is depicted in Figure B1 in Appendix B.
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i) A surprise drop in earnings or asset income in period t leads to a fall in at least one
of at+1 and ht+1 (i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

ii) A surprise upper limit on consumption cl in period t leads to an increase in at least
one of at+1 and ht+1 (i.e. a

p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1) for the subset of households for

which (apt+1, h
p
t+1) implies c

p
t > cl.

iii) An increase in the probability of future drops in earnings or asset income leads to
an increase in at least one of at+1 and ht+1 (i.e. a

p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1).

iv) A positive probability for a future upper limit on consumption leads to a fall in at
least one of at+1 and ht+1(i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

The changes in (zt) capture effects of the pandemic on household income during the
initial outbreak year (i), or restrictions on consumption during the outbreak year (ii), and
effects of post-pandemic epidemiological risk on household income (iii) and on restrictions
on consumption (iv). Another important effect of a pandemic is the increase in health
risk, working via the random variable δ(st, zt) to affect periods from t onwards. However,
the effects of such a change on (4) and (5) cannot be singed for all possible parameter
values and state variables.
The model incorporates incentives for consumption smoothing and for precaution,

using either asset. In particular, the results in regarding the earnings drop as a result
of the pandemic shock in (i) reflect consumption smoothing incentives, while the results
regarding earnings risk in (iii) a form of precautionary behaviour.21 However, it is useful to
note that the options offered to the households by having a portfolio of two assets, health
and wealth, imply that consumption smoothing in this context does not necessarilly imply
reduction in both health and wealth, and precaution does not imply building buffer stocks
of both health and wealth. In fact, a bigger change in one asset requires a smaller change
in the same direction of the other asset (see part b) of Lemma 2 in Appendix B). In this
sense, the households view the two assets as substitutes in smoothing consumption and in
responding to risk. More generally, the results in Lemma 2 and Proposition 1 in Appendix
B leave open the possibility of increases in one asset, as a result of income losses, and of
decreases in one asset as a result of income risk.

3.3.3 Implications for inequality

Health and wealth choices differ across households that differ in their initial combination
of (at, ht) (see Lemma 3, Appendix B). Therefore, household health and wealth accumu-
lation following pandemic-induced changes depends on initial health and wealth. The
different possibilities offered by the portfolio of assets for responses to shocks and risk
is important in this dimension. In particular, it implies more variation in the range of
possible responses, because household responses to a pandemic-induced change refer to
whether both assets change in the same direction, which asset changes more, and which
asset increases/decreases, if assets change in different directions. In addition, it implies
a dependence of the response on the initial levels of health and wealth as well as on the
combination of (at, ht). As a result, pandemic-induced changes can have significant effects
on the cross-sectional distributions of health and wealth, and for their relationship, even
when the pandemic implies only change in (4) and (5), and when this change is the same
across all households. In reality, the health and wealth inequality implications of a pan-
demic are further complicated by the fact that the pandemic changes considered in the

21The results in (ii) and (iv) are natural implications of exogenous restrictions.
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previous sub-section occur simultaneously (e.g. there may be a drop in current income
and an increase in income risk), and by the fact that each one need not be symmetric
across households (e.g. income losses or increase in health risk may be asymmetric).
Moreover, the inequality implications of a pandemic can be significantly dampened or

amplified by the choices of households that are borrowing constrained. For a household
that is borrowing constrained under the (zst ) process, the Euler equations are:

uct > βE
[
uct+1(1 + r(zst+1)

]
, and (6)

uctxht+1(h
s
t,h

s
t+1)− uht+1 = βE

[
uct+1

(
−xht+1(hst+1,ht+2)

)]
. (7)

In this case, a change in period t to (zpt ) that increases the lhs in (6) and (7) relative to the
rhs (for example, due to earnings drops in period t) does not change savings behaviour:
the household remains borrowing constrained. This household must instead reduce next
period health to satisfy (7). A change that increases the rhs relative to the lhs (for
example, increased probability of future income drops due to new outbreaks) is likely to
lead to an increase in next period assets for some households, but not for others, depending
on the size of the increase of the rhs and on households’(ast , h

s
t , e

p
t ). For households that

do not increase their assets, health must increase to satisfy (7).
These considerations imply that for pandemic-induced changes that increase the lhs

relative to the rhs (earnings drops in t), while households with assets above the borrowing
limit decrease their assets and/or health, households on the borrowing limit will only
decrease health. This will tend to decrease the wealth inequality impact of the pandemic,
and increase the health inequality impact. On the other hand, for changes that increase the
rhs relative to the lhs (probability of future income drops associated with new outbreaks),
while households with assets above the borrowing limit increase their assets and/or health,
a fraction of households on the borrowing limit will not increase wealth, but will increase
health. This will tend to increase wealth inequality. Together, these points imply that in
an environment with a significant share of borrowing constrained households, the effects
of epidemiological risk on wealth inequality are amplified, and on health inequality likely
dampended; while the surprise effects of the pandemic on wealth inequality are mediated,
and on health inequality exacerbated. Given that in the data for the UK about 19% of
households are borrowing constrained, these effecs can be substantial.
To evaluate the effects of a pandemic on health an wealth inequality, a quantitative

evaluation that will take into consideration all the relevant channels for an empirically
relevant initial (i.e. pre-pandemic) distribution is required. This requires that we solve for
the stochastic processes for household-level health and wealth and construct the relevant
cross-sectional distributions.

3.4 Stochastic processes for health and wealth

The stochastic processes for the household level endogenous variables (at+1)
∞
t=0, (ht+1)

∞
t=0,

(ct)
∞
t=0 and (xt)

∞
t=0 encapsulate the effect of the exogenous (household and aggregate level)

stochastic processes and of household decision making in the stochastic environment.
These stochastic processes across households give rise to the relevant cross-sectional dis-
tributions of endogenous outcomes for each time period.
Each household determines the stochastic processes for the household level economic

and health variables, as the plans (at+1)
∞
t=1, (ht+1)

∞
t=1, (ct)

∞
t=1 and (xt)

∞
t=1 that maximise
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(1) subject to (2) and (3), for given initial values (a1, h1, y1) ∈ A×H×Y . We solve this
problem by computing the policy functions at+1 = ga (at, ht, yt), ht+1 = gh (at, ht, yt),
ct = gc (at, ht, yt) and xt = gx (at, ht, yt), that solve the recursive problem:

V (at, ht, yt) = max
ct,at+1,xt,ht+1

{u(ct, ht+1) + βE[V (at+1, ht+1, yt+1)|yt]} , (8)

subject to

ct + at+1 + xt = (1 + r(zt))at + w(nt, lt, zt),

ht+1 = δ(st, zt)ht +m (xt) , δ(st, zt)ht ≤ ht+1 ≤ hmax,

ct, xt ≥ 0, at+1 ≥ amin, and hmin ≤ ht ≤ hmax,

where V (at, ht, yt) denotes the optimal value of the objective function starting from state
(at, ht, yt), and yt ≡ (nt, lt, st, zt).22 We obtain them using computational methods de-
scribed in Appendix B.
The cross sectional distribution of households over the joint state space of household-

level state variables, A × H × E, which is denoted by λt (at, ht, et; zt) changes over time
as a result of time variation in the aggregate state zt. We compute the time series of λt
using numerical methods we discuss in Appendix B. In our analysis post-COVID-19, we
focus on the specific time series of λt obtained by selecting the initial state variables to be
determined in a pre-COVID-19 stationary equilibrium letting the first periods reflect the
COVID-19 shock. We discuss the pre-COVID-19 economy in Section 4 and the scenarios
we simulate following COVID-19 in Section 5.

4 Heath and wealth inequality pre-COVID-19

The economy pre-COVID-19 is characterised by the long term absence of pandemic out-
breaks and decision making that does not account for the possibility for future pandemic
outbreaks. We model this as the stationary equilibrium of a version of the model economy
described in Section 3 where crises do not happen, and exogenous aggregate state remains
fixed over time at the level zz̃ ≡ z∗. If crises had happened in the past, their effect on
the cross-sectional distributions has dissipated. In this special case where the aggregate
state is equal to z∗ in each period ex ante (i.e. with certainty), we assume that the
Markov chain (Q∗, E) for the joint distribution (et) has a unique invariant distribution,
with a probability measure that we denote by ξ∗.23 Households make decisions believing
that crises will not happen in the future, so that the stochastic processes for (at+1)

∞
t=0,

(ht+1)
∞
t=0, (ct)

∞
t=0 and (xt)

∞
t=0, when the initial period t = 0 is in the stationary regime, are

generated by setting zt = z∗ ∀t. In such a stationary environment, the cross sectional dis-
tribution of wealth also does not change over time. In particular, this environment gives
rise to a stationary equilibrium that is characterised by the cross-sectional distribution

22As a function of the household-level state variables, the policy functions are time varying, depending
on the aggregate state in zt: at+1 = ga (at, ht, et; zt), ht+1 = gh (at, ht, et; zt), ct = gc (at, ht, et; zt), and
xt = g

x (at, ht, et; zt).
23Note that the state space for idiosyncratic shocks E is the same in the stationary environment

analysed here and in that under aggregate uncertainty. However, idiosyncratic risk can differ between
the two via differences in the probabilities in the transition matrix and in the random variables that map
the state space to labour income and health.
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over households λ∗ (at, ht, et).24 Household-level quantities, on the other hand, are char-
acterised by sequences of economic and health variables that vary over time as a result
of the exogenous household-specific processes and household decision making, which are
in turn conditional on the aggregate level quantities. In particular, household decisions
depend on the history of the shocks that have been experienced and on uncertainty about
future household-level outcomes, which is captured by the joint process et = (nt, lt, st)
associated with transition matrix Q∗ = π∗ (et+1|et).
We calibrate the model to annual frequency data so that the stationary equilibrium

matches particular properties of the data when the Markov chain (Q∗, E) reflects the sto-
chastic environment in the UK before the COVID-19 pandemic. We first explain how we
calibrate parameters in (Q∗, E) using information on the relevant stochastic environment
directly. We then describe how we calibrate the remaining parameters of the model, some
by using information directly from the data or existing empirical analysis, and others
via a simulated minimum distance procedure that minimises the distance between model
predictions and relevant data targets. Finally, we show that the stationary equilibrium
predicted by the model fits the empirical properties of the wealth and health distributions
that we have not targeted. Further details on the data and methods used to calibrate the
model are in Appendix C.

4.1 Stochastic processes

We use household level information from Understanding Society to construct model rel-
evant variables of health and labour income. In particular, to measure health outcomes
we use the SF-12 Physical Component Summary (PCS) score, and to measure health risk
we use information on severe health events, as in Section 2. We use the NS-SEC classifi-
cation to allocate households in each period into socioeconomic groups, and, to obtain a
measure of labour income relevant for the decision making that we model, we construct
total household post-policy labour income.25 For all these quantities, the definitions of the
household, household members and household level quantities are the same as in Section
2 and are discussed in more detail in Appendices A and C.

4.1.1 Health process

We assume that S includes three possible outcomes, a state s1 where no household member
has had a severe illness26, a state s2 where a household member is experiencing a severe
illness during the current period, and a state s3 where the household has a member who
has suffered from such an illness in previous years. This state space is motivated by
empirical observation, as described in Appendix C.1. In particular, in the data, a severe
illness is associated with a sharp drop in health before returning to a recovery, post-illness
state, with lower health than the pre-illness state. Indeed, we find that, on average, across
the households, ht drops by almost 10% from s1 to s2, whereas s3 is about 5% lower than
s1.27

24The mathematical representation of this environment is in Appendix B.
25We use post-policy labour income (i.e. after taxes and including benefits) because this is the quantity

that the households have available to allocate to consumption, savings, and expenditure to promote health.
26See Section 2 and Appendix A for the definition of a severe illness (health shock).
27See also Figure C.1 in Appendix C. As shown in Appendix C.1, these results are robust to removing

several observable components from the measure of health, as well as medical conditions other than the
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These observations on the evolution of health after severe illness shocks, in conjunction
with data availability and the model structure, lead us to assume the following structure
for the transition probabilities of the illness state. A household in the state s1 faces a
positive probability of moving to state s2, and a zero probability of moving to state s3.
We allow the transition probability from s1 to s2 to depend on the states in N , to capture
the social gradient in health (see, e.g. Marmot (2003, 2004), Wilkinson and Pickett (2008,
2014)), which is summarised in Tables 1 and 2 as the difference in health risk between
socioeconomic groups. We calculate these probabilities using UnSoc data. Once in s2, we
assume that households transition in the next period to state s3 with probability one. In
other words, we use state s2 to capture the impact effect of the severe health shock, while
s3 captures long term effects.
We next consider transitions from s3. In the data, we do not observe individuals who

fully recover from a severe illness, resulting from the nature of the health shocks that we
model. However, our infinitely lived household dynasties model structure assumes that
after some years, household members are replaced by a new healthy member (e.g. their
offspring), i.e. a newmember in state s1. Hence, when a household member suffers a severe
illness, the household will at some point recover. Our sample and variable definitions in
Section 2 focus on household members’health and income under the age of 60, implying
a general replacement age of 60. The average age of first experiencing a severe illness is
48.8, which then implies an average of 11.2 years spent in state s3.28,29 Nevertheless, some
households spend more (less) time in this state because they moved to s2 before or after
the average age for the severe illnesses. Therefore, in terms of the process (st), we assume
that once a household reaches s3, it can move back to state s1 with some probability that
reflects the randomness in the time spent in s3. In particular, we assume that when a
household moves to s3, it faces an expected duration of remaining in this state of 11.2
years, implying an exit probability from s3 and back to s1 of 8.95%. We set this exit
probability to be the same for all states in N .
Overall, our modelling and calibration imply that household dynasties differ in the

number and duration of spells of illnesses that they have faced over time. Some households
have long runs of s1, while some experience severe illness for one of their members, which
costs them one year in s2 and another couple of years in s3. Some of these latter households
face short spells in s3 and some longer spells. Because we do not observe deaths from severe
illnesses in the sample (see Appendix A), calculating the transition probability from s1 to
s2 as we describe here underestimates the true extent of health risk faced by a household.30

As the discussion in Appendix A shows, this bias should not be very strong, because the
proportion of such deaths is small in the pre-COVID-19 period. We capture the increase
in health risk during pandemics via the increased probability of death for working age
households (due to the pandemic). To inform our calibration of the transition probability
from s1 to s2, we use excess mortality data. In this sense, the transition probability from
s1 to s2 in the pre-COVID-19 economy can be viewed as including the normalisation of

severe illnesses.
28Generally, households who have experienced a health shock are liable to receiving further shocks. We

focus on the first shock and subsume subsequent health episodes into the after illness state.
29In our sample, we do observe very few households with more than one member experiencing a severe

illness. For simplicity, we treat these households the same as those households where only one member
has received a severe health shock.
30As noted, regural deaths above the age of 60 are not part of the model structure and thus are not

part of the health risk we study.
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health risk with respect to death from severe illness..

4.1.2 Income process

We define N by four states representing the socioeconomic groups in Section 2. Note
that these have been defined to include a group for households with inactive and/or
unemployed members (called non-employed), because of the importance of this state for
health outcomes apparent in Section 2, but also because this situation implies the worst
labour income state, and is thus important in terms of measuring variation in labour
income.31 In particular, a movement from any other state in N to the non-employed state
represents the most important labour income change for a household, and thus these
relevant transition probabilities capture a significant part of income risk.
The process (lt) accounts for labour income variation within groups, reflecting income

risk conditional on the socioeconomic group and illness status. To obtain an empirical
measure for this type of labour income shocks, we use post-policy labour income, wi,t, for
household i in period (wave) t, by removing the effects of household characteristics which
are known, as opposed to stochastic factors, as well as socioeconomic group membership
that we want to condition on.32 In particular, we run a regression of the natural logarithm
of wi,t on a number of household characteristics for which we have information fromUnSoc:

ln(wi,t) = β0 + β1Di,t + εt. (9)

In this specification, Di,t contains a third order polynomial of age and dummy variables
capturing the region of residence, sex of the head of the household, year in which the
interview took place, the natural logarithm of household size, and a dummy for the
household’s socioeconomic group.33 We use the residuals from (9) to construct the process
of labour income for each group.
We obtain L by assuming in each case that for each n, Ln has three states: i) lower

than the 30th percentile of the distribution of the residuals from (9) for the specific n; ii)
between the 30th and 70th percentile and iii) above the 70th percentile. The discretisation
of the distribution of within-group residual post-policy labour incomes is motivated by
Groes et al. (2015), who show that this discretisation captures essential properties of the
earnings implications of worker mobility between occupations. Our approximation allows
for 12 states in N × L to capture differences in mean post-policy labour income between
socioeconomic groups and the variation in residual post-policy labour income within each
group, thus capturing variations in post-policy labour income risk by class.
Using UnSoc data, we have information about whether a household is in any of the

twelve states inN×L in different years, separately for the state s1 and the states s2 and s3.
Since the household is in s2 only for one period, we assume that the transition probabilities
between the N×L states are the same for illness states s2 and s3. Therefore, we calculate
31In particular, we want to allow our model to capture the situation of individuals who leave the labour

force for health-related reasons. As these individuals are unlikely to be actively looking for employment,
we would miss these households if we only considered the unemployed.
32See, e.g. Kambourov and Manovskii (2009) for a similar approach to obtain a proxy for earnings risk

within professional groups, albeit in a setting that does not model the state of health.
33Note that some of the variables in Di,t are time-invariant, whereas others are common across house-

holds. To simplify the presentation, we include all these observable characteristics that we need to partial
out in Di,t.
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the transition probabilities between the N × L states by the respective proportions of
households who move between the N × L states separately for st = s1 and st = s2, s3.
We show in Appendix C.3 the constituent parts and the construction of the 36 × 36

transition matrix Q∗ for the joint distribution (nt, lt, st) implied by the above calibration
strategy. This transition matrix captures the dependence of health risk on socioeconomic
conditions and the dependence of income risk on health status observed in the data (see
Table 1 in Section 2). The transition probabilities from s1 to s2 in Q∗ are calculated as
the share of households in each group that have experienced a health shock in a given
period, conditional on not having had a health shock in the past. Moreover, the transition
probabilities Pr (nt+1 | nt, st = s1) and Pr (nt+1 | nt, st = s2, s3) implied byQ∗ in Appendix
C are those in Table 2 in Section 2.

4.2 Model parameters

To calibrate the possible outcomes of the random variable w(nt, lt, st), we use εt from (9),
re-centred around the conditional mean of post-policy labour income, relevant for each
group, so that we approximate cross-household variation in post-policy labour income
net of variation in the factors we control for in (9).34 In our data, post-policy labour
income does not differ significantly between the three states of shocks to health.35 There-
fore, we calculate the average value of re-centered residual post-policy labour income as
w(nt, lt, st) for each subset of households inN×L, and independently of st = s1, s2, s3. We
finally re-scale w(nt, lt, st) so that its expected value across the population in the invariant
distribution ξ∗ is normalised to 1. These outcomes for w(nt, lt, st), which are shown in
Appendix C.3 are implied by our calibration for the stochastic process (nt, lt, st).
The Markovian process for labour income w(nt, lt, st) captures between-group labour

income inequality and transitions between these groups by construction. As shown in
Table 4, our modelling and calibration also capture differences between socioeconomic
groups in terms of within-group variation in residual post-policy labour income, as mea-
sured by the Gini index or the variance of logarithms. The between-group differences
in residual post-policy labour income variation reflect differences in higher moments of
the income distribution, and they also reflect between-group differences in income risk,
conditional on the socioeconomic group.

34Partialing out variation due to non-stochastic factors that are not included in the model is typical in
the literature, see, e.g. Meghir and Pistaferri (2011).
35In the relevant literature though (see, e.g. Lenhart (2019) and Jones and Zantomio (2020)), the

evidence is rather mixed.
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Table 4: Comparison of Data and Model Labour Income
Relative Mean Gini Var Log

Groups UnSoc Model UnSoc Model UnSoc Model
Professionals 1.53 1.49 0.22 0.19 0.18 0.13
Intermediate 1.07 1.03 0.24 0.21 0.23 0.16
Routine 0.74 0.71 0.21 0.18 0.17 0.12
Non-employed 0.49 0.48 0.25 0.21 0.28 0.18
All 1 1 0.29 0.27 0.34 0.26

Note: Labour Income in UnSoc refers to recentred residuals of

post-policy labour income, for details see Appendix A and C

Source: Pooled Sample UnSoc Waves 1-9 and model calculations

As can be seen in Table 4, in the data as well as in the invariant distribution implied by
the Markov chain, moving across groups from the group of professional occupations to the
group of non-employed, within-group unexplained post-policy labour income inequality
rises, falls and rises again, with the non-employed group having the highest inequality.
Overall, the Markov chain approximation captures well the qualitative properties we see
in the data.
We set the discount factor β = 0.96, which is commonly used with annual frequency

data for the UK (see, e.g. Faccini et al. (2011), Harrison and Oomen (2010) and An-
gelopoulos et al. (2020)). We set the value of r (zt = z∗) to 0.56% to match the average
real long-term bond yield in the UK between 2009-2018. The health depreciation rate in
the absence of severe illness, δ(st = s1), is set to be 0.9624, which implies a household
can spend a maximum of 60 years without investing in their health before reaching the
lower bound on health. We normalise the lower and upper bounds for health, hmin and
hmax respectively, to [0.1, 1] (see Appendix A for details).
We chose the remaining parameters to minimise the distance between model predicted

quantities from their empirical counterparts, and we summarise them in Table 5. We first
specify the utility and health improvement functions, u (ct, ht+1) and m (xt), respectively.
The utility function takes a standard constant relative risk aversion form36:

u (ct, ht+1) =
(cφt h

1−φ
t+1 )

1−σ

1− σ , (10)

where φ ∈ (0, 1) is a parameter determining the relative weights of consumption and
health in the utility function, and σ is a coeffi cient that determines risk aversion. The
coeffi cient of a relative risk aversion for consumption is estimated to be about 1.5 for the
UK (Faccini et al. (2011)), which pins down σ as 1+(0.5/φ). The functional form for the
effective production of new health, m (xt), takes the form of a production function and is
given by:

m (xt) = qxγt , (11)

36This utility function satisfies the conditions lim
c→0

uc(·) = +∞, lim
c→∞

uc(·) = 0, lim
h→0

uh(·) = +∞,

lim
h→∞

uh(·) = 0, and lim
c→∞

inf −ucc(·)uc(·) = 0. These assumptions imply that the household should choose

a positive level of consumption and health, and also incorporate incentives for a finite maximum desired
level of consumption and health. On assumptions regarding the utility function when modeling economic
choices under idiosyncratic risk, see, for example, Aiyagari (1994), Acikgoz (2018) and Zhu (2018).
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where γ ∈ (0, 1) measures the marginal productivity of investment in health, and q ≥ 0
is a linear productivity parameter.
The two further possible outcomes of the random variable δ(st = s2) and δ(st = s3),

the parameters γ, q, φ and the borrowing limit amin are chosen to mininimise the distance
between model predicted quantities from their empirical counterparts, using model simu-
lations. We describe this procedure in detail in Appendix C.5. We target the conditional
means of health for the three states in S, the variance of health across the population
(which is 0.014 using UnSoc data), the share of households with non-positive wealth
(which is 19%, using data from WAS), and the share of private health expenditure in
consumption, which is 8.9%.37 Table 5 summarises the calibrated parameters.

Table 5: Calibrated Parameters
β σ amin r γ
0.96 1.6504 -0.0059 0.0056 0.5190

δ(st = s1) δ(st = s2) δ(st = s3) φ q
0.9624 0.8128 0.9606 0.7687 0.1018

Note: For details on the calibration procedure, see Appendix C.

4.3 Health and wealth inequality

We solve the calibrated model to obtain the stationary equilibrium and confirm that it
matches the key stylised facts regarding wealth and health inequality in Section 2. In
Table 6, we present relevant model predictions for household health and wealth.

Table 6: Model Predictions of endogenous variables
Health Wealth

Soc. Groups Mean Gini Relative Mean Gini Indebted
Professional 0.75 0.08 1.88 0.45 8%
Intermediate 0.69 0.09 1.01 0.54 14%
Routine 0.63 0.10 0.47 0.65 33%
Non-employed 0.59 0.11 0.31 0.74 40%
All households 0.68 0.10 1 0.59 19%

Note: Indebted refers to the share of households with zero or less than zero assets.

Source: Model Calculations

The first two columns show the models predictions for health. Comparing the socioe-
conomic group-specific means and Gini coeffi cients with those obtained from the data
(presented in table 1), it can be seen that the model matches the data well, despite the
calibration not explicitly targeting any group-specific means or measures of variation of
health within groups. In terms of means, there is a clear social gradient in health that
matches the patterns we observed in the data. Quantitatively, the professional occupa-
tions group is healthier in relative terms, but the ranking is correct, and relative differences
between the three remaining groups are also quantitatively similar. In terms of within-
group variation in health, the model predictions also follow the pattern outlined in Table

37This is calculated using data from the Stoye (2017) and is discussed further in Appendix C.5.
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1 - within-group health variation increases as mean health decreases.
We then examine the model predictions regarding wealth inequality, captured by the

variation in wealth between and within socioeconomic groups (see also Angelopoulos et
al. (2019) for wealth inequality analysis under socioeconomic groups). In the remaining
columns of Table 6, we present the relevant model predictions. The model captures the
empirical variation in wealth inequality between socioeconomic groups we presented in
Table 3. In particular, between-group wealth inequality in the model tracks the data
very well, and the model also captures the qualitative features of within-group inequality
between groups.
The model generally underpredicts the extent of wealth inequality, which is consistent

with existing research in this class of models (see, e.g. Krueger et al. (2016) for a review)
and for the UK in particular (e.g. Angelopoulos et al. (2019, 2020)). The main reason
is diffi culty with matching the long right tail in the wealth distribution. However, factors
the may explain wealth at the top 1% of the distribution are not central to the dynamics
of health inequality post-crisis and the role of the social gradient in health, so to simplify
the model, we focus on the wealth distribution among the 99% of the wealth distribution.
Indeed for the left tail of the wealth distribution, represented here by the share of indebted
households by groups, the model predictions match the data well.
Importantly, the model captures the extent of health inequality we observe in the

UnSoc data, defined as the co-determination of health with income. The Erreyges and
Wagstaff indices for health with respect to earnings are 0.105 and 0.115 respectively, which
are slightly above the values in the data, but nontheless suggest that the model generates a
significant correlation between labour income and health. In addition to health inequality
defined in terms of income, our model also allows us to measure health inequality in
terms of co-determination of health with wealth. In this case, the Erreyges and Wagstaff
indices are about twice as large, 0.215 and 0.234, respectively, suggesting that health has
a much stronger correlation with wealth than income. Many studies find links between
wealth and health (for example, Seymonov et al. (2013), Caesarini et al. (2016) and
Schwandt (2018)), and, conceptually, this relationship is indeed at the heart of the social
gradient explanations of health inequality (see, e.g. Marmot (2003, 2004), Wilkinson and
Pickett (2008, 2014)). However, quantifying it relative to the health-income inequality
at the national level is empirically challenging, given data availability. Given the ability
of our model to predict the remaining distributions and relationships well, we can have
some confidence in using its prediction to infer the extent of health inequality in terms of
wealth.

5 Post-pandemic distributional dynamics

To study post-pandemic inequality dynamics, we need to compute key statistics that
summarise the distributions of health and wealth over time and under epidemiological
uncertainty. In particular, we need to calculate the probability distribution of these
statistics (of the health and wealth distributions, e.g. of the Gini index) over possible
paths of the aggregate state, at any point in time. To this end, we first calibrate the
post-pandemic exogenous stochastic processes combining information from the COVID-
19 shock, to measure the impact of the pandemic on the economy, and the experience of
previous pandemics to approximate recurrent outbreak risk.
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5.1 Exogenous processes post pandemic

The period after the surprise impact of the pandemic, in particular, COVID-19 in 2020,
is characterised by epidemiological uncertainty. There is uncertainty about how long
COVID-19 will last, and about whether there will be recurrent outbreaks. This is re-
flected in the transition matrix for zt. In turn, an outbreak affects the idiosyncratic shock
processes.

5.1.1 Aggregate (disease outbreak) uncertainty

Drawing on current research and historical evidence presented in section 2, we specify
the state space Z of the aggregate level stochastic process (zt) as Z = {C,R,N,O}. If
zt = C, there is a large scale epidemic (a pandemic), which affects the stochastic processes
defining idiosyncratic health and income uncertainty. If zt = R, there is a recurrent disease
outbreak, which also affects economic and health outcomes, although not as severely as
during the pandemic state C. These states correspond to periods of outbreaks that
may follow the pandemic. Periods where zt = R refer to years of low disease incidence,
without health or economic impacts, although there remains the probability of a disease
outbreak in the near future (i.e. an R in the near future is possible). Together, R and N
characterize the medium run environment after an outbreak, when the main source of the
outbreak has been brought under control, but there is still a risk of recurrent outbreaks.
In contrast, the last state zt = O indicates a period where there is no outbreak and it is
suffi ciently distanced from the pandemic so that future outbreaks are less likely. Hence,
the O state represents a situation where the disease has been completely brought under
control through vaccinations or other methods.
The above modelling also informs the calibration of the transition matrix of the ag-

gregate state QZ . We set the expected duration of the pandemic period C to two years,
which is in line with the main waves of the 1890-91, 1918-19 and COVID-19 pandemics.
The Markov switching model using the data from the historical pandemics estimates the
probability of exiting the post-pandemic period of recurrent outbreak risk to be 0.079,
implying an expected duration of 12.66 years. We set therefore the probability of exiting
the states R or N to move to O accordingly. Once in O, there is a possibility of further
pandemics.38 We also set this to the probability of the pandemic state occuring as esti-
mated from the Markov switching model, 0.027, implying a pandemic outbreak roughly
every 35 years. Finally, we set the probability of a recurrent outbreak, conditional on
being in the post-pandemic period to 28.6%, using estimates from the post-COVID-19
model predictions for outbreaks exceeding 500 deaths in Angelopoulos et al. (2021a). The
aggregate state transition matrix is given by:

QZ :

zt\zt+1 C R N O
C 0.5 0.143 0.357 0
R 0 0.263 0.263 0.079
N 0 0.263 0.263 0.079
O 0.027 0 0 0.973

38Medical researchers and public health experts have warned of the rising possibility of global epidemics
brought about by intensifying animal agriculture, increasing urbanisation and global connectivity and
antibiotic resistance (Zappa et al. (2009), Alirol et al. (2011), MacIntyre and Bui (2017)).
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5.1.2 Pandemic effects on exogenous processes

This subsection describes the characteristics of the idiosyncratic processes in each of the
four aggregate states for zt. Further details are in Appendix D. The state O has been
defined as a state where the effects of the pandemic and its subsequent turbulent period
on idiosyncratic health and income risk have faded. Therefore, we assume that in terms
of idiosyncratic processes O is identical to the situation before COVID-19 (see Section 4).
The changes in the idiosyncratic processes in the case of a major disease outbreak

(zt = C) are calibrated based on evidence on the effects of COVID-19. There is an
increase in health risk, as captured by an increase in the probability of severe illness
relative to the base calibration in Section 4. We assume an increase in health risk by 50%
on average. Some of this higher risk is due to excess mortality. The excess mortality rate
among 15 to 64 year olds during the first year of the COVID-19 epidemic, in particular
from the last week of March 2020 to the last week of March 2021, was 20.17% (using
data in Roser et al. (2020)). However, excess mortality is a lower bound on the increase
in health risk. For example, compared with 2019, in 2020 there was a reduction of
completed treatment pathways by 28% and in hospital referrals by 20% (Gardner and
Fraser (2021)) and a reduction in emergency admissions by 20% (NHS England data on
Adjusted Monthly A&E Attendance and Emergency Admissions data). This evidence
suggests an increase in health risk between 20% and about 100%. Moreover, the increase
in health risk differs by socioeconomic group, and following e.g. Marmot et al. (2020),
it is lower for professionals and higher for routine. In particular, we assume an increase
in health risk by 14%, 43%, 100% and 50% for professionals, intermediate, routine, and
non-employed, respectively.
There are also losses in net labour income during C. HM Treasury (2021) have cal-

culated the COVID-19 induced drops in household income (post policy), over and above
earnings increases and drops up to 10% of earnings (which could be associated with a
non-epidemic period).39 We use the HM Treasury (2021) results to calibrate the implied
income drops that correspond to the pre-COVID-19 income levels in the model. These
are in addition to the usual income gains/losses via the idiosyncratic income process.
The HM Treasury (2021) estimates imply a progressivity in income drops, i.e. income

drops were bigger for higher deciles. This is consistent with existing evidence suggests
that despite the potential of COVID-19 effects to increase earnings inequality, post-policy
income inequality did not increase during 2020 (see e.g. Stantcheva (2021)). To calculate
the HM Treasury (2021) estimates of income loss in terms of socioeconomic groups, we
translate the per income decile drops to the groups we model using the pre-COVID-19
income distribution (see Figure 5). Note that these are progressive in terms of net labour
income with respect to income and socioecoomic groups. However, when we express them
in terms of total resources, the drop is regressive.

Figure 5 here

We also assume that economic activity restrictions imply restrictions on consumption.
In the UK (Tenreyro (2021) (and in the EU (Dossche and Zlatanos (2020))), restric-
tions in consumption are linked to increased savings, with the effect being higher for

39HM Treasury (2021) used Understanding Society data to estimate, for different earnings levels, the
probability of job losses, earnings drops more than 10%, and furlough, and calculated income changes
using the HM Treasury distributional analysis model.
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higher income groups (Hacioglu-Hoke et al. (2021), Bank of England (2020), Tenreyro
(2021)). Evidence in Davenport et al. (2021) suggests that amongst the two highest in-
come quintiles, consumption dropped approximately 25% in the first months of the crisis,
with smaller increases for lower income groups and negative changes for the lower income
groups (consistent with patterns in Bank of England (2020), Tenreyro (2021) for later in
the year). For the top quintile, this drop in consumption is bigger than what the income
drop on its own predicts. Therefore, to align the model with the data, we impose an
upper limit on consumption, calibrated so that the average consumption level of the top
quintile fell by 25% compared to their pre-COVID mean consumption level. The model
predictions for the change in savings/consumption by quintile in 2020 are then following
the patterns in the data.
We assume that during recurrent outbreak periods, R, the increase in health risk is

half of its increase in C and that net labour income income losses are half of those in
C. Moreover, the upper limit on consumption of the top income quintile is set to imply
half of the drop in consumption for the top quintile, compared with C. During periods
N , all idiosyncratic health and income processes are assumed to the same with those
pre-pandemic, or else with those in state O.
Consistent with the experience during COVID-19, we assume that the interest rate is

zero during C periods. The interest rate in the remaining aggregate states is calibrated
as follows: i) the expected long-run interest rate is equal to the interest rate prevailing
in the stationary world: E(r) = r(z∗); ii) the interest rates are raised cautiously post
pandemics so that r(R) = r(N) = r(O)

2
. The risk premium for borrowing is assumed to

remain at 1% throughout.

5.2 Health and wealth inequality post pandemic

To calculate the required probability distributions of health and wealth following the
pandemic, we work as follows. We solve the typical household’s problem in Section 3
under the stochastic environment described in the previous sub-section, for the household-
level parameters described in Section 4. We simulate a panel of 5000 sequences of the
evolution of the aggregate state, initialising each sequence from the invariant distribution
λ∗, associated with Q∗, i.e. without pandemic risk (see Section 4). Then, we simulate
the evolution of the distribution of all exogenous and endogenous variables, beginning
from the distribution λ∗, for every path of aggregate state variables. For details of this
Monte-Carlo procedure, see Appendix C. The result of this procedure is a panel of joint
distributions of health and wealth, relating the exogenous and endogenous variables of
the model to possible paths for the aggregate state. In particular, we have a distribution
of 5000 descriptive statistics of the joint distribution of health and wealth at every point
in time. Each cross-sectional distribution has been obtained under a random realisation
of the path of the aggregate state. This procedure allows us to analyse possible outcomes
of the joint distribution of health and wealth in terms of the probability that they will
arise.
Our baseline results are obtained using the aggregate transition matrix in (??).We

show results from this analysis for economy-wide statistics, and also by socioeconomic
group. We plot the median statistic in each time period, and the interquartile range (the
50% interval around the median) and the 90% interval around the median.
To contextualise the importance of post-pandemic epidemiological uncertainty for

26



health and wealth inequality, we also repeat the above analysis for two different counter-
factual experiments: when the pandemic is an one-off event and will never return, but
the households actually make choices under uncertainty; and when the pandemic is an
one-off event and will never return, and the households know it.40 By comparing these
two scenarios to the baseline results, we see the effects of post-pandemic epidemiological
uncertainty, i.e. of recurrent outbreak risk and shocks. By comparing these two scenarios
directly, we can see how much post-pandemic recurrent outbreak risk affects behaviour
via precautionary incentives.

6 Post-pandemic distributional dynamics

To study post-pandemic inequality dynamics, we need to compute key statistics that
summarise the distributions of health and wealth over time and under epidemiological
and economic recovery uncertainty. In particular, we need to calculate the probability
distribution of these statistics (of the health and wealth distributions, e.g. of the Gini
index) over possible paths of the aggregate state, at any point in time.
To calculate the required probability distributions, we work as follows. We solve

the typical household’s problem in Section 3 under the stochastic environment described
in Section 5 for the remaining household-level parameters described in Section 4. We
simulate a panel of 5000 sequences of the evolution of the aggregate state, initialising each
sequence from the invariant distribution λ∗, associated withQ∗, i.e. without pandemic risk
(see Section 4). Then, we simulate the evolution of the distribution of all exogenous and
endogenous variables, beginning from the distribution λ∗, for every path of aggregate state
variables. For details of this Monte-Carlo procedure, see Appendix B. The result of this
procedure is a panel of joint distributions of health and wealth, relating the exogenous and
endogenous variables of the model to possible paths for the aggregate state. In particular,
we have a distribution of 5000 descriptive statistics of the joint distribution of health
and wealth at every point in time. Each cross-sectional distribution has been obtained
under a random realisation of the path of the aggregate state. This procedure allows us
to analyse possible outcomes of the joint distribution of health and wealth in terms of
the probability that they will arise. Our analysis below focuses on the 10th, 25th, 50th,
75th and 90th percentile of the probability distributions of health and wealth inequality
statistics.
Our baseline results are obtained using the aggregate transition matrix in (??). To

contextualise the importance of post-pandemic epidemiological uncertainty for health and
wealth inequality, we also repeat the above analysis for two different versions of (??).
First, we consider the effects of a smaller probability of disease recrudescence, implying
that, in expectation, there is one mild disease outbreak per decade in the medium run
after the major pandemic event (recall that in the base calibration, there are three such
outbreaks per decade in expectation). Second, we consider the case where the aggregate
transition matrix zeroes out epidemiological risk after the pandemic. In this case, the only

40The one-off pandemic is defined as the pandemic effects in 2020, half of these in 2021, and then back
to pre-COVID-19 effects for the exogenous processes.
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uncertainty that households face is the duration of an economic boom recovering from the
COVID-19 pandemic. Both alternative transition matrices are shown in Appendix D.5.

6.1 Economy-wide effects

We first examine post-pandemic inequality dynamics by studying economy-level quanti-
ties. In Figures 5 and 6, we plot the time evolution of the 10th, 25th, 50th, 75th and 90th
percentile of the distribution of: the Gini indices describing the concentration of wealth
and health across the whole economy; the Erregyers index of the relationship between
concentration in health and wealth; and, the average values, across households, of assets,
health, and consumption. In Figure 5, results are shown for the baseline aggregate tran-
sition matrix in (??), relative to a scenario with only economic recovery risk (i.e. without
possible disease outbreaks post 2021). In Figure 6, epidemiological uncertainty is deter-
mined by the aggregate transition matrix that implies a low probability of recrudescence
(see Appendix D).

Figure 5: Simulated transitions to long run stochastic steady state under epidemiological risk
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Note: Model simulation based on a sample of 5000 sample economies.

Circles denote location of median outcome 50 years after the initial shock.

We start with Figure 4 and first examine inequality. Regarding wealth inequality,
we observe significant increases after the pandemic. Under epidemiological risk, the Gini
index increases and then starts to decline, with a maximummedian increase of about three
points. Therefore, in half of possible the paths after the pandemic, wealth inequality
increases by more than three Gini points at the peak. In fact, increases in the Gini
index of more than five points have a high probability of 25%, and even increases in
inequality of more than six points have a 10% probability. To contextualise the scale of

28



such increases, we note that using WAS data, we calculate that the Gini increased by 4.5
points following the 2008 recession, between 2007 and 2013. Moreover, in the majority
of post-pandemic paths, wealth inequality increases further after the initial shock and its
immediate inequality implications.
There are also persistent increases in health inequality. In particular, both the Gini

index of the distribution of health and the Erregyers index of health inequality show signif-
icant increases following the pandemic. The changes in these statistics appear relatively
small in magnitude. However, to contextualise these magnitudes, we should note that
they are orders of magnitude bigger than changes we observe in Understanding Society
in the ten-year period since 2009, i.e. after its first wave. In particular, the Gini index
oscillates between 0.088 and 0.092, where the Erregyers index between 0.071 and 0.084
there.
We then contrast these results with the counterfactual experiment, also shown in

Figure 6, where epidemiological risk is shut down. On the one hand, examining the
dynamic evolution of the median outcome of the joint wealth and health distribution
statistics, we do not see fundamental differences. The changes relative to the pre-pandemic
health-wealth distribution are generally more adverse and last longer when we also allow
for epidemiological risk, but the magnitudes are broadly similar. On the other hand, the
differences between the two scenarios become substantial when we examine worse paths
of aggregate state. While epidemiological risk implies that big increases in inequality are
possible, the differences from the median when we only allow for economic recovery risk
are negligible. In other words, while the 50th percentile of, e.g. the wealth Gini, is similar
with and without epidemiological risk, the 25th percentile differs by two Gini points, and
the 10% by four Gini points.
Naturally, given that epidemiological uncertainty entails only downside risk, its effect

on the distribution of possible inequality outcomes is negative, i.e. epidemiological risk
shifts inequality outcomes towards worst realisations. The results in Figure 5 are im-
portant because they show that this impact is large in terms of both magnitude of the
change and likelihood. Under epidemiological risk, severe increases in inequality have
a high probability, whereas under economic recovery risk only they are low probability
events.
We continue with economic and health outcomes on average, across households, un-

der both epidemiological and economic recovery risk. We observe an initial increase in
mean household wealth, which is consistent with the increases in savings documented
in empirical research for 2020 (e.g. Hacioglu et al. (2020) and ONS (2020)). This in-
crease, driven by the restrictions in consumption during the pandemic (see Section 5 for
a discussion), is short-lived and followed by a subsequent reduction before returning to
pre-pandemic levels. The initial change in mean consumption mirrors the initial rise in
mean wealth. Following the initial drop, mean consumption bounces back quickly to re-
cover from lockdown restrictions, but it increases slowly back to the pre-pandemic values
thereafter. Health also drops, and in this case, the effects are more persistent because
the world with pandemic risk implies lower health in expectation than the pandemic-free
world, which defines the stationary equilibrium that serves as the starting point in Figure
5.
As with inequality, not accounting for post-pandemic epidemiological risk has impor-

tant implications for the extent of uncertainty regarding future paths of mean outcomes;
under economic recovery risk only, the outcomes under the 10th and 90th percentile are
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much closer to the median. The drop in mean health is naturally bigger under epidemi-
ological risk. On the other hand, mean wealth drops more, after the initial rise, in the
absence of epidemiological risk. This bigger drop happens because epidemiological risk
creates precautionary incentives, as households have a stronger motivation to create buffer
stocks to mitigate economic and health implications of possible future disease outbreaks.
We then move to examine how much the effects of epidemiological risk depend on the

calibration of recrudescence risk by plotting, in Figure 6, results under a lower probability
of recrudescence. The difference between the results in Figure 5 and Figure 6 can also be
viewed as the effect of epidemiological and other policies aimed at preventing or mitigating
future outbreaks. The striking result from comparing these two figures is that not much of
what was discussed previously has changed, despite reducing the conditional recrudescence
probability by two thirds, from 30% to 10%. The nature of the effects of epidemiological
risk is that as long as future disease outbreaks remain positive probability events, severe
inequality increases remain possible. To count on epidemiological risk reduction in order
to protect against such inequality increases, policy and societal preparedness must, in
effect, reduce disease outbreaks to extreme events.

Figure 6: Simulated transitions to long run stochastic steady state, low epidemiological risk
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Note: Model simulation based on a sample of 5000 sample economies.

6.2 Between and within group inequality

We next analyse the between and within-group medium run inequality implications of
the pandemic and the increase in risk that it implies. We plot in Figure 7 the mean
wealth per socioeconomic group relative to the pre-COVID-19 stationary equilibrium for
the baseline calibration of recrudescence risk. As with economy-wide results, a lower (but
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positive) recrudescence risk does not alter the main predictions significantly (see Figure
D.11 in Appendix D;).
We note in Figure 7 differences in the changes in mean wealth between the three

groups with positive earnings. Professionals increase wealth on average due to the con-
sumption restrictions associated with lockdown measures, which are tighter for higher-
income households, and essentially maintain their pre-pandemic level of wealth in the
medium-run. Intermediate professions are characterised by smaller increases in wealth
on average, whereas the group of households with routine jobs has a big drop in average
wealth, which also takes a long time to return to pre-pandemic levels. Regarding the
group of non-employed households (inactive plus unemployed), we observe an increase
in mean wealth. This increase results from a combination of factors. First, we assumed
no reduction in the non-market income for this group (i.e. in benefits policies) during
the pandemic. Second, there are positive wealth effects from those who join this group
from the remaining groups, as they become unemployed due to the recession.41 These
observations imply that changes for this group in our experiments do not have a useful
interpretation, so we do not discuss them further below.

Figure 7: Between and within group wealth inequality
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The message from the dynamic paths of group-level average wealth in the medium run
after the pandemic is that between-group inequality increases for working households. Un-
der epidemiological risk, this increase can be substantial and persistent, with a relatively
high probability. For example, the 25th percentile implies persistent drops of nearly 10%
on average for the routine group for more than 20 years following the pandemic and nearly

41To demonstrate the importance of the latter effect, we show in Appendix XXX the effects for this
group relative to a counterfactual where the statistics are calculated using the population shares pre-
COVID-19. The positive effects are absent, confirming that there is no improvement for the households
already in the non-employed group.
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5% for the intermediate group, with little change for professionals. Ignoring epidemio-
logical risk implies that such increases in between-group inequality are only relatively
short-lived and between-group inequality should decrease rapidly post-recession.
We next examine within-group wealth inequality in Figure 7. The differences in the

Gini indices between the two scenarios of aggregate uncertainty are similar to those for the
Gini index for the whole economy (see Figure 5). Both show that within-group inequality
increases for most of the paths for all socioeconomic groups following a pandemic, but
epidemiological risk implies that very big increases are possible.
We finally look at between and within-group health inequality in Figure 8 for the base

calibration and summarise two main results.42 First, there is a deterioration of the health
of intermediate and routine groups, on average, relative to the group of professionals.
Notice that the increase in health risk due to the pandemic is symmetric in our calibra-
tion. Therefore, the disproportionate decline in health for the groups of intermediate and
routine jobs reflects the asymmetric economic effect of the recession and is thus indicative
of health inequalities related to socioeconomic factors. Second, ignoring epidemiological
risk underestimates the increase in health inequality, which, as just noted, takes place via
the economic inequality implications of the epidemiological risk. In other words, epidemi-
ological risk sets in motion a chain reaction that ends up increasing health inequality via
increases in economic inequality.

Figure 8: Between and within-group health inequality
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42See Figure D.12 in Appendix D for results with the lower recrudescence risk.
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7 Conclusions
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