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Abstract

Decisions under ecological uncertainty are a crucial part of resource management as many
ecological systems undergo abrupt regime shifts, frequently triggered by the actions of the
resource harvester. We study the stochastic dynamics of a renewable resource harvested
by a monopolist where harvesting affects the resource’s potential to regenerate, resulting in
sequential endogenous regime shifts. The firm faces uncertainty in the timing of these shifts.
We encapsulate in our model environmental surveillance of ecological dynamics where the
firm has to find the profit-maximizing extraction policy while simultaneously detecting in
the quickest time possible the change in regime. Our key finding is that post-detection of
a negative regime shift, for low stock levels, a precautionary behaviour can result due to
increasing value of in situ stock. At higher levels, this behaviour is offset by an elastic demand
as declining resource rent and effective marginal costs of production result in aggressive
extraction. We find that intensification of extraction is possible due to a sense of urgency
caused by the prospect of resource collapse. We study the probability of resource extinction
and show the emergence of catastrophe risk which can be both reversible and irreversible
based on the extinction’s expected hitting time.
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1 Introduction

Dynamically managing renewable resources necessitates making decisions under ecological un-
certainty, defined as uncertainty over the evolution of the relevant ecosystem (Pindyck (2002)).
One way that the current literature captures this is by means of stochastic bio-economic models,
reflected in the variance of the fluctuations. Another way this uncertainty can manifest is in the
form of ecological regime shifts: an abrupt change in the structure of the resource ecosystem or
a change in its underlying population dynamics such as the intrinsic rate of growth. Such regime
shifts have been well documented both as a result of natural and anthropogenic factors.! Their
occurrence is also reflected in the increasingly relevant and common feature of the contemporary
resource market where firms are investing considerable efforts in monitoring resource stocks as

the number of ecological extreme events are on the rise.

The presence of regime shifts and the act of environmental surveillance to detect them, fun-
damentally alters the constraints and incentives faced by firms who extract renewable resources.
This paper intends to answer how the extraction policies of a monopolist, who is sequentially
monitoring the resource, change in response to a new ecological regime. What is the profit-
maximizing policy of this firm who wants to detect this shift, in a framework where this change

in regime is endogenously determined by the firm’s extraction activity?

There already exists a large literature studying the impact of stochastic fluctuations on firm
extraction and harvesting activities utilizing real options theory.? An emerging literature builds
on this to integrate resource management with a variety of regime shifts, such as Polasky et al.
(2011), Ren and Polasky (2014), Baggio and Fackler (2016), de Zeeuw and He (2017), Costello
et al. (2019) and Arvaniti et al. (2019).> These studies, however, are limited in two respects.
First, with the exception of Pindyck (1984) and Sakamoto (2014) much of the literature does not
incorporate an explicit market structure and takes the price as fixed or exogenous. This is done
for tractability but leads to results that underestimate the crucial role of demand, which often
drives firm harvesting decisions. For example, Myanmar Timber Enterprise (MTE), a state-run
company holding monopoly over harvesting and sale of timber, has directly been responsible
for the loss of more than 13,000 square miles of tree cover between 2001 and 2018 due to the

lucrative and increasing demand for teak.

Second, for a firm to be able to assess its optimal policy in response to an ecological regime
change, it must be able to detect when the system dynamics of the resource shift. Therefore,
resource management often involves an element of monitoring and surveillance which may di-
rectly play into the firm’s decisions. In order to maximize its value, it is important for the firm

to quickly detect the changes in the environment and adapt its policies accordingly. However,

'Recent examples are the logged tropical rainforests in parts of Asia, South America and Africa which have
become more fire-prone leading to a regime shift towards exotic fire-promoting grasslands (Lindenmayer et al.
(2011)) or the human-induced regime change in the Baltic Sea from cod to sprat and herring as dominant species
in the fish population (Osterblom et al. (2007)).

2See, for example, Andersen and Sutinen (1984); Pindyck (1984); Reed (1988); Reed and Clarke (1990);
Saphores (2003); Alvarez and Koskela (2007); Pizarro and Schwartz (2018).

3Refer to Li et al. (2018) for an overview.
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Figure 1: Model Dynamics

the current literature on regime shifts implicitly assumes the firm to be able to monitor these

changes and subsequently make the appropriate extraction decision.

We build a model of a monopolist facing a linear demand curve, who encounters two sources
of uncertainty in the resource dynamics. The first source is the natural randomness of the
environmental conditions, here represented by Gaussian noise, and the second is the timing of the
ecological regime shift. This shift, defined as a change in the resource’s ability to grow, is made
dependent on the firm’s own past extraction efforts. In our model, the firm knows with certainty
that a regime shift will eventually occur but the timing is unknown: what matters for the firm’s
harvesting decision is when it will take place. In a multi-regime setting, the monopolist wants
to detect this shift as soon as possible and this detection procedure is explicitly incorporated
in its profit maximizing actions. The resource dynamics are assumed to be monitored by the
monopolist through sequential observations and we model the firm’s detection process by means
of a quickest detection method. This method extends the classic change-point problems to
an optimal stopping problem in a sequential framework where the stochastic process under
observation is assumed to change its probabilistic characteristics at an unknown change-point in
the sequence. Therefore, the aim of the firm is to maximize its present discounted value of the
profits while simultaneously detecting a change in the resource growth, if one occurs, with the
shortest delay possible. The sequential nature of the detection process allows us to incorporate

non-stationary dynamics.

To sharpen our intuition of the model we refer to Figure 1. Suppose there exists a natural
water monopoly extracting an aquifer and within the first interval it observes the resource growth
rate to be A. At some unknown change-point, past extraction policies catch up to it, causing a
negative regime shift. Due to continuous monitoring of the resource, the firm has an expected

time of detection for this regime shift. Therefore, in this interval the firm maximizes its profits



with respect to the growth rate A and over the horizon given by the detection time. Post-
detection, the firm will reassess its policies as the resource dynamics have changed with a lower
growth rate B: we study how the extraction policies change in this new regime. What role do
the market preferences, the magnitude of the regime shift and the detection play in determining

its optimal extraction policy?

Our model allows for fully analytical solutions and comparative static results. First, we
find that the expected time of detection of an ecological regime shift is inversely related to its
magnitude. Thus providing the intuitive result that the larger is the change in the ecosystem
structure, the earlier a firm is likely to detect it after its occurrence. As the monopolist maximizes
its profits with respect to the resource dynamics and over the expected detection time, this
magnitude directly determines the horizon of the firm. Further, we model the past extraction
to affect the size of the regime shift in the current period. Therefore, within a multi-regime
framework and non-stationary dynamics, the monopolist’s horizon for each period is updated
according to the size of the extraction-dependent regime shift. Second, the profit maximizing
optimal extraction policy is not only a function of demand but is also explicitly dependent on
the current level of the resource stock and is modulated by the distance from the detection time.
We find that in the event of a detection of a negative regime shift, for low stock levels, the firm
adopts a precautionary policy by reducing extraction. This is because if the amount of resource
stock required by the monopolist to break even is less than the resource’s rate of growth, the
regime shift creates a scarcity of the resource which increases the market value of the marginal

unit of in situ stock. This results in reduced extraction levels in the new regime.

At higher stock levels, however, if demand is elastic it outweighs the scarcity effect. We find
that the resource rent is a concave function of the resource growth, and the value of the in situ
stock falls with a negative regime shift. Therefore, after the immediate detection of the shift
the firm may reduce its extraction but over the course of the new regime it continues to increase
extraction eventually outpacing the levels in the previous regime, thus pursuing an aggressive
approach. Moreover, due to the inter-temporal nature of the monopolist’s optimization problem,
when the stock levels are high, the resource rent is negative. This is because an incremental unit
of current production reduces future production costs and thus that production of the unit
brings a benefit (a negative rent). Therefore, a combination of declining resource rents and a
further reduction in the full or effective marginal cost of production (marginal cost plus the
resource rent) yields an incentive for the monopolist to increase extraction. Moreover, as the
optimal price depends on both the demand elasticity and the effective marginal cost, increasing

extraction allows the monopolist to charge higher markups.

On comparing two regime shifts of different magnitudes, ceteris paribus, we find an interesting
result that may initially seem counter-intuitive. At higher stock levels, a shorter expected time
of detection can in fact lead the monopolist to intensify its extraction efforts, as compared to a
longer horizon. This behaviour is precisely due to the feature of environmental monitoring as the
firm is aware of the implications of a shorter time horizon, which suggests a negative ecological

regime shift of a large magnitude. Therefore, this creates a sense of urgency about the possibility



of the next regime change leading to resource extinction or collapse. Lastly, we define the risk
of catastrophe as the situation in which the growth rate of the resource becomes negative, thus
exhibiting a net tendency for the resource to reach extinction. We further distinguish between the
scenarios of irreversible and reversible catastrophe, based on whether the firm can avert resource
extinction by reducing or stopping extraction. This is done by studying the first passage time
to catastrophe and the distribution of the extinction’s expected hitting time. We find that this
hitting time follows an inverse Gaussian distribution with larger magnitudes of regime shifts

resulting in thicker tails.

A novel contribution of our model is assimilating the realistic feature of environmental mon-
itoring of the resource to detect changes in the stock and structure: a practice which is very
common in real-world resource management. For example Klemas (2013) talks about how remote
sensing techniques, in near-real time, help detect changes that affect recruitment, distribution
patterns and survival of fish stocks. These techniques, combined with in situ measurements,
constitute the most effective ways for efficient management and controlled exploitation of marine
resources. In ecology, using real-time remote sensing data is increasingly common, especially
with indicators of approaching thresholds or impending collapse in ecosystems.* Thus our model
is especially relevant to understand how firms operate in the modern day resource market as
considerable efforts are being invested in monitoring resource stocks as the number of ecological
extreme events are on the rise. The use of quickest detection methods to capture monitoring
allows us to also interpret our framework in real-time detection which we discuss in further detail

in section 4.

Most of the literature concludes that the risk of a regime shift often leads to a precautionary
behaviour. This is evident in the results shown by Polasky et al. (2011) and De Zeeuw and Zemel
(2012), where an endogenous risk of regime shift leads to an optimal management that is always
precautionary. However, this is not consistent with reality, as over-exploitation is a common
phenomenon observed in renewable resources. Our paper extends on the existing literature of
regime shifts to explain such firm behaviour by delineating the role of demand. We highlight
the mechanism underpinning the often observed over-extraction of resources even when there is
a visible negative change in the resource dynamics. Building on Ren and Polasky (2014), who
numerically show the possibility of aggressive extraction, we emphasise that this behavior is
possible under an endogenous regime shift specifically due to the presence of an elastic demand,
declining market value of the resource and increasing monopoly power. Our model differs from
most by showing that explicitly considering surveillance and knowledge of the magnitude of the

regime shifts can in fact motivate the firm to intensify its extraction.

The remainder of the paper is structured as follows. Section 7?7 highlights some motivating
empirical facts, in section 2 we lay out the different building blocks of the model. Section 3
describes profit maximization within a sequential framework and additionally we define the risk

and first passage time to catastrophe. In section 4 we discuss how our model could be applied

%See Andersen et al. (2009); Porter et al. (2012); Batt et al. (2013); Carpenter et al. (2014); Scheffer et al.
(2015)



in a situation where the firm monitors the resource process in real time and section 5 discusses

the model solution and its economic implications. Section 6 concludes.

2 The Model

2.1 Resource Dynamics

We start by modeling the evolution of the renewable resource stock X;. Let X; be the stock at

time ¢, which behaves according to the stochastic differential equation
dX; = (u — qt)dt + odW; (1)

where ¢; € RT is the resource extraction chosen by the firm, o € RT is the intensity of noise
in the evolution of the resource stock, ;1 € RT is the constant growth rate of the resource and
X; > 0°. Finally, W; is the standard Brownian motion in the filtered probability space (€2, F, P).

In order to capture the regime shift that the dynamic system can undergo, we describe two
alternative scenarios faced by the firm: one in which the resource evolves according to equation
(1), and an alternative in which the stock’s ability to regenerate - the drift - changes. This is
consistent with Polasky et al. (2011) in which a regime shift is defined as a change in the system
dynamics such as intrinsic growth rate or the carrying capacity of the resource. The evolution

for the resource stock then becomes

dXt = (M+)\—qt)dt+Uth, (2)

where A € R is the change in resource growth. If A < 0, the growth rate of the resource is
reduced and it undergoes a negative regime shift, and vice versa. Equation (2) implies that the
firm’s harvesting activities do not affect the resource’s ability to regenerate in any way. However,

this assumption does not seem grounded in reality. We therefore rewrite (2) as:
dX; = (,U + )\(qew) — qt)dt + O’th, (3)

where ex is the past time period that determines the magnitude of A. We therefore study a
framework in which past extraction decisions determine the future changes in resource growth.
We want to model the scenario in which at a given change point in time 6, which is happening
with certainty but at time unknown, the stochastic differential equation (SDE) driving the

resource stock will switch between drifts, and the growth rate of the resource will change:

®This positivity constraint allows the problem to have reasonable implications and a relatively simple solution,
at the expense of an increase of the hidden mathematical requirements for the solution to be sufficient and unique.



(u — qt)dt + odW; t<9

dX; =
(14 ANGew) — @) dt + odW, > 6.

(4)
Here A(gez) > 0 or A(¢gez) < 0 allowing the effect of firm extraction on the resource growth to
be both positive or negative. This implies that the firm’s actions influence the magnitude of
the change of regime. Note that since the occurrence of  is certain, the question faced by the
monopolist is not if a regime shift will occur but rather when. This framework seems appropriate
for today, since the focus has moved from questions regarding the probability of the occurrences
of collapses and regime shifts, to the question of when and how such occurrences will have to be
dealt with.

The firm now faces two sources of uncertainty when choosing the harvesting policy that max-
imizes its profits. The first is the variance of the Gaussian noise source o2, which is the variation
inherent to the natural randomness of environmental conditions: we choose the diffusion coeffi-
cient o to be independent of the state X; (i.e. a drifted Brownian motion) in order to include
the possibility that the exogenous environmental shocks may drive the resource to extinction,
something that log-normal fluctuations in a geometric Brownian motion by construction cannot
represent. The second source is the timing 6 of the shift, at which the resource’s drift changes

from g to g+ A(Gex)-

2.2 Firm Dynamics

We consider a risk-neutral monopolist facing a linear inverse demand function of the form p(q) =
a—bq, with a cost function defined as cq+F, wherea > ¢ > 0, F > 0and b > 0.5 The harvesting
rate is chosen by the firm in order to maximize the expected value of the sum of discounted

profits subject to the constraint (4), and the profit function takes the form

(q) = [(a — bg)q — cq — F] (5)

2.3 Optimal Detection

The firm’s problem now involves the detection of the change in drift of Xy, as seen in (4). The
monopolist monitors the resource stock via sequential observations and uses quickest detection
(QD) method to detect the regime change. This comprises of three elements: a stochastic process
under observation (the evolution of the renewable resource), an unknown change point at which
the statistical properties of the process undergo a change (a regime shift), and a decision maker
observing the process and wants to detect this change (the monopolist). This method builds on

change-point problems and extends it to the sequential framework where as long as the behavior

5Cost function of this form also allows us to flexibly model a natural monopoly since the average cost AC =
¢+ £ is decreasing in output. We note that the choice of a quadratic cost function of the form cg? leaves the
results qualitatively unaffected.



of the observations is consistent with the initial state, one is content to let the process continue.
However, if at some unknown time the state changes, then the observer would like to detect
it as soon as possible after its occurrence. This objective must be balanced with a desire to
minimize false alarms. Such problems are known as quickest detection problems. To do this the
firm searches for a “rule” (an optimal stopping time) 7 adapted to the filtration F;, at which it
detects the change point 6, so it may reassess its harvesting decisions given the change of regime

in which it operates. This can be defined as:
7 = inf{t > 0; Detector; > v}

Detectory is a test statistic based on the sequential observations via monitoring of the resource
and the value v is a critical value or threshold, which provides the decision rule. The optimal

QD procedure to determine Detector; and v are discussed below.”

In the period before #, the dynamics of the resource X; are determined by the (possibly
nonlinear) SDE
dXt = (,U, — qt)dt + O'th.

Girsanov theory tells us that the process

t_s 1t_82
My—exp (= [ P Cqy, L [ l=a)
2 2
o O 0 g

is a P-martingale. Therefore, the process

t J—
Wt:WtJr/ B9
0 (o2

is a @Q-Brownian motion, where one obtains the new probability measure by @ = Ep(M;). The

process X; therefore admits the representation

t ~
Xt:l‘0+/ dWs
0

and is therefore a Brownian motion under the measure ). The firm’s detection problem now

becomes

AW, t<0
dXy = _ (6)

Mgez) +dWy > 0.
If the period ex that determines A is outside the interval [0, ¢], then the firm’s detection problem
reverts exactly to the Brownian disorder problem, which is the detection of the change between
a martingale and a sub/supermartingale, depending on the sign of A. This requires that the

harvesting decisions, that define both sign and magnitude of the change in resource growth, be

"For a short introduction to quickest detection methods refer to Polunchenko et al. (2013) For a more detailed
review we refer to Poor and Hadjiliadis (2008)



set strictly before the time of the initial condition on X (here normalized to 0, i.e. Xj).

The Brownian disorder problem was first studied by Shiryaev (1963) and the QD procedure
of the cumulative sum process (CUSUM) has been proven to be optimal by Shiryaev (1996)
and in the case of multiple drifts by Hadjiliadis and Moustakides (2006). This involves the
optimization of the trade off between two measures, one being the delay between the time a
change occurs and it is detected i.e. (7 —6)", and the other being a measure of the frequency

of false alarms for events of the type (7 < 6).

The firm minimizes the worst possible detection delay over all possible realizations of paths

of X; before the change and over all possible change points 6. This is given by
J(7) = sup esssup Eg[(7 — 0)T| F] (7)
0

and the stopping rule is obtained by minimizing (7) under a “false alarm” constraint. This

stochastic control problem is given by

min J(7) s.t. Ep_oo[r] =T.

This constraint gives the class of stopping times 7, for which the mean time Ey_..[7] until giving
a (false) alarm is equal to T'. It can be interpreted as a measure of the “quality” of the detection
system, since it fixes the expected delay in the detection under a false alarm, i.e. when 6 = oo

(the process never actually changes regime).

It is shown by Hadjiliadis and Moustakides (2006) that one can only focus on the constraints
that bind with equality. The CUSUM procedure involves first observing the process given by
the logarithm of the likelihood ratio (the Radon-Nikodym derivative) of the process X; (note
that we are under the measure @) under the two regimes and comparing it with its minimum

observed value. Define

dQp—o
dQono

The CUSUM statistic process is then given by the difference at any instant s < ¢ between u;

AM(ex)?
2

ut(ﬂ) = lOg = )\(qex)Xt — t.

and its minimum obtained value up to that instant, namely

CSt<)\(Qex)) = ut(A(Qez)) - Oigr;f%t ut()\(Qex)) > 0.

This can be interpreted simply by noticing that if the two regimes are very similar (i.e. |A| is very
small), then the Radon-Nikodym derivative will be close to unity, implying that the CUSUM
process will be most of the time close to zero, and unless the diffusion parameter is very small it
will be difficult to detect the presence of such a small drift. If on the other hand the two regimes

are rather different, then one should be able to detect more easily when the regime changes, and



the CUSUM process should reflect this change as it increases. One would therefore expect to
search for a threshold in order to determine when the CUSUM process is “large enough” to reflect
the change of regime: this is indeed the case. Shiryaev (1996) and Hadjiliadis and Moustakides
(2006) show that the optimal CUSUM stopping rule is given by the stopping time

T(A(Gex),v) = inf{t > 0; C'S; > v}, (8)

where the threshold v is given by the root of the equation

2
A(Gex)?

It can be shown that the delay function of this procedure is given by

(" —v—-1)=T.

Br(\(gee), )] = 1 (qi)? (™ +v-1). (9)

At the stopping time 7, therefore, the firm will detect the change in drift of A in (6), which means

that the firm will have detected a change from a Q-martingale to a @Q-sub/supermartingale. Note
immediately that the larger the change in drift A, the smaller the threshold v and the “earlier”
one expects the CUSUM process to hit the threshold after the change occurred. If X is very
small, then v will be very large and the firm may wait for much longer before detecting a change
of regime: in such a case it may be that 7(A\(gez),v) > T, and once T is reached the firm will

assume that the regime has changed.

The effective time period in which the firm optimizes is therefore between ¢t = 0 and the final
time given by the minimum between 7" and 7(A(gez), V), the actual time at which the regime shift
occurs plus the delay of detection. In other words, the firm programs its profit maximization
assuming that the non-controlled part of the drift in the SDE driving X is given by u, and
subsequently by (u 4+ A(gez)). The “tolerance” T' is chosen by the firm; however, 7(A(ges, ) is a
random variable. Since the firm knows the average delay time of detection, as given by (9), it
can assume as time horizon the sum of the expectations of both change-point and delay, which
is equivalent to taking a time interval [0, min{7T, 7. = E[f] + E[7(A(¢ex),V)]}]- In the baseline
detection case the firm has an uniform prior on the time of the regime shift: this implies that
simply E[f] = T/2.

3 Profit Maximization

The simplest way of modeling a regime shift is to assume that the shift occurs only once, however,
as pointed by Sakamoto (2014), such ecological shifts are better modeled as open-ended processes.
An example being the Pacific ecosystem, where in the mid-1970s, the Pacific changed from a cool

“anchovy regime” to a warm “sardine regime” and a shift back to an anchovy regime occurred in

10
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the middle to late 1990s (Chavez et al. (2003)). Within a multi-regime setting, in which the firm
detects multiple regime changes throughout subsequent periods, the stochastic control problem
of the firm will read:

q€Q

o Tit1
s >5[ Mg (10)
i=0 Ti

(L + Xi(gim1) — q)dt + odWy, t € [1i, Tig1)

(1 + Xig1(qs) — q)dt + odWy, t> 74, i €N,

Xy >0 WVt

7 = min{T , E[f] +E[r(\:),»)]}

dX; =

where ¢ € N are the different periods, and the harvesting policy exists among the class of
admissible controls ). Here A\g = 0 and 7;, \; are the subsequent periods and relative changes in
resource growth. We assume 79 = 0 for simplicity. Here we formalize the structure of the firm’s
harvesting decisions in a sequential manner, where the firm assumes a constant A(ge,) for each
period®. To analyse the firm’s optimization problem in a sequential detection scenario we work

through the schematic representation seen in Figure 2.

3.1 Regime [0, 7]

At time t = 0 the firm believes that the resource is driven by a diffusion process with the natural
growth rate u and and begins harvesting activity at level ¢*(0,zg). At a random time 6; € [0, T,
there is an initial exogenous change, A\g < 0, in the resource dynamics.? Until the detection of
this change, the firm operates in an environment where the resource evolves according to the
process

dX: = (pp — ¢ (t, Xp))dt + odWy,  t € [0,7(Xo,v)], (11)

where 7(\g,v) < T is the detection time. The final time of the period which the firm uses as a

reference for its decisions is given by

8The explicit dependence of the stopping time 7 on A makes the control variable ¢ and the limit of integration
71 simultaneous, and the model becomes intractable. In order to circumvent this issue, we model the firm to
detect a change in drift A\(gez) which is determined by extraction in the previous period

9The first change is exogenous so as to start the process of subsequent adjustment.

11



71 = E[0] + E[r(\o,v)] = E[f] + )\2(2) (e_” +v— 1) (12)

where the threshold v solves % (e —v —1) =T. Within this time interval [0, 71], the value of
0

the firm is given by

1
V(0,Xp) = sup ]Eo/ (q)e Pdt
qeQ 0
sit. dXy = (u—q)dt + odWy, (13)
X > 0.

Before solving the problem, let us first characterize the solution given the positivity constraint.

The Hamilton-Jacobi-Bellman (HJB) equation for the firm’s optimization problem reads

0.2

0=V, —pV + I(]Iae%({(a —bq)g—cq—F —qVy} + puVy + ?Vm, X > 0. (14)
where @) is the set of admissible Markov controls for which ¢* > 0, X*(t,¢*) > 0.1 Once
solved, this problem will yield a control in the feedback form ¢(¢, X;). Because of the constraint
X; > 0Vt € [0,71], the value function V'(¢,z) is not necessarily always differentiable. Using
viscosity solutions, as first shown in the fundamental work by Crandall and Lions (1981), we
show in the appendix A that the value function V is a weak solution of the optimization problem
(14), and once we obtain a solution for V' we can conclude it will solve the firm’s problem (in a

weak sense).

Equation (14) implies an optimal extraction policy given by

(15)

q(t, X)) = [a—c—Vx] L

2b

Note that this implies that in order for extraction to stay positive, V, < a — ¢, meaning the
resource rent cannot exceed the demand intercept parameter minus the marginal cost. This is
clearly a consequence of the assumption of linear demand, which results in a quadratic criterion.
It will be clear in what follows that the solution will be naturally constrained by the boundary
conditions to satisfy this requirement. Substituting in (14) and grouping terms, we obtain the

following partial differential equation:

o2

o:w—pv+AVx+BV§+7Vm+c (16)

where the constants A, B and C are given by

193ee Fleming and Soner (2006) for the full definition of control admissibility.

12
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The natural boundary conditions of this problem are given by

V(t,z) =0 for <0, V(£,0) =0, q(t,0) =0 (17)

without imposing a smooth pasting condition because of the viscosity argument.

Because of the homogeneous form of the profit function, we guess a solution of the HJB

equation of the form

V(t,z) =PV (z)

and we linearize it with the nonlinear change of variable

_ 2 Y(a)

V(@) = 35 ()

where 1(.) is a general twice differentiable function on R. By this linearization, one can easily
obtain the general solution
hg(x) = 1€ 4 c2e™?”. (18)

— VA2 —
where q o = —AEVAZABC ;42 ABC

and as < a3. The constants are given by the boundary conditions
(17), after noticing that V'(¢,0) = 0 implies ¥(0) = 1. The particular solution can be computed
in closed form, but its expression is lengthy and therefore omitted, and henceforth only referred

to as ©(x). The optimal harvesting policy in feedback form is therefore

2 ¢/(ta CC) —p(T1—t)

@t,x)=q¢" -0 e 19
where ¢™ = %5¢. From (15) we also obtain the resource rent for the monopolist:
V, = 202 B2 (-1 (20)

Pt x)

The “instantaneous” drift of the optimally controlled stock is given by

wl(tv J)) e—p(Tl —t)

_ . m 2
wa,t)=p—q"+o )
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and as t — 71 the effective discount rate reduces and the drift increases. At the end of the

period, the optimally controlled stock will be given by

o [MY(Xy)
o P(Xt)

T1
X =Xo+[p—q"1+o0o e PM=tq 4 U/ dWr. (21)
0
where the second integral is to be interpreted in the It6 sense and is simply equal to the Gaussian
draw N(0,027). Similar to (19), the overall dynamics of the optimally controlled resource stock
also comprise of a fixed growth part, given by the natural growth p and market preferences, and

a variable growth part.

3.2 Regime |11, T2]

Once the new regime is detected at t = 71, the firm then immediately reassesses its optimal

policy to ¢;(t,x), as the dynamics of the resource stock are now

dX; = (n—Xo— ¢ (t, Xy))dt + odWy, t € [, 7o)

The optimal policy for this period is easily seen to have the same form as (19). Normalizing
time to tg = 71, one recognizes that the two problems are equivalent, with a change in drift from

wto i — Ag. We therefore have

/
qr (t, .%') =q" — 021/i (t7 «T) e—p(TQ—t)’ (22)

Pt x)

where the exponents zﬂ(t, x) include the new drift in the coefficient A. In the meantime, however,

while the firm assumes a constant Ao, its past decisions start to catch up. At a random time 65
the growth of the “new” process will modify as a function of the past harvesting actions, yielding

a change in drift A;(qj) given by

0 AXy  AXy<0

M) = (23)
o VAXy AXyg>0
X:—-X
where AX, = o209 (24)
Xo

Equations (23) and (24) indicate that the magnitude of change in drift A\ depends on how much
the resource stock has deviated from its initial value. The observed sign will depend on whether
the firm’s harvesting actions have generated a net increase or decrease in the total stock of the

resource. Note that the effect the net change has on the resource’s capacity to regenerate is not
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symmetric. When \;(gj) is negative, it has a linear impact on the growth rate. However when
A1(gg) is positive, the effect is concave. This is to capture the fact that an ecosystem is more
vulnerable to negative shocks. The sign and magnitude of this regime shift is assumed known by
the firm, but when it occurs is uncertain and to be detected. At m(A1(qg), v, T") the monopolist
will (on average) detect this change in regime of the resource dynamics. Similar to (21), the

resource stock at m will be

Ti+T2 ] X T1+T72
X, =X7 +r—2—q"]m2+ 02/ di( t)efp(”*t)dt + U/ dWi.
T1 d}(Xt) 1

3.3 Risk of Catastrophe [73, 73]

We now illustrate the emergence of catastrophe risk. After the new regime is detected at t = 7o,
the firm will reassess its optimal policy to ¢3(t,x) as the dynamics of the resource stock are

IlOW11

dX; = (/J, — Ao — /\1(q3) — q;(t,Xt))dt + odW,, te [7’2, 7'3]

Let us suppose that (1 — Ag — A1(g5)) > 0 so that the firm does not find itself under risk. The
firm at this point begins the detection process for the next change of regime and if Ao < 0, the

firm will realize the future emergence of catastrophe risk if

=2
W+ Z Aj <0,
§=0
noting that at the next detection time 73 the new regime will be one in which the drift of the

resource stock process will be negative, meaning that the resource will have a net tendency to

be driven towards an extinction state (X = 0).

We define the risk of catastrophe as the situation in which the instantaneous drift of the

resource stock X is negative in period ¢ at any time t € [y, 741]:

i—1 t 7
m P(Xs) pripr—s)
B> N—qr+ot [ = e PTi+178)gs < 0, (25)
j=0 ’ Ti 1/1(Xs)

which implies that P(lim;—~, X = 0) = 1.

First passage time to catastrophe: At this moment the firm may have to reassess its
extraction policies, due to the fact that the resource growth rate has been affected by its past

extraction decisions to a point where extinction is likely. In fact, the probability of the resource

1)\, can be positive as well but for exposition we assume a negative regime shift.
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being zero in infinite time is unity, which means that the resource eventually will be depleted.
The firm, however, can now exploit the non-stationary nature of the time intervals in which it
operates: a first immediate analysis should be what happens if it stops extracting. Normalizing

time to 7; = 0, we define the probability of extinction as

¢(x) =Pr [ inf X; < O‘Xo =X7,q¢"(t,X:) =0 (26)
teR+ !

and the first time to catastrophe as

7o = inf[ {|X; < 0, Xo = X7, ¢*(t, X;) = 0]. (27)

Ti?

Then X, follows simply a drifted Brownian motion and the problem is equivalent of finding where
a standard Brownian motion crosses the line x — p — Z;:O Aj (remember that g + Z;‘:O Aj is
negative). It’s a classic stochastic analysis problem, and it allows the firm to realize that if it

stops extracting the expected time to catastrophe is

X
Ere= — % . (28)
7
‘N + Zj:(] )‘j‘

and the probability of extinction is
2 (In+ -0 i)

d(x) =exp | — 3 x| . (29)

If Er. < 741, on average the resource will be depleted within the detection period even if the
firm stops extracting altogether: we are therefore in a situation of irreversible catastrophe,
where even the most precautionary of extraction behavior cannot avoid on average the resource
from being depleted. In other words, since extraction always reduces the drift, (28) gives the
upper bound on all first times to catastrophe. Since deviation from the optimal policy is costly,
it is likely that the firm will continue its extraction policy until extinction. If the firm stops
extracting, then the first passage time to catastrophe 7., for a resource stock starting at X7,

will be distributed according to the following density:

P{Tcat € dt} = \/ﬁ exp 20‘2t

e ( , (if) , (30)

which follows an inverse Gaussian distribution, as seen in Figure 3.

X (_ (X5 = 1+ i Wz) "

Xz
TR PV

Because of the stochastic fluctuations, the firm cannot know with certainty whether the first
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Figure 3: Distribution of the time to catastrophe and effect of a higher initial level of stock
(dot-dashed) and of a larger regime shift magnitude (dashed).

passage time will happen before the next regime change, but it can have an average measurement
of its probability. If Et. > 7,41, so if X, > u7;y1, catastrophe is on average avoidable within
the first detection period if the firm stops extraction, therefore the firm can study whether its
optimal extraction policy allows to avoid it as well. In other words, the firm wants to check
whether

ETC < Ti+1,
Te = inf[ t|Xt <0,te [O,TZ’+1],X0 = X:Z]

Define 9 (t) = ¥(t; X-,,0) the density function of the first time to catastrophe: then we have
that

L—9(t) =1 - 6(0,1), (31)

where ¢(x, t) is the probability that the optimally controlled resource stock X;* hits the absorbing

barrier at 0, and can be written as

o(z,t) =Pr [ inf X< O‘Xt = x} ,

SE[t,Tz’+1}

for 0 <t < 741. The firm therefore has to solve the Kolmogorov forward equation given by

2 92

9 9 A
0@, 0) + 5ol 1) u+jZIAj—q*<t,x> + 5 5d(@ ) =0 (32)
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with absorbing boundary conditions given by

¢(.T,Ti+1) =1 T S 0 (33)
¢(z,Tit1) =0 x>0,

¢(07t) =1,

o(t,00) = 0.

The KFE for this problem has no closed form solution, given the dependence of the extraction
policy on both x and ¢, and needs to be solved numerically with standard methods. Once the
solution is obtained, the firm can recover the density of the first time to catastrophe 7. from (31)
and compute its numerical first moment: if E7, > 7,41 the firm continues its optimal extraction

policy.

3.4 Discussion - General Solutions for Period [7;, T;41]

More generally, for the period [, 7;11] where ¢ = 1,2...n we can model the optimal extraction

policy as:

* ¢/(t,{L‘) — ( . 7t)
q(t,z :qm_UQ e P(Tit1 34
(t,z) (o) (34)
q“(t,z)
the resource rent as:
Vae(t,x) = q"(t,z)2b (35)

the optimally controlled stock at the time of detection as:

=1 Ti—1+T; &l(Xt) Ti—1+T;
X=X+ |p+ Z ANj—=Xic1—q" | T+ 02/ : e Pmi=tat + U/ dwy.
j=0 Ti—1 w(Xt)

Ti—1

(36)

the change in the growth of the resource dependent on its past harvesting actions as:'?

12Note that in the first period [0, 71] the change in drift, Ao is assumed to be exogenous and not dependent on
past harvest efforts.
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( ) ‘
(:u + Z;;%) /\j - )\i—l) X*i%l AXi.7 <0

i—1

(,u + Z;;IO )\j — )\@'71) % AXE >0

Ti—1

and the firm will (on average) detect the regime shift at:

Elrit1] = E[0] + El[r(Ai(gi-1), v, T)) (38)

The optimal extraction (34) consists of two parts: one driven purely by market preferences
as seen in ¢ = “3¢. This is the quantity at which the monopolist’s marginal revenue equals
marginal cost, it’s the profit maximizing harvesting policy the monopolist would choose if there
were no fluctuations in the evolution of the resource (i.e. if ¢ = 0). The second part not only
consists of market preferences but is variable and explicitly dependent on state X; and modulated
by the distance between present and the detection time, representing the time horizon of the
firm. Observe that V,, here is the rent associated with a unit of the resource stock. It is the
scarcity value or the market value of the marginal unit of in situ stock. Note that when the
rent of the resource rises, ¢* decreases'. Observe that in each period the final level of resource,
X(t), is a random variable, and therefore so is the impact on the new growth rate, however it
is continuously dependent on the optimal harvesting policy. The variation in X (¢) is conserved
in the magnitude, the absolute value of the percentage change in the resource stock translates
directly to a change in drift. This is observed in Figure 4 where we show ten simulated time
paths of an the optimally controlled stock of resource. Here the first detection time is common

to all but subsequent detections are extraction-dependent.

Due to the sequential nature of the detection process and the stochastic dynamics of the resource,

there is no steady state in our model. The system is non stationary and is randomly changing and

13The optimal harvesting function exhibits a sigmoid-like form. Assume for the sake of exposition t = 7., o0 = 1
and a = 2b + ¢, one obtains

(1l —01)e™" +ca(1 — ag)e™?”
qa = 1917 | coe2® :
If we have ¢1 = ¢2, a2 < 1 < a1, we obtain a shifted hyperbolic tangent function, directly related to the logistic
function. For general parameter values, therefore, the optimal extraction policy has a modulated sigmoid form.
This results in the following limiting behavior:

lim ¢*(t,z) = qul/(@)efp(ﬁft),
xr—r o0

lim ¢"(t,2) = ¢"

Te—00

where v is a general continuous and bounded function of the model parameters. This result shows that for any
time t € [0, 71], there is a maximum harvesting level given by a fixed amount, generated by market conditions,
minus a parameter which incorporates the dynamics of the resource stock and the time horizon of the firm. If
this horizon is long enough, all resource-related parameters are ignored and the monopolist’s optimal harvest is
entirely driven by the market.
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Figure 4: Simulation of 10 time paths with same parameters resulting in different extraction-
dependent detection times. All simulations are done with a Shoji-Ozaki discretization method
for the time-dependent drift.

as a result optimal harvest must be specified for every state that can possibly occur. Additionally,
in a multi-regime setting, the detection of each regime shift alters the monopolist’s time horizon.
The larger is the difference between the initial and final level of stock, the larger will be the
magnitude of the change in resource growth rate ;. This implies, on average, an earlier expected
time of detection. Once the firm detects the regime shift, the magnitude of change in the resource
growth will either increase or decrease the probability of extinction of the resource by entering
the SDE drift with the same sign as the difference between initial and final level of resource
biomass. This is evident in panel (a) of Figure 5, which shows a possible time path of the stock
biomass, for the first four periods, being harvested under the profit maximizing policies of the
firm. As the monopolist detects each regime shift, represented by the red dashed lines, it’s
horizon for the period changes and it pursues the appropriate optimal policy. Panel (b) shows
an example of the firm extracting the resource to extinction, with a collapse occurring in the

third period. The varying time horizon of each period plays into the firm’s extraction decisions.

4 Real-time detection and optimal extraction

The optimal extraction policy in each time interval [7;, ;41| is obtained by assuming as time
horizon the expectation of the optimal stopping time 7,41 = min{7, E[0] + E[7(—A,v)]}. This is
therefore an ex ante policy: the actual detection of when the regime shift happens is only repre-
sented via a first-order stochastic criterion. The time 6 at which the regime changes, however,
is a random variable: the firm therefore will use the expected detection time (12) to evaluate
the boundary conditions, but simultaneously observe continuously the optimally controlled level
of stock X;, change to the measure () and compute the Radon-Nikodym derivative of the two

measures (before and after the regime change) and check whether its value exceeds the thresh-
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Figure 5: Simulated Time Paths of an optimally controlled biomass/stock. Red dashed lines
represent detection times.
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old value v. If the threshold is reached before the expected detection time 7;41, then the firm
simply switches to the subsequent period with the modified drift, since the regime shift has been
detected. If the expected detection time 7;4; is reached and the threshold has not yet been
reached, implying that the regime has not yet shifted, the firm continues the optimal extraction
assuming the same underlying resource dynamics, but now in the an infinitesimal time interval
as horizon. In other words, the infinitesimal optimal extraction policy if the expected detection

time is exceeded is given by

G (t,x) =" — o Ziéf ’f; A | (39)

until either the Radon-Nikodym derivative of the measures of the two regimes (under the measure
@ by which X; is a Q—Brownian motion) reaches the threshold v, or until the firm’s tolerance

time limit T is reached.

This notion of observation under measure changes might appear as a mathematical abstrac-
tion: we note, however, that the disorder problem (6) based on the observation of the resource
stock Xy is equivalent in probability to the disorder problem based on the observation of the

residual process given by

i—1

dy; = % dX; — i+ ; A —q*(t, Xy) | at (40)
under the original measure. In other words, the firm can detect the change by either observing
the resource stock and changing measure appropriately, or by extracting residuals from the stock
variation, the growth rate and the optimal extraction policy and then studying the original P-
Brownian motion. The computational difference between the two is marginal if the extraction
policy is of simple form, such as the constant part of the extraction sigmoid such that the
resulting controlled resource stock effectively remains Gaussian, but the second strategy could
be of substantially simpler implementation for when the extraction policy is in its nonlinear part.
If real-time observations are not continuous but rather arrive at discrete times ¢;,7 € N, and
assuming a constant frequency between times At, then the residual process on which the firm
has to apply the detection procedure is the stationary process X;, — Xy, _ar — (10 + Z;;ll Aj —
q*(t, Xi—at))At (after standardization of the diffusive part).

5 Characteristics of the Solution

With (34) and (35), we can now examine how a change in regime affects the firm’s extraction

decisions post detection. We find:
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Figure 6: Optimal extraction policies for a monopolist with a demand function of the form
p(q) = 15 — 0.75¢ and cost function 3¢ + 30. The intrinsic growth of the resource is p = 25,
variance ¢ = 5. The first regime shift is detected at 7 = 40, when the drift changes from
25 — 20. The second regime shift is detected at 7 = 40.

Aq*(t oq*(t
Cn) o 0wty

ou ou (41)
| |

Aggressive Precautionary

To illustrate this we choose a range of values for the model parameters which are meant to
be largely illustrative. The firm incurs a variable cost with ¢ = 3, fixed cost of 30 and applies a
discount rate of p = 0.02. The resource has an intrinsic growth of u = 25 and o = 5. We focus
on the case of a negative regime shift as it is of more interest and relevance today. Suppose the
ecological system undergoes a regime shift of magnitude Ay = —5 resulting in a modified drift
= p+ Ao = 20. In Figure 6, the green shaded regions depict the evolution of the firm’s optimal
extraction policies up until it detects this regime shift at E[r;] = 40. Therefore, within the first
interval [0, 1], the extraction levels reflect the firm’s assumption that the resource is growing at
its natural rate of growth as shown in (19). Once this regime is detected, the firm updates its
assessment and maximizes its profits with respect to the new drift ji. Given the current period’s
extraction policy ¢g, the next regime shift is of a similar magnitude and the firm will on average

detect it at the same time, meaning an E[rs] = 40.

Before we discuss how the monopolist changes its extraction after a regime shift, we char-
acterize more precisely the nature of the firm’s extraction policy. An aggressive extraction
strategy is one where, for all else equal, at the level of optimally controlled stock observed at the
detection of the regime shift, there exists a time in the new regime where ¢ (¢, X2 ) > ¢5(11, X))
where g is the extraction policy for the parameters of the interval [0, 71], g1 is for the post-regime
shift interval [r, 7] and t € [r,72]. Since ¢* is monotonically increasing in time, this implies
that at the subsequent expected time of detection 7 there exists an optimally controlled stock
level at which ¢ (2, X7 ) = ¢3(71,X;,), and we call it the threshold X};. If X* > X} then
there exists a time ¢ € 11, 72] where the firm switches to an aggressive extraction policy, given
by:
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L (%’(X:l) w1<XI1>> . (42)

P Yo(X7,) i’ (X7)

If X7 < X}, then t ¢ [r1, 7] and the monopolist will never increase extraction in the new
regime with respect to its past extraction policy, thus adopting a precautionary strategy where
qi (t, X7) < q5(m, X7)) for all t € |11, o).

For the parameters given in Figure 6 we find X;; = 3.04 and for stock levels below this
threshold a precautionary behaviour is observed. For levels greater than X}, we find that
although after the immediate detection of the regime change the firm may reduce its extraction,
over the course of the new regime it continues to increase its extraction eventually outpacing

the levels extracted in the old regime therefore adopting an aggressive approach.

5.1 Role of the market

To understand the above result we look at the dynamics of the resource rent (35), specifically

how does the slope of rent change with respect to change in stock. We find:

oV (x,t F
Vel t) <0 if e P < —  Scarcity Effect
Ox a—c (43)
——
Break Even

Proof. See Appendix B

The term % is fixed costs divided by the maximum price a consumer is willing to pay per
unit minus the variable cost. This can be interpreted as the amount of resource stock required
by the monopolist to break even. Therefore, as long as the drift of the resource is greater than
the discounted break even amount required over the detection horizon, a scarcity of the resource
stock will lead to an increase in resource rent. Therefore, when a negative regime shift occurs
it reduces the growth rate of the resource and creates a physical scarcity of the stock, which in
turn increases the market value of the marginal unit of in situ stock leading to decreased levels

of extraction by the monopolist, explaining the precautionary behaviour.

At higher stocks, if demand is elastic, the scarcity effect is outweighed and the resource rent
falls. Looking at Figure 7 we find that the slope of the resource rent function with respect to

the drift is negative at low levels of the stock and becomes positive at high levels:

Welwt) g o Dal@t) (44)
ou ou

Moreover, as the monopolist is making intertemporal pricing and production decisions: when

the stock levels are high, the resource rent is negative. This is because the firm is essentially
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Figure 7: The slope of the resource rent function with respect to the drift.

moving down a "learning curve": that is, as they produce, learning-by-doing reduces their
average and marginal costs (Pindyck (1985)). In this case, the full marginal cost (FMC) of
current production ¢+ V;, is less than current marginal production cost c¢. The reason is that an
incremental unit of current production reduces future production costs by moving the farther
down the learning curve, so that production of the unit brings a benefit (a negative rent) that

partly offsets its cost.

Therefore, at higher stocks, when there is a negative regime shift, the full marginal cost of
production falls even further leading to increased extraction. Additionally, expressing the price
set by the monopolist as in (45) we see that for levels greater than X}, increasing extraction
allows the firm to charge a higher markup due to the presence of an elastic market demand Fy,

as seen in Figure 8.

bg* (z,t)

p(¢") = ( : i ) (c+Ve),  Eg=

Ea FMCJ

Markup 1

5.2 Role of the magnitude of regime shift and the detection time

The size of the regime shift A plays an important role in the firm’s extraction policy. From (9)
we know that the larger is the change in drift, the “earlier” is the expected time of detection.
If X\ is very small then the firm may wait for much longer before detecting a change of regime.
As the monopolist maximizes its profits over the expected detection time, the magnitude of A
directly influences the decision or the time horizon of the firm. Figure 9 presents two cases
where the market preferences and resource dynamics observed by the firm are the same and
the only difference is in A. Panel (A) depicts a regime shift of a magnitude )\64 = —5 with the
monopolist on average detecting this at E[T{‘] = 40. Therefore the firm maximizes its profits

with respect to the resource’s intrinsic growth rate u = 25 in the first interval [0, 7{'] over a
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Figure 9: Regime shifts of different magnitudes

horizon of 40 months. In panel (B) the resource undergoes a large regime shift of magnitude
)\OB = —10 resulting in a much quicker expected time of detection at E[TlB | = 10. Accordingly
the monopolist maximizes its profits over a much shorter horizon of only 10 months. Studying

how the extraction qSA (t,z) differs from q{)“B (t, ) will emphasise the role played by the detection
time.

To answer this we examine the change in slope of the optimal extraction function with respect
to change in the expected time of detection, seen in Figure 10. This can be written in closed
form but because of the form of the boundary conditions of the problem the expression is very
cumbersome and therefore we prefer to resort to numerical simulations. We note that although
at very low levels of stock it is positive, at high levels the slope in fact becomes negative.
Thus in the event of a large regime shift as AP, at higher stock levels, the firm increases its

extraction for all z as compared to when regime of magnitude )\OA occurs. This implies that
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Figure 10: Change in slope of the optimal extraction function ¢* (¢, x) with respect to change in
the expected time of detection 7.

for higher stocks qéB (t,z) > qSA (t,z). The escalation of extraction can be explained due to
the monopolist believing that another shift in regime could happen very soon and a resource
extinction or collapse may be impending thus creating a sense of urgency. The total effect of the
detection delay on extraction policy is therefore the ex ante difference between overall policies,
defined as the time integral of the optimal policy over the period between initial and detection
time. This quantity is by construction a random variable, since it will be function of observed

resource levels. Using It6 calculus and stochastic integration by parts we obtain

([freo - [Tawn)a-

= ¢"(ro—11)+ 1 [Vgg’z (20,0) — V' (x0,0) + /T2 aszdXt] , (46)
2bp n
where Vi (x0,0) is the resource rent for a firm facing an expected detection time 7; starting at
the beginning of the period with an observed level of stock x(, and the last is an It0 integral.
Equation (46) shows that the effect of a regime shift depends directly via the difference in time
horizon, via the linear effect on the fixed extraction amount ¢ times the difference in time
the firm has available for extraction. There is an ex ante effect related to the difference in
initial resource rent faced by the firm with different horizons. Third, there is the resource-based
effect given by the integral term, which shows that the effect on the extraction policy depends
on the overall variation of resource rent the rent will face in the “extra” time between the two
detections 1o — 71, evaluated over all possible resource trajectories. This also tells us how the
past actions, leading to the regime shift that is to be detected next, affect the firm’s current

extractive decisions.
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5.3 Profit loss due to detection delay

The profit loss due to the delay in detection is the key element behind why a firm would want
to implement such detection techniques in order to adjust production to the natural regime
shifts in the quickest time possible. The reason behind this profit loss lies in the fact that
between in the time interval [0, 7., the time that passes between the actual change in regime
and when the firm detects this change and adjusts extraction, the firm is de facto extracting
a “wrong’ quantity, which would be optimal for the pre-regime shift dynamics of the resource
but is suboptimal for the post-shift ones. Assume for simplicity that the regime shift occurs in
the dynamics of X; and changes p to p + A, where A € R. This implies that there exists an
extraction policy ¢* := ¢*(x,t) in the time interval [#,7.] that achieves the supremum of the
discounted profit function, i.e. ¢* — sup, faTc e_P(t_TC)H(q)dt st. dXy = (u+ A — q)dt + odW.
The firm, however, in this interval will continue to extract according to the policy ¢ := q(z,t)
that achieves the supremum of the optimization problem constrained by the “wrong” resource
dynamics dX; = (m — q)dt + odW;. The firm will therefore incur in a nonzero (discounted)

profit loss due to the detection delay:

[ e (e -n@) ari= [ e r 0L >0,
0 0

where TI(¢") represents the “theoretical” optimal profits in [0, 7.] obtained by switching to the

new regime immediately, and II(g) the ones obtained by switching after the delay.

The proof that this loss exists and is positive is simple. Because of the delay, the firm
chooses an extraction ¢ — sup, fOTC e POII(q)dt st. dX; = (u — q)dt + odW;. Define the
set of maximized profits I1*(q,t) as the supremum of the maximization problem (i.e. the total
volume of profits) achieved with policy g over a period ¢, which is a nonempty set of real numbers
bounded above and below. The overall “real” supremum of the maximization problem is achieved

by the following:

0 Te B B
<sup/ e_ptH(q)dt> + <sup/ e_ptH(qA)dt> = 10I*(q,0) + II* (¢, 7. — 0)
0 0

q q

where IT*(q, 0) is the supremum set of the problem up to # under the constraint with drift y — g
generated by the optimal policy ¢, and I1* (¢*, 7. —6) is the supremum set of the problem between
6 and 7, under the constraint with drift i+ A — ¢ generated by ¢*. Due to the additive property

of the supremum over bounded nonempty sets, this can be rewritten as
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*(¢*, 70) = sup/ ’ e*ptH(q)dt
a Jo
—q)dt + odW, t<6 (dX
R [ e
(L+A—q)dt+odW, t>6 (dX})

6 Te
= sup /e‘ptl'[(q)dt—i—/ e PT(q)dt
0 0

s.t. dXy st dXP

6 Te
= sup /e_ptl_[(q)dt + sup / e PTI(q)dt
0 q 0

s.t. dX; s.t. dXt)‘
= T*(q,0) + 1I*(¢*, 7. — 6)

where ¢* is the optimal policy that switches from ¢ to ¢ exactly at . This implies that
between 6 and 7. any admissible policy § € @Q,q # ¢ will not achieve the supremum, and
(G, 7. — 0) < TI*(¢*, 7. — ). This implies that

/: e (H(qk) - H(q)) dt =1I*(¢*, 7) — Ii(q, 7) > 0,

and the detection delay induces a loss for the monopolist which is increasing in the length of the

delay 7 itself.

The instantaneous loss function L; is a function of both stock X; and time t. Omitting
arguments for clarity, its behavior in the interval ¢ € [0, 7] can be obtained by defined by the

stochastic differential

dL(X,, 1) = [v;(AAqA) — V,(A*q) — Bo? (v;f - v?x)] dt + o (V;qg - v;qx) AW, (47)
= A(X,, t)dt + B(X,,t)dW,,

obtained by standard It6 calculus methods and where the subscripts in the drift and diffusion co-
efficients indicate partial derivatives. The term A" is the infinitesimal generator of the controlled

resource stock given by

2

AN 1= AG(,) = (14 A = 0(w,0)0(w,8) + b (@, 1) + Bu(a, 1),
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and all the extraction policy terms ¢ have the A exponent in order to represent whether the policy
is evaluated at the post-shift drift g + A or not. Lastly, the terms Vw/\, V. indicate the resource
rents as given by (35), evaluated at the respective extraction policies ¢*,q. This equation has
an intuitive interpretation: the deterministic part of the instantaneous loss evolves according
to two differential terms. The first is the difference between the instantaneous expected change
in extraction A'q = Edg of the “theoretical” extraction policy ¢ with the suboptimal policy
generated by the detection delay 7, expressed in units of resource rent V.. The inefficiency is
generated by the fact that the policy ¢ is applied to a resource stock that evolves according to
a process that is not what the firm considers in its optimization. i.e. A’q. Intuitively, this
represents how the firm applies the “wrong” extraction policy in the interval [0, 7.]: the chosen
policy ¢ is optimal for a resource stock that grows at a rate u, and is applied to a resource
stock that however grows at the post-shift rate p + A. This is the first of the sources of the
firm’s profit losses, and it represents the loss of profits derivating from the fact that the firm
cannot observe the regime shift during the detection delay, and thus effectively optimizes with
respect to the “wrong” dynamics. The second source of loss stems from the difference between
the squared sensitivities of the resource rent to changes in stock stemming from each extraction
policy, and is a measure of the change in value of the non-extracted resource derivating from the

two different policies.

6 Concluding Remarks

We introduce a model of a monopolist firm that operates in a resource market where the prices are
endogenously determined and in which ecological uncertainty takes the form of both Gaussian
noise and regime shifts. These shifts are allowed to be dependent on the the monopolist’s
extraction efforts: unlike the previous literature, we explicitly model the firm’s detection process
of the regime change and incorporate it in the profit-maximizing policies. Our closed form
solutions help us pin down the economic mechanisms that drive the extraction behaviour of
the firm. In the event of a negative regime shift, for low resource stock levels, an increase in
the resource rent results in the firm adopting a precautionary policy by reducing extraction.
For higher stock levels, a regime shift leads to an increase in extraction due to an altered and
relatively shorter time horizon and demand elasticity - which reduces the resource rent and

results in the monopolist adopting an aggressive behaviour.

To conclude, some caveats are in order. Our model framework is intentionally simple and
stylized in order to be able to obtain analytical solutions, allowing us to characterize the impor-
tance of the market structure whilst still allowing for a rich solution behavior. Furthermore, we
have made two simplifying assumptions in the form a constant growth rate and cost function
that is not directly dependent on stock. Both these assumptions can be relaxed at the expense of
obtaining an extraction policy only in numerical form. Lastly, a potential criticism may be the
assumption of a monopoly: a pure monopoly is rare, and a game theoretic approach of several

powerful players interacting could be more appropriate to the renewable resource market. How-
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ever, our primary aim is to see how a firm, whose prices are not exogenously determined, adjusts
its extraction levels in the presence a regime shift that it can attempt to detect in real time.

The case of a monopoly can then be used as a first step towards richer competition structures.
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A Viscosity solutions

In all that follows we will use as a reference Fleming and Soner (2006) as well as follow its
notations. What we want to achieve is to show that the value function V is a weak solution of
the optimization problem (14), and if we obtain a form of V' we can conclude it solves the firm’s

problem (in a weak sense).

We write the HJB equation in form of its infinitesimal generator. Define the set D €
C([0,7.] x R). Then V(t,x) € D is a classical solution of the optimization problem (14) if

it satisfies the equation

—gtV + AV (¢, )](x) =0, (48)
where A is the generator of the HJB equation. If X; were modeled as a geometric Brownian
motion, the state constraint would not need to apply, since the multiplicative nature of the noise
would naturally allow the resource stock to be positive, and because of the well-behaving nature
of the functional forms of the problem we expect a smooth solution for all X; > 0. But imposing
X; > 0 does not imply that that the value function has to be differentiable at X = 0. Now,

define a continuous function A (the Hamiltonian) such that

Ailgl(x) = H(t, z, Dg(x), D*¢(x))

and consider the equation

—;W(t,x) + H(t,z, DW (t,z), D*W (t,z)) = 0. (49)

A function V (¢, z) € C([0, 7] x R) is a viscosity subsolution of (49) if for all v € C*°(D)

_%v@,g—c) +H(E, 7, Du(f, ©), D*u(%, 7)) < 0

for every point (¢,z) which is a local maximum of V — v. Similarly, V(¢,z) is a viscosity
supersolution of (49) if if for all v € C*>(D)

—gtv(t, z) + H(t, &, Dv(t,z), D*v(t,Z)) > 0.

for every point (¢,Z) € D which is a local minimum of V' — v. The function V (¢, z) is
a viscosity solution of the equation (49) if it is both a viscosity subsolution and a viscosity
supersolution. This implies that the function V(¢,z) is a weak solution of the optimization

problem (14). Let us now show that V' is a viscosity solution of our problem (14).

Let v € C%([0,7.] x R), let V — v be maximized at the point (¢,z) € ([0,7.] x R) and let us fix
an optimal control (extraction rate) ¢ € Q). Let X(.) = X(.;t,¢) be the controlled stochastic
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process that drives the resource stock. For every time 7 > t for which X, > 0, we have, using

It6’s lemma and Bellman’s principle of optimality,

0 < _
N T—1t
1 T _
0 < fEf [/ II(t, z, q)dt — v(t,Z) + v(7, (7))
T i
This implies
_ _ 0.2
0< Ut(t7 ‘,f) + H(tv x, Q) + Uz(/l + Q) + ?Uxx
for all ¢ € Q: we can then write
_ _ o2
0 < vt @) +sup |t 2,q) + (i — q) + 5 0u

9€Q
0 < v —H(t z Du(t,z), D*v(t, ).

This proves that V' is a viscosity subsolution of the problem (14). Proceeding similarly proves
that V is a viscosity supersolution of the problem: if V — v attains a minimum at (¢, z) then for

any € > 0 and 7 >t we can find a control ¢ € @ such that

0> —e(r— ) +E [/t 10(t, 2, q)dt — v(E, 7) + v(r, m(T))]

which implies

e>_L g, [/{Tﬂ(t,x, q)dt—v(t,i")+v(7,x(7))] .

T—1
Proceeding equivalently as before, one shows that V' is a viscosity supersolution of (14). We
can conclude that V' is a viscosity solution of (14). Note that for every time 7. € [0, 7] for
which X, > 0, since for optimality we have II;(.,¢*) — V, = 0 and II is continuous and twice
differentiable in ¢, it can be easily shown that the inequalities of the definition of sub- and
supersolution are satisfied with equality, which means that V (¢, x) is also a classical solution of
(14) for each t = 7.. We now need to deal with the positivity constraint. Given the “feasible”
set D' = ([0,7.] x O C R"), we cannot impose that the value function V (¢, ) is differentiable
(or continuous, for that matter) at 0 at the left boundary of 9D’. Following Fleming and Soner
(2006), we need to impose a boundary inequality, which does not require neither V' nor the
boundary 0D’ to be differentiable at 0. This implies that the value function V'(¢,0) must be a

viscosity subsolution of (14). Following the previous definitions, we must have
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ve(t,0) < —H(t,0, Dv, D*v) (50)
0,2
< sup {1H00.0) 40,0000 = )+ 02000 | 1)

for all continuous functions for which V' — v is locally maximized around = = 0. Given a natural
boundary condition given by the fact that when the resource is zero, the extraction must be zero
and consequently the objective II must be zero. Since V — v has to be maximized around 0, we

have

H(t,0,a,az) > H(t,0,v5(t,0),v.2(¢,0)) Va > vy(t,0).

o . . 2
The proof is simple, one just needs to write H(t,0,a, az)) = sup,eq I1(t, q) + a(p + q) + . %
and use a > v,(t,0) to show the inequality holds. Given this result, condition (51) is easily
seen to be satisfied by V(¢,0) = 0, which we choose because of its immediate intuitive economic

interpretation. We therefore can say that the constrained viscosity solution given by

) = 1IE0,9) (52)
V(0 = 0 (53)
V(t,z) solves V;—H(t,z,DV(t,x),D*V(t,z)) =0 =z ¢€[(0,7]xR]

is a solution to the problem (14). Uniqueness of the solution is proven by means of the comparison

principle, and since the proof follows closely the one provided by Crandall et al. (1992), is

omitted.

B Resource Rent and Stock

OVe(x,t) M xNxO

4
Ox P2g2 (54)
Where
M 8€p(t_tc)+2«/F+M\(/%:;Lc+bu)m (55>
N = —qd? (ept - epT)2 - (ept - epT)z + 2ac (e2pt + 62”T) + (56)
4be*P' F 4 abee? ) 1 — 4aeP ) (¢ + by)
O=F+p(—a+c+bp) (57)
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P = aeft — ce’t — aefT 4 ce™ — 2beP 4+ 2VbeP' \/F + pu(—a + ¢ + bu)+

VF+p(—a+tctbu)x

2
2vbe" " Vbs? VF + p(—a+c+bu)+

2y/Ftu(—atctbp)z

e VB2 ((a —c)e’™ + e’ (—a+ c+ 2bu))

We can easily see that the denominator is positive and M > 0.

For O > 0 :

(£ +cp) > (a —bu)p

(58)

(59)

This is a reasonable assumption which implies that if the firm extracts as much as the drift, the

cost it will incur will be greater than its revenue.

Simplifying N gives us:

N = = (e — )2 (a— o) + dbe” (Fe? — p(a— c)e?) (60)

For N < 0 we find the necessary condition to be:

F

e PT—t) o+ qmep(fft) (ept _ em)

a—cC

and the sufficient condition is:

OV (z,t)
If (62) holds then =5>= < (
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