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Abstract

An agent performs randomly arriving tasks that are rare and “difficult,”

and a principal may provide frequent but low-value compensation. We char-

acterize the optimal contract for both the case where the principal observes the

arrival of opportunities and the case where the agent may conceal them from

the principal. The optimal contracts reveal appealing qualitative features that

vary with the assumed information structure and the players’ discount rates.

Unless the players use the same discount rate and opportunities are observ-

able, the players’ ability to realize gains from interaction decreases when the

degree of “lumpiness” in opportunities increases.
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1 Introduction

Randomly arriving peaks that require concentrated effort are a feature of many
professions and are common in many workplaces. Various on-call jobs and po-
sitions with irregular shifts (e.g., technicians, medical staff, firefighters, salespeo-
ple, manufacturers in industries with on-demand production) are prominent ex-
amples.1 In some cases, workers receive immediate compensation whenever they
exert high effort. Yet, due to institutional constraints (e.g., general salary regula-
tions or limited periodic budget of a team manager) or preferences (efficient plan-
ning, dynamic self-control, etc.), fully compensating the worker on the spot after
every instance of concentrated effort may be infeasible or inefficient. In this pa-
per, we study the implications of the disparity between the lumpy nature of work
requirements and the more evenly spread form of compensation provision.

We consider a dynamic interaction between an agent who performs rare but
difficult tasks and a principal who is able to provide frequent but low-value com-
pensation. A special feature in our model is that the provision of compensation
is a time-consuming process. If both players could commit, it would hardly play
any role: lumps of work could easily be counterbalanced by continual periods of
compensation and, so long as the agent receives enough compensation ex ante, the
lumpy nature of the work would be inconsequential. However, this is no longer
the case when only the principal has commitment power: paying the agent in ad-
vance of his effort is not feasible if he is free to walk away at any moment. This
constraint creates a dynamic spillover between different lumps of work and affects
the structure of optimal contracts.

We set up a continuous-time infinite-horizon model with the following key
components. Non-storable opportunities arrive according to a Poisson process.
When an opportunity is available, the agent chooses an effort in [0, 1], which we
assume throughout is perfectly observable. Whenever the agent exerts positive
effort, it generates an immediate benefit to the principal and a cost to the agent—
both of which are linear in the agent’s effort. The principal, on the other hand,
chooses at every point in time (irrespective of opportunity arrivals) a flow wage in

1See Mas and Pallais (2020) for a recent review on “alternative work arrangements.”
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[0, 1]. Our choice to model effort differently from wage—i.e., as discrete Poisson
events vs. continuous ones—is essential for capturing the randomness as well as
the relative size of lumpy opportunities. The resulting asynchronicity of compen-
sation and effort makes the players’ discount rates key determinants. We do not
restrict attention to the case where the players discount future payoffs identically
but characterize optimal contracts for any pair of players’ discount rates. While
assuming identical discount rates is common, it can be misleading. As we will
show, the lumpiness of opportunities is detrimental unless the players use pre-
cisely the same discount rate. In that case, if the principal observes the arrival of
opportunities, then the degree of lumpiness is inconsequential.

First, we consider the case where the arrival of opportunities is observed by
the principal.2 For instance, consider a technical support center that receives all
customer calls and allocates jobs to technicians. Also, it seems plausible to assume
that the arrival of patients to hospitals or emergency calls to fire stations can be ob-
served by the relevant supervisors. The structure of the optimal contract depends
on the players’ relative patience.

When the principal is patient relative to the agent, compensation begins imme-
diately after the agent exerts effort. Following the agent’s work on a given op-
portunity, the principal promises a fixed periodic payment for a certain amount of
time; however, this promise is nullified upon the arrival of the next opportunity
in order to make room for a new similar “conditional promise.” Thus, in the opti-
mal contract, the agent receives a fixed periodic wage so long as he has performed
some work in a recent time span, after which his wage drops to zero until the next
opportunity arrives. While compensation is responsive to work, the fact that the
principal’s compensation promises do not accumulate implies that there is only a
partial correlation between the total amounts of effort and compensation.

When the principal is impatient relative to the agent, initially the agent works
(whenever an opportunity arrives) but does not receive compensation. At some
point, the contract moves to a new phase in which the agent works and receives a
periodic wage. Finally, the contract moves to a third, absorbing phase, in which the
agent does not work but enjoys a periodic wage indefinitely. The transition times

2Whether or not the opportunities are directly observed by the agent is immaterial.

3



between the phases are fully determined by the arrival time of the first opportunity.
Hence, there is a very low correlation between the total wage paid to the agent and
the total amount of effort he exerts.

Next we analyze the case where the availability of opportunities is privately
observed by the agent. For instance, when a prospective buyer arrives, the man-
ager of a car dealership can forgo the sales opportunity (and conceal it from the
company headquarters) simply by not being obliging. Also, the specification may
fit an adapted version of the visiting-technician story where, instead of receiving
jobs from the general support center, technicians are directly contacted by potential
customers.

When opportunities can be concealed by the agent, the contract must incen-
tivize the agent not only to exert the desired effort on opportunities that are known
to be available, but also to reveal their availability. We show that, regardless of the
players’ relative patience, the optimal contract is fully characterized by two thresh-
olds over the agent’s continuation utility: (1) compensation provision is postponed
so long as the current debt to the agent is below uW , and (2) effort is exerted on
available opportunities so long as the current debt to the agent is below uO. In
contrast to the case where the principal observes the arrival of opportunities, now
there is perfect bookkeeping of the agent’s realized work. That is, the overall com-
pensation provided to the agent exactly equals his total effort (both of which are
discounted according to the agent’s discount factor). Perhaps surprisingly, even
when the principal is impatient relative to the agent, unless he is “extremely” im-
patient, he front-loads at least some (and sometimes all) of the agent’s compensa-
tion.

A main comparative statics result in our context relates to the degree of lumpi-
ness of opportunities. Although making opportunities lumpier (i.e., larger but
rarer) has different effects on the optimal contract in the various specifications that
we consider, we find that in all but the case where ra = rp and opportunities are
publicly observable, lumpier opportunities reduce the value from the interaction.
This finding is consistent with recent empirical evidence on the detrimental effect
of lumpy work requirements.3 For example, Mas and Pallais (2017) find that the

3This traditional view is also prevalent in sociology; see, e.g., Kalleberg (2011).
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average worker in their experiment is willing to give up 20 percent of his wages to
avoid a schedule set by an employer on short notice.

Related Literature

Our paper complements works that study the optimal timing of compensation
(e.g., Salop and Salop 1976; Lazear 1981; Carmichael 1983) and, in particular, those
that analyze the mixture between short- and long-term incentives in settings where
information changes over time (e.g., Sannikov 2008; Garrett and Pavan 2012, 2015);
see Edmans and Gabaix (2009) and Pavan (2017) for a review of the literature.
We contribute to this literature by analyzing the effect of the stochastic arrival of
opportunities—a friction that has been overlooked by previous work.

Our work also contributes to the recent literature that studies optimal contract-
ing under different discount factors. Opp and Zhu (2015) study relational con-
tracting in a repeated moral hazard setting, Frankel (2016) studies dynamic dele-
gation, Hoffmann, Inderst and Opp (2020) study a one-shot moral hazard problem
in which there is delay in the arrival of information, and Krasikov, Lamba and
Schacherer (2020) analyze a canonical adverse selection problem.

Finally, our work is related to the growing literature that studies interactions
with randomly arriving favors/projects. One strand of this literature, e.g., Möbius
(2001), Hauser and Hopenhayn (2008), and Samuelson and Stacchetti (2017), an-
alyzes the optimal exchange of favors. Specifically, these papers characterize effi-
cient equilibria in repeated games where, occasionally, the players have opportu-
nities to grant favors to their counterparts.

The other strand of this literature studies principal-agent problems. Forand
and Zápal (2020) and Bird and Frug (2020) derive the optimal contract under sym-
metric information: Forand and Zápal (2020) study a model with no transfers in
which projects of different types arrive randomly over time, whereas Bird and Frug
(2020) study a canonical employment model in which the agent’s productivity of
effort varies over time. Li, Matouschek and Powell (2017), Bird and Frug (2019),
and Lipnowski and Ramos (2020) consider transfer-free environments with asym-
metric information. More specifically, Li, Matouschek and Powell (2017) derive

5



the optimal relational contract when the agent has private information on project
availability. Bird and Frug (2019) derive the optimal contract under full commit-
ment in a setting where projects of different types arrive randomly over time, and
the project’s type is observed privately by the agent. Lipnowski and Ramos (2020)
characterize efficient equilibria when the agent has private information on project
payoffs. We contribute to this strand of the literature by studying the consequences
of lumpy work requirements and highlighting the impact of the players’ relative
patience and the informational structure on the qualitative properties of the op-
timal contract. In particular, we establish that lumpiness generally reduces the
potential gains from the interaction, a result that would be obscured under the
standard assumption in the literature that players share the same discount factor.

The paper proceeds as follows. In Section 2 we present the model. In Sections
3 and 4 we analyze, respectively, the case where opportunities are observable and
concealable. We offer concluding remarks in Section 5. All proofs are relegated to
the Appendix.

2 Model

We consider an infinite-horizon continuous-time contracting problem in which op-
portunities arrive stochastically over time according to a Poisson process with ar-
rival rate µ > 0. The no-effort action, α = 0, is always available to the agent. When
an opportunity arrives, and only then, in addition to the no-effort action, the agent
can exert effort α ∈ (0, 1]. The agent’s effort α ∈ [0, 1] induces an immediate ben-
efit of α · B to the principal and a cost of α · C to the agent, where B > C > 0. At
each instant, the principal chooses a flow wage w ∈ [0, 1]. We assume that both the
agent’s marginal utility from wage and the principal’s marginal cost of wage are
constant and equal to 1.

The players maximize expected discounted payoffs. We denote the agent’s dis-
count factor by ra and focus on the case where there is no fundamental shortage
of incentives. That is, we assume that the agent’s discounted payoff from setting
w = 1 indefinitely exceeds his expected discounted cost of full-intensity work on
all opportunities that arrive, even if one is currently available. Formally, we as-
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sume that4

C +
µC
ra

<
1
ra

.

We denote the principal’s discount factor by rp and refer to the principal as patient
if rp ≤ ra and as impatient if rp > ra.

Throughout the paper we assume that the agent’s effort is perfectly observed
by the principal, but we vary our assumptions about whether or not the princi-
pal observes the arrival of opportunities. If the principal does observe the arrival
of opportunities (“observable opportunities”), then a public history ht specifies for
every s < t whether or not an opportunity was available and the agent’s choice
of effort.5 If the principal does not observe the arrival of opportunities (“conceal-
able opportunities”), then a public history ht contains only the agent’s effort choices.
Given the Poisson arrival of opportunities, any private information that the agent
has about the availability of opportunities in the past is irrelevant, and so there is
no need to keep track of his private information. Hence, to reduce notation and
terminology we refer to a public history as a history under both information struc-
tures we consider. We denote the set of all histories of length t by Ht and the set of
all finite histories by H = ∪t∈R+ Ht.

At the beginning of the interaction, the principal specifies a work schedule

α : H → [0, 1],

which assigns a required effort to every history should an opportunity arrive at
that history, and he commits to a compensation policy

w : H → [0, 1],

which maps histories into a flow wage. A pair 〈α(·), w(·)〉 is referred to as a con-
tract. Without loss of generality, we assume that after the principal detects a devi-
ation from the specified work schedule, he pays a wage of zero indefinitely.6 We

4Allowing for the opposite inequality would add trivial cases with corner solutions that would
not add much of substance but would needlessly impede the exposition.

5In this case, whether or not the agent observes the arrival of opportunities is immaterial.
6The set of detectable deviations depends on the information structure. When opportunities are
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say that the contract 〈α(·), w(·)〉 is measurable if, at every history, the agent’s con-
tinuation utility and the principal’s continuation value are well defined. That is,
the expectations

E

(∫ ∞

s=t
e−ra(s−t) (w(hs)− µCα(hs)) ds|ht

)
,

E

(∫ ∞

s=t
e−rp(s−t) (µBα(hs)− w(hs)) ds|ht

)
exist for every ht ∈ H.

We say that the contract 〈α(·), w(·)〉 is incentive compatible if it is measurable
and, for every ht ∈ H, it is optimal for the agent to choose α = α(ht) (conditional
on the availability of an opportunity), given the continuation of the contract. Note
that if a deviation to a positive effort level is profitable at a given history, then so
is a deviation to no effort. Hence, a contract is incentive compatible if and only if
the agent (weakly) prefers to follow α(·) than to deviate to α = 0 from some point
onward.7 Since the agent can guarantee himself a payoff of zero by never exerting
effort, there is no need to impose an explicit individual rationality constraint. We
restrict attention to incentive-compatible contracts.

In our analysis and discussion of the results, we often compare contracts in
terms of the timing of effort/compensation. We use the following relations. A
work schedule α(·) postpones effort relative to α′(·) at a history ht if, for all τ > t,

E

(∫ τ

s=t
e−ra(s−t)α(hs)|ht

)
≤ E

(∫ τ

s=t
e−ra(s−t)α′(hs)|ht

)
(1)

with an equality for τ = ∞ and a strict inequality for some τ. Similarly, a compen-
sation policy w(·) postpones compensation relative to w′(·) at ht if, for all τ > t,

E

(∫ τ

s=t
e−ra(s−t)w(hs)|ht

)
≤ E

(∫ τ

s=t
e−ra(s−t)w′(hs)|ht

)
(2)

observable any deviation by the agent is detected, whereas when opportunities are concealable a
deviation by the agent is detected only if he exerted a strictly positive effort other than α(ht) on an
available opportunity.

7We state the incentive compatibility constraints formally in the following sections.
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with an equality for τ = ∞ and a strict inequality for some τ. Analogous defini-
tions for expediting effort and compensation are obtained by reversing the inequal-
ities in (1) and (2).

Note that the above definitions use the agent’s discount factor. In addition,
observe that the principal-discounted marginal cost of providing the agent with an
agent-discounted util at time t is e−rpt · 1

e−rat = e(ra−rp)t and, similarly, the principal-
discounted marginal benefit from the agent exerting one agent-discounted util at
time t is e−rpt B

C
1

e−rat = B
C e(ra−rp)t. Whether these expressions increase or decrease

in t is fully pinned down by whether the principal is patient or impatient. The
following observation is implied.

Observation 1.

1. Expediting compensation and postponing effort are both profitable for a strictly pa-
tient principal.

2. Postponing compensation and expediting effort are both profitable for an impatient
principal.

3 Observable Opportunities

First, we consider the case where the principal observes the random arrival of op-
portunities. In this case, any deviation by the agent is detected, and since the agent
can guarantee himself a continuation payoff of zero at any point in time, the incen-
tive compatibility constraints are given by

−Cα(ht) + E

(∫ ∞

s=t
e−ra(s−t) (w(hs)− µCα(hs)) ds|(ht, O, α(ht))

)
≥ 0 ∀ht ∈ H,

(ICpub)
where (ht, O, α(ht)) is the event in which, before time t, play proceeds according to
ht, and, at time t, an opportunity arrives and the agent exerts an effort of α(ht) on
that opportunity. The structure of the optimal contract and its qualitative proper-
ties depend on the players’ relative patience.
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Patient principal: “Have you done anything for me lately?”

When rp < ra, increasing the (average) lag between compensation and work in a
manner that keeps the agent indifferent reduces the principal’s profit. It is therefore
easy to see that to obtain the maximal profit from the first opportunity that arrives
the principal would have to pay the agent the maximal wage w = 1 immediately
after his work, for an interval of time that is just long enough to compensate him
for the cost of effort. However, were the principal to do so, it would not be possible
for him to provide immediate compensation for any additional opportunities that
might arise within that time interval. Hence, the cheapest form of compensation
for the very first opportunity reduces the potential profit from further opportu-
nities. In fact, the patient principal faces a complex optimization problem where
he endeavors to provide timely compensation for the agent’s effort on each of the
randomly arriving opportunities. The main result of this section shows that the
solution to this problem is simple and qualitatively appealing: under the optimal
contract, the agent exerts the same effort α∗ on all opportunities, and he receives a
flow wage w = 1 if an opportunity has been available in the last S∗ units of time.

This optimal compensation policy can be colloquially described as “have you
done anything for me lately?”; i.e., the compensation is fully determined by whether
or not work was performed by the agent within a recent time span (of fixed length)
but does not depend on how much work was performed. A useful alternative in-
terpretation of this form of compensation is that of “conditional promises”; i.e.,
following the agent’s work on a given opportunity, the principal promises a fixed
periodic payment for a given time interval, but this promise is nullified upon the
arrival of the next opportunity. The complete nullification of the principal’s obli-
gations to the agent upon the arrival of a new opportunity frees incentivization
resources precisely when they are needed, and enables the principal to incentivize
effort on the currently available opportunity via a new conditional promise.

Our assumption that C + µC
ra

< 1
ra

implies that full implementation of all oppor-
tunities can be attained in an incentive-compatible contract. However, this need
not be optimal for the principal. To see why this is the case, recall that the princi-
pal’s cost of providing the agent with one agent-discounted util t units of time in
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the future is e(ra−rp)t. As the principal’s profit from a util worth of effort exerted by
the agent is B

C , it follows that the maximal profitable lag between compensation and
work is T∗, where T∗ is defined implicitly by

eT∗(ra−rp) =
B
C

if rp < ra, and is given by T∗ = ∞ if ra = rp. If a conditional promise of length
T∗ is insufficient to incentivize the agent to exert full effort, then α∗ < 1; i.e., the
principal instructs the agent to forgo part of each opportunity.

To formally characterize the optimal contract, let σ−1(ht) denote the supremum
of opportunity arrival times along the history ht, and let σ−1(ht) = −∞ for his-
tories in which no opportunity arrives. In all subsequent results, equalities and
uniqueness statements should be interpreted as holding almost surely.

Proposition 1. Assume that the principal observes the arrival of opportunities. If the
principal is patient, then there exist α∗ ∈ (0, 1] and S∗ ∈ (0, T∗] such that

α(ht) = α∗ ; w(ht) =

1 if t− σ−1(ht) ≤ S∗

0 if t− σ−1(ht) > S∗

is an optimal contract. Moreover, this is the unique optimal contract if rp < ra.

When ra = rp there may be multiple optimal contracts. Intuitively, in this case,
postponing compensation does not alter the principal’s profit or violate any of the
agent’s incentive compatibility constraints. Thus, any contract that results from
postponing compensation relative to the optimal contract characterized in Propo-
sition 1 is also an optimal contract.8

To study the impact of lumpiness, we compare settings where the frequency
and magnitude of opportunities vary. Formally, we say that the opportunities
represented by the parameters (C1, B1, µ1) are lumpier than those represented by
(C0, B0, µ0) if C1 = λC0, B1 = λB0, and µ1 = µ0

λ for some9 λ > 1.

8The assumption that there is no fundamental shortage of resources implies that if ra = rp, then
under the optimal contract α∗ = 1 and S∗ < ∞. Hence, postponing compensation is feasible.

9Analogously, one could define smoother opportunities by considering λ ∈ (0, 1).
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A lumpier opportunity is “bigger” (C1 > C0, B1 > B0), and hence, when
available, it requires a longer conditional promise to compensate the agent for
his greater effort. On the other hand, since a lumpier opportunity is also “rarer”
(µ1 < µ0), a conditional promise of any given length is likely to last longer, and so
the value of any such promise is higher from the perspective of the agent. In the
proof of the next result, we show that the second effect only partially compensates
for the increase in the agent’s cost of exerting full effort when opportunities are
lumpier and hence, in general, lumpier opportunities require longer conditional
promises.

The observations that a conditional promise of any given length lasts (on aver-
age) longer when opportunities become lumpier, and that lumpier opportunities
require longer conditional promises, jointly imply that the lag between effort and
compensation increases when opportunities become lumpier. Thus, a strictly pa-
tient principal is made strictly worse off when opportunities become lumpier (note
that these changes have no impact if ra = rp). In fact, when opportunities are suffi-
ciently lumpy, the length of the required conditional promise to incentivize full ef-
fort exceeds the maximal profitable lag T∗. Hence, if opportunities are sufficiently
lumpy, it is suboptimal for a strictly patient principal to incentivize full effort. The
following proposition formalizes the above discussion. We address the case where
ra = rp, after we analyze the case of an impatient principal.

Proposition 2. Assume that opportunities are observable and that rp < ra. When oppor-
tunities become lumpier, the principal’s value strictly decreases, and the agent’s effort on
each opportunity weakly decreases.

In the “smooth limit” of our model, i.e., the limit specification (λC, λB, µ
λ ) for

λ→ 0, the optimal contract converges to a flow of spot contracts: at every instant,
the agent provides a flow effort of 1 and receives compensation on the spot. Since
compensation is immediate, so long as the principal is more patient than the agent,
the optimal contract does not depend on the exact values of the players’ discount
rates. On the other hand, the optimal contract away from the smooth limit does
depend on the exact values of the players’ discount rates because effort and com-
pensation become asynchronous. Recall that under the optimal contract, the agent
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exerts the maximal effort for which he can be compensated either before the next
opportunity arrives or before T∗ units of time have passed. Since T∗ is increas-
ing in rp, i.e., decreases when the principal becomes more patient, it follows that
the agent’s effort α∗ weakly decreases when the principal becomes more patient
(holding the agent’s discount rate fixed).10

Impatient principal: “(Almost) automatic promotion”

By Observation 1, postponing compensation and expediting effort (according to
the agent’s discount factor) are both profitable for an impatient principal. The key
observation underlying the characterization in this section is that neither postpon-
ing compensation nor expediting effort violates incentive compatibility. Hence,
the optimal contract should front-load effort and back-load compensation.

To understand the structure of the optimal contract in more detail, fix a se-
quence of times Σ = {σj}j∈N, where σ1 = 0, and suppose that it is commonly
known that opportunities arrive according to Σ. From the discussion above, it is
immediate that, under the optimal contract, w = 1 from some point τW

Σ onward,
and the agent works on all opportunities that arrive before some τO

Σ . Moreover, on
all but, perhaps, the very last opportunity the agent exerts maximal effort, and his
time-zero discounted expected payoff from the contract is zero.

We now consider the hypothetical setting where opportunities arrive randomly
but the whole sequence Σ is realized and revealed to the players at the beginning
of the interaction. If the contract is proposed after the realized Σ becomes publicly
known, each realized sequence induces a different pair (τO

Σ , τW
Σ ). On the other

hand, if the players sign a binding contract prior to observing the realization of
Σ, the principal strictly benefits (ex ante) from averaging out the variability in τO

Σ

and11 τW
Σ . However, a contract where τO and τW do not depend on the realization

of Σ would require the agent’s commitment power.
Assume now that Σ is revealed gradually over time (as in our actual contracting

problem). This enables the principal to benefit from offering nonstochastic terms

10In fact, it can be shown that α∗ strictly decreases if S∗ = T∗.
11For example, variability in τW

Σ can be viewed as a failure to fully postpone compensation since
compensation begins earlier in some paths of play than in others.
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(τO, τW)—and thus fully expediting effort and fully postponing compensation—
without relying on the agent’s commitment power. This stems from two simple
properties of the environment and the suggested contract. First, the Poisson arrival
of opportunities guarantees that the agent doesn’t learn useful information about
the future from past arrivals; and second, because compensation is back-loaded,
the only binding incentive compatibility constraint is at σ1, which we assumed to
be at time 0, namely,

C +
∫ τO

0
µCe−ratdt =

∫ ∞

τW
e−ratdt. (3)

The relation between τO and τW can easily be identified by local considerations:
by marginally increasing τO and decreasing τW , the principal can incentivize the
agent to exert effort for which he will be compensated once τO − τW units of time
have passed. Thus, in optimum, τO− τW is such that the net surplus generated by
effort is offset by the principal’s relative impatience over τO − τW units of time,

B
C

= e(rp−ra)(τO−τW), (4)

which, in particular, implies that τW < τO for any rp > ra.
In a setting that begins with an opportunity, the agent’s lack of commitment

doesn’t affect the optimal contract. Our original problem, however, does not be-
gin with an available opportunity. If the agent could commit, the optimal contract
for the principal would still leave zero surplus to the agent and have the same
threshold structure (though the thresholds would be different). In this contract,
however, the agent’s continuation utility drops below zero if the first opportunity
arrives sufficiently early. Hence, such a contract cannot be the solution when the
agent lacks commitment power, and so some stochasticity must remain in the con-
tract. This, however, takes an extremely intuitive form: prior to the arrival of the
first opportunity, the players just wait, and upon arrival of that opportunity, they
set the clock to zero and use the aforementioned contract (τO, τW).

To characterize the optimal contract formally, let σ1(ht) denote the infimum
of the arrival times of opportunities along the history ht, and let σ1(ht) = ∞ for

14



histories in which no opportunity arrived.

Proposition 3. Assume that the principal observes the arrival of opportunities. If this
principal is impatient, then the unique optimal contract is

α(ht) =

1 if t ≤ σ1(ht) + τO

0 if t > σ1(ht) + τO
and w(ht) =

0 if t ≤ σ1(ht) + τW

1 if t > σ1(ht) + τW
,

where τW , τO are the unique solution to (3) and (4).

Qualitatively, the optimal contract consists of three phases. Initially, the agent
exerts effort but does not receive a wage; at some point, he begins to receive com-
pensation but still has to work whenever an opportunity arrives; and finally, he is
promoted to a position where he receives a wage but does not exert further effort.
From the ex-ante perspective, the promotion dates are random, but all the uncer-
tainty is resolved when the first opportunity arrives. Hence, as in the case where
the principal is patient, there is very little correlation between the total effort and
wage throughout the interaction.

Comparative statics with respect to both the principal’s discount factor and the
lumpiness of opportunities are readily available. First, as the principal becomes
more impatient the agent’s expected effort decreases. To see this, note that the
optimality condition (4) can be written as

B
C

e(ra−rp)τO
= e(ra−rp)τW

, (5)

and since τO > τW , the derivative, with respect to rp, of the LHS of (5) is less than
that of the RHS. As (3) implies that τW is decreasing in τO, it follows that increasing
rp will lead to a decrease in τO (and an increase in τW).

Regarding the effect of lumpiness, on the one hand, when opportunities are
larger the agent exerts more effort on the first opportunity to arrive. By (4), the
middle phase (when the agent receives a wage and exerts effort) is not altered by
the degree of lumpiness. Therefore, to compensate the agent for exerting more
effort on the first opportunity to arrive, the principal will begin providing a wage
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earlier. Thus, from the arrival time of the first opportunity, the agent’s expected
effort increases when opportunities become lumpier. On the other hand, it will
take more time for the first opportunity to arrive when opportunities become rarer.
It turns out that the latter effect is stronger, and so when opportunities become
lumpier the agent’s expected discounted effort and, accordingly, the principal’s
value decrease.

Proposition 4. Assume that opportunities are observable and that rp > ra. The princi-
pal’s value strictly decreases when opportunities become lumpier.

Propositions 2 and 4 jointly establish that making opportunities lumpier is
detrimental for the principal whenever ra 6= rp. However, if ra = rp, then mak-
ing opportunities lumpier does not impact the principal’s value so long as the
assumption that C + µ C

ra
< 1

ra
continues to hold. This follows from three obser-

vations. First, since ra = rp the assumption that C + µ C
ra

< 1
ra

implies that under
the contract characterized in Proposition 1 the agent exerts full effort on all oppor-
tunities. Second, the agent’s expected utility from that contract is zero. Finally,
ra = rp implies that the timing of compensation does not affect the principal’s cost
of providing compensation.

4 Concealable Opportunities

In the optimal contracts derived in the previous section, the arrival of opportuni-
ties typically leads to an immediate decrease in the agent’s continuation utility. In
settings where the arrival of an opportunity is observed only by the agent, such
contracts provide incentives for the agent to conceal opportunities from the prin-
cipal. In order to provide incentives for the agent to reveal when opportunities
become available, the arrival of opportunities must never be “bad news” for the
agent. Hence, the incentive compatibility constraints when opportunities are con-
cealable are

−Cα(ht) + E

(∫ ∞

s=t
e−ra(s−t) (w(hs)− µCα(hs)) ds|(ht, O, α(ht))

)
≥
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E

(∫ ∞

s=t
e−ra(s−t) (w(hs)− µCα(hs)) ds|(ht, N)

)
∀ht ∈ H, (ICpriv)

where (ht, N) denotes the event in which, before time t, play proceeds according
to ht, and, at time t, and an opportunity does not arrive; and (ht, O, α(ht)), as in
the case of observable opportunities, denotes the event in which before time t, play
proceeds according to ht, and, at time t, an opportunity arrives and the agent exerts
an effort of α(ht) on that opportunity.

It is well known in the dynamic contracting literature that if the environment
is stationary, then the agent’s continuation utility can be used as a state variable
for deriving the optimal contract (see Spear and Srivastava 1987 and Thomas and
Worrall 1990). The argument behind this useful result relies on the property that
the continuation payoffs of an efficient contract must always lie on the constrained
Pareto frontier. This, in turn, follows from two simple observations: first, if the
agent receives a continuation utility u via an inefficient continuation contract, then
the principal can increase his value by replacing that continuation contract with
a different contract that provides the agent with the same agent-discounted con-
tinuation utility u; second, since the agent is indifferent between the original and
modified continuations of the contract, this change has no impact on earlier incen-
tive compatibility constraints. Notice that these observations do not depend on
the assumption that the players share the same discount factor and, thus, they are
valid in our setting where the players use different discount factors.

We denote, respectively, by α(u), w(u), and V(u) the Markovian work sched-
ule, the Markovian compensation policy, and the principal’s value as a function
of the agent’s continuation utility. Note that u ∈ [0, 1

ra
] as, from any point in

time onward, the agent can guarantee himself a nonnegative payoff by exerting
no effort, and the agent’s value from receiving the maximal wage indefinitely is∫ ∞

0 1 · e−ratdt = 1
ra

.

Lemma 1. V(u) is strictly decreasing and weakly concave.

Lemma 1 has two important consequences. First, it directly implies that the
agent’s expected utility from an optimal contract is zero. Second, in contrast to
the case where opportunities were observable, when opportunities are concealable
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the incentive compatibility constraint at every history is binding (regardless of the
relative patience of the players).

Corollary 1. Assume that opportunities are concealable. Under an optimal contract:

1. The agent’s expected utility is zero.

2. All the incentive compatibility constraints are binding.

When opportunities are concealable, it is convenient to describe the optimal
contract via its Markovian representation. By Corollary 1, the agent’s continuation
utility at the beginning of the interaction is zero and after he exerts effort α(u) his
continuation utility increases by α(u)c. The drift in the agent’s continuation utility
while no opportunities arrive is

du = rau− w(u). (6)

Hence, the optimal contract is characterized by the solution of the following HJB
equation:

sup
w(u),α(u)∈[0,1]

{−rpV(u) + V′(u)[rau− w(u)]− w(u)

+µ

(
α(u)B + V (u + Cα(u))−V(u)

)
} = 0, (HJB)

subject to (6), where V′(u) exists almost everywhere since V(·) is concave (Lemma
1). The following is the main result of this section.

Proposition 5. When opportunities are concealable, the optimal contract is generically
unique. Moreover, there exist thresholds uW , uO ∈ [0, 1

ra
], such that the optimal contract

is given by

α(u) = min{1,
uO − u

C
} ; w(u) =


1 if u > uW

rauW if u = uW

0 if u < uW

.
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A distinctive feature of the optimal contract when opportunities are conceal-
able is the perfect bookkeeping of the agent’s work. Path by path, wage and effort
discounted according to the agent’s discount rate are equal. Such bookkeeping im-
plies that, as opportunities become lumpier, the asynchronicity of compensation
and effort increases, which, in turn, reduces the principal’s ability to use compen-
sation resources effectively, regardless of whether he is more or less patient than
the agent. Hence, again, lumpier opportunities are detrimental for the principal.

Proposition 6. Assume that opportunities are concealable. The principal’s value strictly
decreases when opportunities become lumpier.

4.1 The Dynamics of Optimal Contracts

The threshold uO dictates the dynamics of the agent’s work. The threshold value
uO = 1

ra
corresponds to a policy where the principal instructs the agent to fully

exploit every opportunity until all of his compensation budget is exhausted. For
lower values of uO, the principal will initially instruct the agent to fully exploit ev-
ery opportunity that arrives; however, once multiple opportunities arrive in quick
succession, the principal will temporarily instruct the agent to exert low effort.
Eventually, there will be a sufficiently long time span in which very few opportu-
nities arrive, and following this event the principal will again instruct the agent to
fully exploit opportunities. The optimal threshold depends on the relative patience
of both players.

Proposition 7. Fix B, C, µ, and ra. The threshold uO is increasing in rp. Moreover, if
rp < ra, then uO ∈ (0, 1

ra
), and whenever rp ≥ ra, uO = 1

ra
.

The dynamics of compensation is slightly more nuanced. The level of the com-
pensation threshold uW captures the degree of back/front-loading of compensa-
tion. So long as the agent’s continuation utility is below uW , compensation is
deferred to the future. Setting the compensation threshold at the maximal pos-
sible value, uw = 1

ra
, corresponds to full back-loading: when the agent’s continu-

ation utility reaches that level, an indefinite payment of the maximal flow wage,
w = 1, is necessary to provide the agent with his promised continuation utility. At
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the other extreme, the compensation threshold uW = 0 corresponds to full front-
loading because, in this case, the principal pays the maximal wage whenever his
debt to the agent is positive.

For uW ∈ (0, 1
ra
), the wage dynamics consists of two phases. In the beginning,

the back-loading phase takes place. So long as u < uW , the agent works and accu-
mulates promises for future compensation but does not receive any wage. When
his continuation utility u attains (or exceeds) the threshold uW , the front-loading
phase begins. In this phase, the agent receives a permanent “base wage” of rauW

and a temporary “bonus wage” of 1 − rauW whenever u > uW , and hence, in
this case, compensation is provided faster than in any alternative compensation
scheme.12 Thus, the optimal arrangement of compensation combines back- and
front-loading.

Postponing compensation impacts the principal in two ways. First, it alters the
principal-discounted cost of providing compensation, and second, it reduces the
principal’s ability to incentivize the agent to exert effort in the future. Intuitively,
the threshold uW balances the cost and benefit from postponing compensation,
and so this threshold is increasing in rp. This is formalized in the next proposi-
tion, which also shows that full back-loading occurs only if the principal is “very”
impatient, and that a moderately impatient principal will fully front-load compen-
sation.

Proposition 8. Fix B, C, µ, and ra. If uW is an optimal threshold for rp and ũW is an
optimal threshold for r̃p > rp, then ũW ≥ uW . Moreover, there exists ρ > 0 such that

• uW = 0 is uniquely optimal for all rp < ra + ρ,

• uW = 1
ra

is uniquely optimal for all rp > ra + ( B
C − 1)µ, and

• uW is interior and generically unique for all rp ∈ (ra + ρ, ra + ( B
C − 1)µ).

Propositions 7 and 8 are visualized in Figure 1. In particular, the figure shows
that arbitrarily small changes in rp may lead to discrete jumps in uW for an impa-
tient principal.

12Observe that if the agent’s continuation utility exactly equals uW , then the base wage of rauW

maintains the agent’s continuation utility constant at that level. Hence, the agent’s continuation
utility again never drops below uW .
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Figure 1: uO (green) and uW (red) as a function of ln( rp
ra

), for B = 2, c = 2
5 , ra = 1

2 ,
and µ = 2. Note that the middle of the x-axis represents the case where14 rp = ra.

To see the intuition for this discontinuity, suppose that the current state is
u = uW , and that the principal considers marginally reducing the threshold (which
would require an increase in the current payment). Such a modification would in-
crease the cost of paying the current debt but, on the other hand, would allow
the principal to demand more effort in the future. A key determinant in evaluat-
ing the profitability of such a modification is the distribution of the time at which
the additional effort will be provided. Consider the case where uW > 1

ra
− C. In

this case, the principal will incentivize as much effort as possible upon the arrival
of the next opportunity, and this single opportunity will exhaust the principal’s
ability to incentivize effort. Note that regardless of the exact value of uW , the dis-
tribution of the time at which this additional effort will be provided is the same
because the (lumpy) opportunity arrives all at once. Therefore, if, for a given rp,
it is profitable to marginally reduce the compensation threshold uW it is also prof-
itable to marginally reduce any other compensation threshold that is greater than

14The optimal thresholds were derived via Monte Carlo simulations. Note that on the extreme
right of the figure the green dots are obscured by the red ones as uW = uO = 1

ra
when rp is

sufficiently large.
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1
ra
−C. Moreover, the profitability of such a modification is strictly decreasing in rp.

Hence, there exists a critical value r∗p such that if the principal’s discount rate is be-
low (above) r∗p, marginally reducing the compensation threshold uW ∈ ( 1

ra
− C, 1

ra
]

makes the principal strictly better (worse) off.15

As can be seen in Figure 1, there may exist other values of rp < r∗p that feature
a similar discontinuity. However, when the threshold uW is below 1

ra
− C, charac-

terizing the distribution of time at which the additional effort will be obtained is
significantly more complex. To see this, note that the additional effort is not exerted
on the next opportunity but, in principle, it may be obtained after any number of
opportunities have arrived, depending on the specific realization.

5 Concluding Remarks

In this paper, we studied the consequences of lumpy work requirements. We char-
acterized the optimal contract for any pair of the players’ discount rates, both for
the case where the randomly arriving opportunities are observed by the principal
and for the case where they are privately observed by the agent. In particular, we
find that in all specifications, apart from the case where ra = rp and opportunities
are observable, lumpiness reduces the potential gains from the interaction.

We conclude the paper by highlighting two observations about the impact of
the observability of opportunities. First, if opportunities are concealable it is opti-
mal to have perfect bookkeeping of the agents’ work, whereas, if opportunities are
observable, it is strictly optimal to avoid such bookkeeping and adopt a compensa-
tion scheme that features only a low correlation between work and compensation.

Second, our analysis reveals that expediting compensation may sometimes be
an efficient tool to mitigate dynamic moral hazard frictions. This is seen, for ex-
ample, in the dynamics of the optimal contract when the principal is impatient
relative to the agent. If the arrival of opportunities is observed by both players,
then compensation is fully back-loaded. On the other hand, unless the principal is
extremely impatient, the optimal contract under asymmetric information regard-

15The value of this threshold is r∗p = ra + ( B
C − 1)µ (Proposition 8).
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ing the arrival of opportunities combines back-loading and front-loading of com-
pensation. This observation contributes a new angle to the traditional view that
suggests that deferring compensation mitigates moral hazard (e.g., Salop and Sa-
lop 1976; Lazear 1981; Carmichael 1983).
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A Appendix: Proofs

Proof of Proposition 1. Note that setting w(ht) > 0 at ht if the agent has not exerted
effort in the past is suboptimal. Moreover, by the definition of T∗, it follows that, in
any optimal contract, w(ht) = 0 if the agent did not exert effort in the last T∗ units
of time. Otherwise, the principal would benefit form reducing compensation at t
and decreasing the required effort on the last opportunity along ht on which effort
was exerted. Hence, for the rest of this proof we focus on contracts under which
w(ht) = 0 if t− σ−1(ht) ≥ T∗.

Assume that an opportunity is currently available and denote by σ the random
time until the arrival of the next opportunity. Denote by

α∗ ≡ min{ 1
C

E

(∫ min{T∗,σ}

0
e−ratdt

)
, 1}

the maximal effort that the agent is willing to exert on an opportunity in exchange
for a conditional promise of length T∗ (i.e., setting w = 1 until either T∗ units of
time have passed or an opportunity arrives).

Assume by way of contradiction that under an optimal contract α(ht) > α∗ for
a set of histories with positive measure. Since α∗ = 1 if ra = rp, for this part of
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the proof we consider only the case where16 rp < ra. Denote by ν the set of finite
histories h (of various lengths) for which α(h) > α∗ and α(h′) ≤ α∗ for every h′

that is a prefix of h. Note that the contract reaches a history in ν with positive
probability and that if h, h̃ ∈ ν, then neither history is a prefix of the other. Thus,
it is sufficient to construct a profitable modification of the continuation contract
conditional on an opportunity arriving at every ht ∈ ν.

Fix ht ∈ ν and assume that an opportunity is available. A conditional promise
of length T∗ is not enough to compensate the agent for exerting an effort of more
than α∗ at ht. Recall that w = 0 if no opportunity arrived in the last T∗ units of time.
Hence, with positive probability some of the compensation for the effort exerted
at ht must be provided after the arrival of the next opportunity. Formally, there
exists a set ν1(ht) of continuation histories of ht (of various lengths) with positive
measure such that for every hs ∈ ν1(ht) opportunities do not arrive in (t, s), and the
agent’s continuation utility conditional on an opportunity arriving at hs is strictly
positive (prior to exerting effort).

If there exists ν̃ ⊂ ν1(ht) with positive measure (conditional on reaching ht)
such that α(hs) < 1 for every hs ∈ ν̃, then postponing effort (according to the
agent’s discount factor) from ht to the histories in ν̃ is strictly profitable (Observa-
tion 1) and does not violate incentive compatibility.

If, on the other hand, α(hs) = 1 for almost all hs ∈ ν1(ht), then for every such hs

there exists a set of continuation histories (of various lengths) with positive mea-
sure (conditional on reaching hs) ν2(hs) such that for every hs′ ∈ ν2(hs): 1) no
opportunities arrive in (s, s′), and 2) the agent’s continuation utility if an opportu-
nity arrives at hs′ is greater than his continuation utility at hs by at least C(1− α∗).
To see why such histories exist, recall that w = 0 if no opportunity arrived in the
last T∗ units of time, and so the maximal agent-discounted expected compensa-
tion that can be provided between two successive opportunities is α∗C. Hence, to
compensate the agent for exerting an effort of 1 on the opportunity at hs, it must
be the case that at least C(1− α∗) of this compensation is provided after the next
opportunity arrives with positive probability.

16If ra = rp, then T∗ = ∞, and so the assumption that C + µC
ra

< 1
ra

implies that it is possible to
incentivize full effort on all opportunities via an infinite conditional promise.
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If there exists ν̃ ⊂ ν2(hs) with positive measure (conditional on reaching hs)
such that α(hs′) < 1 for every hs′ ∈ ν̃, then postponing effort from hs to the histo-
ries in ν̃ does not violate incentive compatibility. Moreover, if effort can be post-
poned in this manner from a subset of ν1(ht) with positive measure, then doing so
increases the principal’s profit at ht. Otherwise, for almost all hs ∈ ν1(ht), it holds
that α(hs′) = 1 for almost all hs′ ∈ ν2(hs). In this case, with strictly positive prob-
ability the agent’s continuation utility at hs′ is greater than his continuation utility
at ht by at least 2C(1− α∗). Continuing in an iterative manner shows that profit
can be increased by postponing effort, as otherwise the agent’s continuation utility
increases without bound with positive probability (which cannot be the case as it
is bounded from above by 1

ra
).

For the rest of the proof we restrict attention to contracts for which α(ht) ≤ α∗

for all ht. Denote by S∗ the length of the conditional promise needed to provide
the agent with α∗C discounted utils, i.e.,

E

(∫ min{S∗,σ1}

0
e−ratdt

)
= α∗C.

Note that S∗ ≤ T∗ due to the definition of α∗.
Assume by way of contradiction that under an optimal contract α(ht) < α∗

on a set of histories with positive measure. Let n be the minimal element of N

for which the agent’s effort on the nth opportunity to arrive is strictly less than α∗

with positive probability. Denote by ν the set of histories (of various lengths) after
which the agent’s effort on the nth opportunity to arrive is strictly less than α∗.

Suppose that an opportunity is available at ht that is a prefix of a history in ν.
The No-Opportunity-Continuation of length S∗ at (ht, O), denoted by NOC-S∗(ht, O),
is the continuation of (ht, O) of length S∗ along which opportunities do not ar-
rive.17

First, consider the case where w = 1 in almost all of NOC-S∗(ht, O) for every
(ht, O) that is a (proper or improper) prefix of a history that belongs in ν. Setting
w = 1 in NOC-S∗(ht, O) of the first n opportunities to arrive is enough to compen-

17Recall that (ht, O) denotes the event that play proceeds according to ht and an opportunity
arrives at ht.
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sate the agent for exerting an effort of α∗ on each of these opportunities. Thus, in
this case, it is possible to increase the agent’s effort on opportunities that arrive at
every ht ∈ ν without altering the compensation plan.

Second, consider the complementary case where there exists a maximal m ∈
{1, 2, . . . , n} for which there exists a set of histories (of various lengths) with strictly
positive measure, ν′, such that for every ht ∈ ν′: 1) m − 1 opportunities arrived
along ht, 2) (ht, O) is a prefix of a history in ν, and 3) w < 1 with positive prob-
ability in NOC-S∗(ht, O). Fix ht ∈ ν′ and assume an opportunity is available. By
a similar argument to the one used above, the incentive compatibility constraint
is not binding at any history that is both a continuation of (ht, O) and a prefix of
a history in ν. Hence, at ht, the principal can increase his continuation value by
increasing the agent’s wage in NOC-S∗(ht, O) and increasing α(hs) at every hs ∈ ν

such that hs is a continuation of (ht, O). This is profitable, as the NOC-S∗ of the
mth opportunity to arrive ends before S∗ units of time have passed after the arrival
of the mth opportunity. Performing this modification at every ht ∈ ν′ increases the
principal’s value at time zero.

To conclude the proof, denote by C∗ the contract described in the proposition,
and note that all the incentive compatibility constraints hold with equality under
C∗. Consider an arbitrary incentive-compatible contract C for which α(ht) = α∗,
but the compensation policy is not equivalent to that of C∗. If, under C, w = 1
in almost all of NOC-S∗(ht, O) for almost every finite history ht, then the agent’s
expected wage under C is greater than under C∗. Otherwise, for every finite his-
tory ht for which, with positive probability, w < 1 in NOC-S∗(ht, O) under C, the
incentive compatibility constraint of the next opportunity to arrive after (ht, O) is
nonbinding with strictly positive probability. Thus, it is incentive compatible and
weakly (strictly) profitable to expedite compensation if rp = ra (rp < ra).

Proof of Proposition 2. We start this proof by establishing the comparative statics of
α∗ with respect to λ. If the agent’s expected utility from a conditional promise of
length T∗ is strictly greater than C, then the agent exerts full effort on all oppor-
tunities. Moreover, this will remain the case if opportunities become marginally
lumpier. Thus, we focus on the case where the agent’s expected utility from such
a promise is at most C.
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The agent’s expected utility from a conditional promise of length T∗, as a func-
tion of the parameter λ, is 1

ra+µ/λ (1 − e−T∗(ra+µ/λ)). The marginal increase in
the value of such a promise from making opportunities lumpier is µ

(µ+ra)2 (1 −
e−T∗(µ+ra)T∗(µ + ra)). Thus, to establish that the α∗ is decreasing in λ it is enough
to show that making opportunities marginally lumpier has a larger impact on the
cost of exerting the required effort than on the value of a conditional promise of
length T∗.

Under the assumption that a conditional promise of length T∗ does not provide
excess compensation, it holds that C ≥ 1−e−T∗(µ+ra)

µ+ra
. Hence, it is sufficient to show

that
µ

(µ + ra)2 (1− e−T∗(µ+ra)T∗(µ + ra)) <
1− e−T∗(µ+ra)

µ + ra
.

Observe that when µ + ra is kept constant, this inequality is harder to satisfy for
higher values of µ. Thus, it is sufficient to show that it holds for ra = 0 i.e., to show
that

1− e−µT∗(1 + µT∗) < 1− e−µT∗ ,

which is an inequality that is true for any µT∗ > 0. Note that the above calcula-
tion does not depend on the value of T∗. Hence, the same calculation shows that
when it is possible to induce full effort, S∗ increases when opportunities become
marginally lumpier.

Next, we show that making opportunities lumpier is detrimental for the prin-
cipal. If α∗ = 1, this is an immediate consequence of S∗ being increasing in λ.

Assume that α∗ < 1 and let f (r, λ) = 1−e−T∗(r+ µ
λ
)

rλ+µ denote the r−discounted wage
that is provided via a conditional promise of length T∗ as a function of λ. Note
that the average cost of providing a util of compensation is f (rp,λ)

f (ra,λ) .
The cross-derivative of f (r, λ) evaluated at λ = 1 is equal to

∂2 f (r, λ)

∂r∂λ
|λ=1 =

µe−T(µ+r)
(

T∗(µ + r)(T∗(µ + r) + 2)− 2eT∗(µ+r) + 2
)

(µ + r)3 .

The sign of this cross-derivative is the sign of x(x + 2) + 2− 2ex, where x =

T∗(r + µ). As this sign is negative, the cross-derivative is negative. As f (r, λ) is
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positive and decreasing in λ, it follows that the average cost of compensating the
agent for his effort is increasing in λ (recall that ra > rp). As the agent’s total
effort is also decreasing in λ, we can conclude that making opportunities lumpier
reduces the principal’s value.

Proof of Proposition 3. When opportunities are observable, the principal’s problem
can be solved separately for each possible arrival time of the first opportunity. This
is because the principal will not provide compensation prior to the first opportu-
nity, and the agent must have a nonnegative continuation utility at all times.

Consider an arbitrary first arrival time σ1. We assumed that C + µC
ra

< 1
ra

and so
the principal can incentivize the agent to exert maximal effort on the opportunity
at σ1. As the principal is impatient, he will do so in an optimal contract. Moreover,
as we established in the main text, the principal will use a threshold structure.
Hence, the principal’s objective function (conditional on σ1) is

max
τO(σ1),τW(σ1)

e−rpσ1 B +
∫ σ1+τO(σ1)

σ1

µBe−rptdt−
∫ ∞

σ1+τW(σ1)
e−rptdt

s.t. C +
∫ σ1+τO(σ1)

σ1

µCe−ratdt =
∫ ∞

σ1+τW(σ1)
e−ratdt. (7)

This constraint (7) states that the agent’s continuation utility at σ1 is zero.
The assumption that C + µC

ra
< 1

ra
implies that, in optimum, both τO(σ1) and

τW(σ1) are interior. To see this, note that the constraint (7) is violated if τW(σ1) = ∞
or τW(σ1) = 0. Furthermore, setting τO(σ1) = 0 implies that τW(σ1) > τO(σ1),
and so by slightly increasing τO(σ1) (and decreasing τW(σ1) to maintain incentive
compatibility) the agent will exert more effort on opportunities for which he will
receive compensation after he has exerted effort. As the principal is impatient, this
change is profitable. Finally, setting τO(σ1) = ∞ implies that the agent contin-
ues exerting effort for an arbitrarily long period of time after he begins receiving
compensation. Because the principal is impatient, slightly increasing τW(σ1) (and
decreasing τO(σ1) to maintain incentive compatibility) is profitable.

The above discussion implies that the optimal thresholds are given by the FOC
of the Lagrangian that corresponds to the above (concave) maximization problem.
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The first-order conditions with respect to τO(σ1) and τW(σ1) are, respectively,

µBe−rpτO(σ1) − γ(σ1)e−raτO(σ1)µC = 0

e−rpτW(σ1) − γ(σ1)e−raτW(σ1) = 0,

where γ is the Lagrange multiplier. It follows that B
c = e(rp−ra)(τO(σ1)−τW(σ1)).

Hence, τO(σ1) = τW(σ1) + K, where K > 0 is a constant that does not depend
on σ1. This relation implies that the LHS of (7) is increasing in τO(σ1) while the
RHS is decreasing in τO(σ1). Hence, there is a unique optimal solution that does
not depend on σ1.

Proof of Proposition 4. Solving the optimal thresholds, τO, τW , as a function of λ

gives

τO(λ) =
ln
(

cµ
( B

C
) ra

ra−rp + 1
)
− ln(c(µ + λra))

ra
+

ln
( B

C
)

rp − ra
,

τW(λ) =
ln
(

cµ
( B

C
) ra

ra−rp + 1
)
− ln(c(µ + λra))

ra
.

Recall that the principal’s value is

E

(
e−rpσ1

(
Bλ +

Bµ(1− e−rpτO(λ))

rp
− e−rpτW(λ)

rp

))
.

Plugging in the expressions for the optimal thresholds, differentiating with respect
to λ, and evaluating at λ = 1 shows that the principal’s value is decreasing in λ:

(ra − rp)

µ
( B

C
)− rp

ra−rp

(
Bµ
( B

C
) rp

ra−rp + 1
)

e

−rp

 ln

(
cµ( B

C )
ra

ra−rp +1

)
−ln(c(µ+ra))

ra +
ln( B

C )
rp−ra


(µ + ra)(µ + rp)2 ,

where this expression is negative as (ra − rp) < 0 and the ratio is positive.

31



In the analysis that follows we use a technical lemma that states that for ev-
ery incentive-compatible contract for which u > 0, there exists another incentive-
compatible contract that implements the same work schedule via a compensation
policy that is (pointwise) weakly lower.

Lemma A.1. Assume that opportunities are concealable. Moreover, assume that under an
incentive-compatible contract the continuation contract at ht, 〈α(·), w(·)〉 , is such that the
agent’s continuation utility is u > 0. There exists ũ < u such that for every u′ ∈ (ũ, u)
there exists an incentive-compatible contract 〈α′(·), w′(·)〉 that provides the agent with a
continuation value of u′, and for which w′(hs) ≤ w(hs) and α′(hs) = α(hs) at every hs

that is a continuation of ht.

Proof of Lemma A.1. Consider an incentive-compatible contract 〈α(·), w(·)〉 under
which the agent’s continuation utility is u > 0 and normalize the current time to
zero. If the agent’s expected discounted wage along the histories in which there
are no binding incentive compatibility constraints is positive, then the agent’s con-
tinuation utility at time zero can be decreased by reducing his wage along those
histories. If this is not the case, then the agent’s wage is almost surely zero prior to
a binding incentive compatibility constraint. Hence, concealing all opportunities
with probability one is a best response for the agent. However, as w = 0 before the
agent exerts effort, this best response provides a payoff of 0 < u.

Proof of Lemma 1. Let 〈α̂(·), ŵ(·)〉 be an incentive-compatible (continuation) con-
tract under which the agent’s expected discounted payoff is u > 0. From Lemma
A.1 it follows that there exists ũ < u such that if the agent’s continuation utility is
in (ũ, u), then the principal can induce the same work schedule for a lower wage.
Thus, there is an open neighborhood to the left of u for which the principal can
obtain a value strictly greater than V(u). The strict monotonicity of V(·) follows
from the fact that the choice of u is arbitrary.

Next, we show that V(u) is weakly concave. Let u1 < u2 such that u1, u2 ∈
[0, 1

ra
]. One (unnatural) way the principal can deliver a promise of u1+u2

2 is to fic-
titiously split all opportunities and compensation in half and create two (perfectly
correlated) fictitious worlds, each of which contains half of the wage flow and half
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of each opportunity. Observe that scaling all payoffs by 1
2 multiplies the players’

discounted payoffs by half in any contract, and so any optimal contract in the orig-
inal non-scaled world is also an optimal contract in each fictitious world. The prin-
cipal can then use the continuation contract that supports V(u1) in the non-scaled
world to provide the agent with a continuation utility of u1

2 in fictitious world 1,
and the continuation contract that supports V(u2) in the non-scaled world to pro-
vide the agent with a continuation utility of u2

2 in fictitious world 2. Since using
these continuation contracts cannot increase the principal’s payoff, it follows that
V(1

2(u1 + u2)) ≥ 1
2V(u1) +

1
2V(u2), which establishes the concavity of V(·).

Proof of Proposition 5. We establish this proposition separately for the case where
the principal is patient and the case where he is impatient. In each case, we first
derive one part of the optimal contract (the work schedule when the principal is
impatient, and the compensation policy when he is impatient), and then use the
HJB equation to fully derive the optimal contract and show that it is, generically,
unique.

Case 1: impatient principal (rp > ra). The first step of the proof is to show that
under any optimal contract the work schedule is α(u) = min{1, 1/ra−u

C }.
Assume by way of contradiction that α(û) < min{1, 1/ra−û

C } for some û ∈
[0, 1

ra
]. Suppose that the current state is û and that an opportunity is currently

available. If the agent’s expected discounted future effort is zero, then it is possible
to increase α and increase the agent’s compensation in the future without changing
his continuation utility. This change is profitable because B > C, the principal is
impatient, and compensation is provided in the future. If, on the other hand, the
agent’s expected discounted future effort is positive, then the principal can expe-
dite effort (in the non-Markovian representation of the contract) without altering
the compensation policy. By Observation 1 it is profitable for the principal to ex-
pedite effort, and, since he does so according to the agent’s discount factor, it also
relaxes all incentive-compatibility constraints.
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The above claim enables us to simplify the HJB equation to

(HJBimp) sup
w(u)∈[0,1]

{−rpV(u) + V′(u)[rau− w(u)]− w(u)

+µ

(
α(u)B + V (u + Cα(u))−V(u)

)
} = 0.

From the FOC of (HJBimp) it follows that w(u) = 1 if V′(u) < −1 and that
w(u) = 0 if V′(u) > −1. Since V(·) is weakly concave (Lemma 1), there is a
(possibly degenerate) interval I ⊂ [0, 1

ra
] over which V′(u) = −1. Note that for

any u† ∈ I the compensation policy given by

wu†(u) =


1 if u > u†

rau† if u = u†

0 if u < u†

is an optimal compensation policy.
Next, we show that, generically, I is degenerate. Fix B, C, µ, and ra, and let I(rp)

denote the interval (or point) for which V′(·) = 1 for a principal with discount rate
rp. To establish the generic uniqueness of optimal contracts we will show that if
there exist r̃p < r̂p such that both I(r̃p) and I(r̂p) have a positive measure, then
these intervals have a disjoint interior. The result then follows from a standard
argument about the density of rational numbers.

Assume by way of contradiction that for some r̃p < r̂p, the set I∗ ≡ I(r̃p)∩ I(r̂p)

has a nonempty interior. Select u∗ and ε > 0 such that u∗, u∗ − ε ∈ int(I∗).
Fix the optimal compensation policy wu∗(·), and let ∆ws = E(ws|u0 = u∗ −

ε) − E(ws|u0 = u∗) and ∆αs = E(αs|u0 = u∗ − ε) − E(αs|u0 = u∗). Since the
chosen compensation policy, wu∗(·), is optimal, we have

V(u∗ − ε)−V(u∗) =
∫ ∞

0
e−rps(µB∆αs − ∆ws)ds. (8)

As path by path us is monotone in u0, and the work schedule and compensation
policies are threshold policies, it follows that µB∆αs−∆ws ≥ 0 for all s, with a strict
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inequality on a set of times with strictly positive measure. Hence, differentiating
the RHS of (8) with respect to rp shows that the RHS of (8) is decreasing in rp.
However, as V′(u) = −1 for all u ∈ I∗ it holds that V(u∗− ε)−V(u∗) = ε. Hence,
(8) can be satisfied for at most one rp and so the interior of I∗ is empty.

It follows that if the interior of I(rp) is nonempty, then the compensation poli-
cies corresponding to elements of int(I(rp)) are suboptimal for any r′p 6= rp. Thus,
we can index every rp for which the optimal contract is not unique by a rational
number from the interior of I(rp). Hence, the set of principal-discount factors for
which the optimal contract is not unique is countable.

Case 2: patient principal (rp ≤ ra). We begin by showing that the optimal
compensation policy is

w(u) =

1 if u > 0

0 if u = 0.

To do so, we show that if u(ht) > 0 then in an optimal contract w(ht) = 1 in
the next dt units of time conditional on no opportunity arriving in that interval. If
u(ht) =

1
ra

, this is immediate. Assume by way of contradiction that u(ht) ∈ (0, 1
ra
),

and that the agent does not receive the maximal wage with probability 1 in the
next dt units of time conditional on no opportunity arriving in that interval. By
arguments analogous to those used in the proof of Lemma A.1, it is possible to
expedite wage into the interval [t, t + dt] (conditional on no opportunity arriving)
without violating the incentive compatibility constraints in any history that is a
continuation of ht. If the principal is strictly patient, then expediting wage is prof-
itable (Observation 1). If, on the other hand, rp = ra, expediting wage is profitable
as it enables the principal to require more effort in the future.

The above claim enables us to simplify the HJB equation to

(HJBp) V(u) = sup

α(u)∈[0,min{1,
1
ra −u

C }]

{−rpV(u) + V′(u)[rau− w(u)]− w(u)

+µ

(
α(u)B + V (u + Cα(u))−V(u)

)
} = 0.
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The FOC of HJBp with respect to α(u) is B + V′ (u + α(u)C)C = 0. Thus, to
show that there is a unique optimal contract, it is sufficient to show that V(·) is
strictly concave. To do so, we return to the construction used to establish the weak
concavity in Lemma 1 and further the analysis by utilizing the structure of w̄(·).

If no opportunity arrives for T units of time, where T is given implicitly by
u1 = 1−e−raT

ra
, an event with positive probability, then the agent’s continuation util-

ity in fictitious world 1 is zero while his continuation utility in fictitious world 2
is strictly positive. At this point, the principal can temporarily merge the two fic-
titious worlds and expedite the owed compensation in world 2 by using the flow
wage in world 1. By Observation 1 this modification is profitable for a strictly
patient principal and, hence, V(u) is strictly concave if rp < ra. If ra = rp, then
merging the fictitious worlds increases the discounted effort the agent can be in-
centivized to exert in the future, which also increases the principal’s profit.

Proof of Proposition 6. To establish this proposition, it is convenient to think of each
opportunity as being composed of many “small opportunities.” We will show
that making opportunities lumpier in the original model is equivalent to a certain
change in the correlation structure of these small opportunities.

First, we consider the case where opportunities become lumpier by a rational
factor. Assume that opportunities become lumpier by N

M > 1, where N, M ∈ N.
We analyze this change by considering an auxiliary representation of the model
in which there are M × N Poisson processes, each with an arrival rate of µ

N , that
govern the arrival of the small opportunities. Moreover, we assume that the payoff
from exerting full effort on each small opportunity is (− C

M , B
M ). Both the original

and the lumpy versions of the model correspond to appropriately defined correla-
tion structures of the arrival processes in the auxiliary representation.

To map the auxiliary representation to the original model, divide the Poisson
processes into N groups of M processes each, such that within a group the pro-
cesses are perfectly correlated, and across groups the processes are independent.
To see why this correlation structure represents the original model, note that when
a group of opportunities is available the payoff vector from exerting full effort on
all opportunities in the group is M× (− C

M , B
M ) = (−C, B), which is exactly the pay-

off vector from exerting full effort on a single opportunity in the original model.
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Moreover, the probability that a given group arrives in an (infinitesimal) interval
dt is µ

N dt, and since the groups are independent, the probability that some group
arrives in that interval is ∑N

i=1
µ
N dt = µdt.

To map the auxiliary representation to the lumpy model, divide the processes
into M groups of N processes each, such that within a group the processes are
perfectly correlated, and across groups the processes are independent. For this
correlation structure, the payoff from exerting full effort on all opportunities in
a group is N × (− C

M , B
M ) = (− N

M C, N
M B) and the probability that some group of

opportunities is available in an interval dt is µ
N/M dt.

Next, we construct a sequence of modifications that begins with the lumpy
representation and ends with the original one, such that the first two modifications
do not impact the principal’s value, and the third modification strictly increases it.

Consider the lumpy representation. The first modification utilizes the idea of
splitting the interaction into fictitious worlds introduced in Lemma 1. In particular,
we create N fictitious worlds, denoted by (1, . . . , N), that each contain 1

N of the
flow wage and M arrival processes, one from each group. We denote the processes
in fictitious world n by (Pn

1 , . . . , Pn
M). Note that the arrival processes within each

fictitious world are independent of one another, and so each fictitious world is
a scaled version of the lumpy representation. Hence, by the argument used in
Lemma 1, the sum of the principal’s values across all fictitious worlds is equal to
his value in the lumpy representation.

The second modification is to the correlation structure of the processes across
fictitious worlds. Changing the correlation structure of two arrival processes that
are assigned to different fictitious worlds does no impact the principal’s value in
either fictitious world. Hence, so long as the processes within each fictitious world
are independent of one another, the correlation across fictitious worlds is immate-
rial. Thus, we can replace the original correlation structure with the following cor-

relation structure: Pn
m and Pn′

m′ are perfectly correlated if m− n
(modN)
= m′− n′, and inde-

pendent otherwise. This modification maintains the independence of the processes
within each fictitious world. To see this note that for any n ≤ N and m, m′ ≤ M,

such that m′ 6= m, the fact that M < N implies that m− n
(modN)

6= m′ − n.
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The third modification is to re-merge the fictitious worlds. Note that under
the correlation structure created in the second modification, there are N groups of
M processes each, such that within a group the processes are perfectly correlated,
and across groups the processes are independent. Thus, merging these fictitious
worlds creates the auxiliary representation of the original model. Regardless of the
relative patience, there are instances in which the principal benefits from merging
two fictitious worlds: if rp < ra this occurs when in fictitious world i the agent’s
continuation is positive while in fictitious world j it is zero, whereas if rp ≥ ra

this occurs when in fictitious world i an opportunity is (partially) forgone while
in fictitious world j the agent’s continuation utility is below its maximal level. It
follows that the sum of the principal’s values across all fictitious worlds is strictly
less than his value in the original model.

Finally, consider the case where λ /∈ Q. The principal’s value is continuous in λ

as i) the distribution of arrival times is continuous in λ, and ii) if opportunities are
made slightly lumpier then the principal can instruct the agent to incur the same
cost of effort on every opportunity that arrives by using the same compensation
policy. As the set of rational numbers is dense, this establishes the proposition.

Proof of Proposition 7. In the proof of Proposition 5 we showed that if the principal
is impatient, then uO = 1

ra
. Moreover, this is also the optimal threshold if ra = rp.

To see this assume that u = uO < 1
ra

and that an opportunity is available. Consider
the following alteration to the contract: require some effort on the available oppor-
tunity, and then proceed according to the same Markovian contract. If requiring
effort forces the principal to reduce the required effort on future opportunities, this
alteration essentially expedites effort and does not change the principal’s value.
However, as the principal front-loads compensation, with positive probability, the
agent’s continuation utility upon the arrival of the next opportunity is zero. In this
case, this alteration strictly increases the principal’s value.

Thus, it is left to establish the proposition for the case where rp < ra, for which,
as established in the proof of Proposition 5, uW = 0. Under this compensation
policy, if the agent’s continuation utility is u, then he receives the maximal wage in
all continuation histories for the next T(u) units of time, where u =

∫ T(u)
0 e−ratdt.

Thus, T(u) can be thought of as the promised duration of compensation in state u. To
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establish the proposition it is sufficient to show that the maximal promised dura-
tion of compensation, T(uO), increases with rp.

Fix T1 and T2 > T1 and denote by Xn the contract in which the principal re-
quires the maximal incentive-compatible effort under the following compensation
policy: 1) the promised duration of compensation can never exceed T2, and 2) the
promised duration of compensation can be increased to a value in (T1, T2] at most
n times. Denote the value from contract Xn by W(Xn). Observe that X0 is the con-
tract in which the agent’s maximal promised duration of compensation is T1, and
that X∞ is the contract in which the promised duration of compensation is T2.

For any n ≥ 0, the contracts Xn+1 and Xn induce an identical path of play
until the (n + 1)th time that the promised duration of compensation exceeds T1

under Xn+1. At that point, the agent exerts more effort under Xn+1 than under Xn.
Moreover, from that point onward, the continuation play under both Xn and Xn+1

is given by the same Markovian contract, with different initial states. Note that
the net gain, at that point, from incentivizing additional effort by increasing the
state is increasing in rp. It follows, that if a principal with discount factor rp prefers
Xn+1 to Xn, then a principal with r′p > rp strictly prefers the former contract to
the latter. Moreover, note that the principal’s preference between Xn+1 and Xn is
independent of n. Since

W(X∞)−W(X0) =
∞

∑
n=0

(W(Xn+1)−W(Xn)),

it follows that if a principal with discount factor rp prefers X∞ to X0, then a princi-
pal with r′p > rp strictly prefers the former contract to the latter.

Finally, note that setting uO = 0 is suboptimal as doing so generates a value of
zero, whereas setting a maximal duration of compensation equal to T∗ generates a
strictly positive profit.

Proof of Proposition 8. In the proof of Proposition 5 we showed that if rp ≤ ra, then
the unique optimal compensation threshold is uW = 0. Thus, it is left to establish
the proposition for the case where rp > ra. Recall that for this case uO = 1

ra
under

any optimal contract and, thus, throughout the proof, we assume that uO = 1
ra

.
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Consider two contracts, C1 and C2, that differ in their compensation threshold,
uW

2 > uW
1 . Denote by ut,i the agent’s continuation utility at time t under contract Ci

and let
τ = sup{t : ut,2 ≤ uW

2 }.

That is, τ is the latest time at which the agent’s continuation utility is weakly lower
than uW

2 under C2. Note that τ is finite (almost surely) by the Borel–Cantelli lemma.
Observe that since uW

2 > uW
1 , it holds that ut,1 ≤ ut,2 for all t. This implies that

the agent exerts the same effort on every opportunity that arrives before τ under
both C1 and C2. In addition, it implies that the compensation for effort exerted on
those opportunities is postponed under C2 relative to C1. Denote by g(rp) the gain
from this postponement as a function of rp. Moreover, from τ onwards, under C2

the agent exerts weakly less effort than he does under C1, and he receives a wage
of wt = 1 at all times. Let d(rp) denote the difference in the time-zero discounted
continuation value from τ onward between C1 and C2. The net gain from replacing
C1 with C2 is g(rp) − d(rp). Note that g(·) is increasing and d(·) is decreasing.
Hence, whenever g(rp) ≥ d(rp), we also have g(r′p) > d(r′p) for all r′p > rp, which
establishes the monotonicity of uW .

Next, we show that uW = 1
ra

is an optimal threshold if and only if rp ≥ ra +( B
C −

1)µ. The monotonicity established in the first part of the proof will then imply that
uW = 1

ra
is the unique optimal threshold if rp > ra + ( B

C − 1)µ. An upper bound on
the principal’s marginal net gain from providing the agent with a util at present is
attained by the agent exerting an agent-discounted util on the first opportunity to
arrive. Note that if uW > 1

ra
− C and u = uW , then this upper bound is attained.

The value of this upper bound is given by

∫ ∞

0
µe−µt B

C
e(ra−rp)tdt− 1 =

µ

µ + rp − ra

B
C
− 1.

Since the principal is impatient, it is straightforward to show that this expression is
positive if and only if ra + ( B

C − 1)µ− rp > 0 . It follows that if rp > ra + ( B
C − 1)µ,

then providing compensation while u < 1
ra

is suboptimal. On the other hand, it is
strictly suboptimal to set uW = 1

ra
if rp < ra + ( B

C − 1)µ, as for such discount rates it
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is profitable to pay the agent when u > 1
ra
−C (for such values the aforementioned

upper bound is attained). The monotonicity established in the first part of the
proof shows that uW = 1

ra
is the unique optimal threshold if rp > ra + ( B

C − 1)µ.
Finally, we establish that there exists rp > ra for which uW = 0. Let τ denote

the random arrival time of the first opportunity on which the agent will not exert
full effort under the contract with uW = 0. Note that under any other contract, the
agent will not exert full effort (weakly) earlier. It follows that the marginal value
from decreasing the agent’s continuation utility is at least E(e−rpτ) B

C > 0. If ra = rp

the timing of compensation does not affect the principal’s cost of providing com-
pensation. This, in turn, implies that when ra = rp the principal’s marginal gain
from providing compensation is at least E(e−rpτ) B

C > 0 for all u. By the continuity
of payoffs in rp, it follows that there exists ρ > 0 such that the principal strictly
benefits from full front-loading of compensation if rp < ra + ρ.
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