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Abstract

This paper uses replicator dynamics to compare the steady states arising from two types
of common property regimes - one in which over-exploiters are punished by the resource users
themselves, and another where enforcement is handled by guards who collect a tax from the
users. The use of guards requires a less restrictive set of parametric conditions in order to
maintain an equilibrium with no over-exploiters. However, it can also stabilize an outcome
in which all users over-exploit and are punished, but not enough to induce more cooperation
(less resource extraction). These results can be used in guiding and structuring the formation
of new common property regimes.
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1 Introduction

Neoclassical economic models of resource use tend to make grim predictions regarding the viability
of common property regimes (CPRs), in which the rights to access a resource are shared by a
defined group of users. In such an arrangement, the Nash equilibrium level of effort will be
strictly greater than the socially optimum for any population greater than 1 (Hamburger 1973).
If punishment for over-extraction could be effectively enforced in a CPR, and the cost of being
punished was sufficiently high, then in principle the socially optimal level of extraction could be
induced. However, monitoring and enforcing rules around resource use is typically costly, so there is
an incentive for individuals to free-ride on punishment efforts undertaken by others. Consequently,
rationally self-interested agents would not be able to self-enforce extraction limits in CPRs (Henrich
and Boyd 2001, Fehr and Géchter 2002).

Stock dependent growth effects tend to create even stronger incentives towards over-extraction
- since an individual in a CPR with n users appropriates only a 1/n share of the stock, s/he
only internalizes a 1/n share of the reduction in stock-growth that results from over-extraction
(Dasgupta and Heal 1979, Perman 2003). This would lead us to expect unsustainable extraction
within CPRs tending towards stock collapse. These effects are attenuated when the population of
users is small and fixed, but as Hardin (1968) notes, population growth causes CPRs to approach
open access conditions even when the resource is controlled by a single group of users.

While there are examples of failed CPRs, there have been many examples of successful CPRs with
active mechanisms to enforce harvest restrictions (see Baland and Platteau 1996 and Ostrom 1990
for a review). These examples defy the reasoning presented above. One potential explanation for
this discrepancy is the strong information assumptions in the models used by Perman (2003) and
Dasgupta and Heal (1979) - they assume perfect information about the payoff function, universal
rationality, and common knowledge about that rationality.? Uncertainty about the payoff functions
or about the reasoning of other players can create the incentive to use an ’imitate the successful’
heuristic rather than Nash equilibrium reasoning (Camerer 1997, Gigerenzer and Selten 2002).

Sethi and Somanathan (1996) present a model which captures these insights particularly well. The
authors suggest that individuals may be partly motivated to cooperate by social norms, and use
evolutionary dynamics to explain how such norms could emerge. Their key result is that if the cost
of being punished is sufficiently high relative to the benefits of over-extraction, and the number of
users engaging in over-extraction is low relative to the number of people punishing cheaters, then
the system will evolve towards a cooperative outcome where no one over-extracts the resource.*
The main contribution of the present paper is to assess the prospects of cooperation in a CPR when
punishment of defectors is delegated to specialized guards who, unlike in Sethi and Somanathan
(1996), do not rely on harvesting for income, but rely on taxes collected from resource users instead.

1.1 Methods

Suppose a group of n users faces some harvest function H(X), which defines the total returns
of a resource given a level of total harvest effort, and where each chooses some effort x; so that
X =" yx;. We will assume that the harvest function is concave and with diminishing returns
to scale (H' < 0, H” > 0), that no returns can be realized without effort (H(0) = 0), and that
some returns can be profitably extracted given some fixed effort cost w, (H'(0) > w). The average
return to effort is assumed to be constant for all users given the total group effort and defined as
follows: A(X) = H(X)/X.

Following Sethi and Somanathan (1996), we assume that the community is composed of three
types of players - cooperators (c), who contribute z., defectors (d), who contribute x4 and face
some punishment § from each enforcer, and enforcers (e), who contribute z. and undertake costly
punishment against each defector at a cost of v each. Since the model assumes that defectors are
punished by fellow resource users, we will refer to this setup as the wigilante model. The relative

3For challenges to these assumptions see Schultz et al. (2007), and Cialdini et al. (2004).

4Modifications of Sethi and Somanathan (1996) have rationalized empirically observed situations of stable coex-
istence between high- and low- extractors, resulting in partial internalization of the externality: Noailly et al. (2007)
and Schliiter et al. (2016) relax the mean-field approximation by modelling interactions in space, while Tavoni et al.
(2012) and Lade et al. (2013) introduce ostracism of defectors who exceed the norm about sustainable harvesting
and find regions of coexistence of both types. A related setup is analysed in Andreoni and Gee (2011).



shares of each type sums to 1 and are governed by a replicator dynamic s; = s;(m; — 7) where 7
represents the average payoff in the group (s.m. + sqmq + seme). The payoffs for each type are as
follows:
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Enforce is weakly dominated by cooperate, so s = 0 in a classical game theoretic set up. This con-
dition implies that defect weakly dominates cooperate and sq = 1 (defect is the Nash Equilibrium
solution). In fact, s4 = 1 is an unconditionally stable steady state of this system, representing a
breakdown of cooperation where all users harvest unsustainably. However, s; = 0 is conditionally
stable, provided nd > (x. — z4)(A(x.) — w). This result means that if the number of users who
are enforcing the rules is sufficiently high in the initial period, and the cost of punishment is suf-
ficiently low, then the number of defectors will decay more quickly than the number of enforcers,
and enough enforcers will remain to deter any future defectors.

CPRs enforced by vigilante justice similar to this setup include the famous lobster fisheries of
Maine (Acheson 1975), as well as the coastal fisheries in the Bahia province of Brazil (Cordell and
Mckean 1986). However, many of the CPRs documented in the empirical literature exhibit a more
organized system in which guards are paid to enforce resource use restrictions using some form
of taxation levied on the users. Such systems have been used to manage mountain pastures and
forests in the Italian Alps (Casari 2007), as well as traditional common lands in medieval Japan
(Mckean 1992), and a mountain community in Térbel, Switzerland (Netting 1976). Similar common
property forests also existed in the Indian province of Andhra Pradesh and the Kumaon region
(Wade 1989, Agrawal 2001). Does such a setup offer any advantages over informal enforcement?
By modifying the payoff functions to more accurately represent such a system we can address this
question. We will refer to this modified setup as the guard model. Given some tax rate, a, we can
represent this arrangement with the following payoff functions. Note that the level of effort now
depends on both s. and sy, since enforcers no longer harvest resources.

X" =n(sqxq + Scxc) (7)
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T = ﬁ(scwz + sdi—iﬂz) — nysq (10)

7= 1 (50 + Lsg) — nsesa(y + 0) (11)

C (12)

We can construct the Jacobian matrix for the system by taking all partial derivatives. The general
form of this matrix is as follows (the guard model uses 7* in place of ):

— S(me—7 S(me—7
o= 7+ ol ) sel (68d5)) . (13)
sa(2TE) ma — 7+ sa(20E)

A potential steady state equilibrium will arise whenever s; = 0 or m; — 7 = 0 for some strategy
j- That equilibrium will be stable if the Jacobian has a positive determinant and a negative trace.
There are seven potential steady-state conditions in either model - three steady states where only
one type remains, three where one type disappears and the other two earn equal payoffs, and one
where all three types earn equal payoffs.



2 Results

Table 1 compares the equilibria of the guard model with the established vigilante model.

Table 1: Steady State Conditions

Potential Equilibria

Vigilante Stability Conditions

Guard Stability Conditions

Cooperators Only

Unstable

Unstable

Defectors Only Stable Stable

Enforcers Only nd > (g — z.)(A(X) —w) Unbtdble

No Cooperators* Unstable 2> w

No Defectors S, < 1 — Eazz)AX)—w) )flA(X) w) S <1- —('“ z)(d ”a)M(X) w)
No Enforcers** Stable Stable

All Payoffs Equal*** Unstable Unstable

* Conditionally stable only in guard model
** Coincides with Defectors Only equilibria in both models
*¥* Coincides with No Defectors in vigilante model but not guard model

Result 1. A defector only outcome is stable in both scenarios.

As expected, both models admit for the possibility of an unconditionally stable outcome of all
defectors. This outcome arises when there is a breakdown in cooperation - the number of enforcers
and cooperators dwindle to zero.

Result 2. A no-defector outcome exists in both scenarios, but the guard model requires weaker
parametric conditions for stability than the vigilante model.

In both cases, stability depends on the ratio between the net harvest premium earned by a defector

and the total punishment they receive. Specifically, a guard system will have a stable cooperative
(za—zc)(A—0) (A(X)—w)
B

outcome if, in equilibrium, S, < 1 — , while under a vigilante scenario S, <

1- w. This result arises because the net harvest premium is attenuated by the
tax charged under a guard system. Another consequence is that the stability of the cooperative

equilibrium can be maintained with fewer enforcers.

This is an important result. Ciriacy-Wantrup and Bishop (1975) and Lawry (1990) identify that
interactions with external economies can disrupt common property regimes. In either setup, the
disruption can come as a consequence of access to new technology (increasing the average return to
effort and thus the defector harvest premium), or from reductions to the damage from punishment
(social sanctions such as ostracism or excommunication may be less effective if one can integrate
into a sufficiently large outside group). However, this result illustrates how CPRs enforced by
guards can be more resilient to such shocks.

Result 3. An equilibrium consisting of only enforcers and defectors is possible in the guard model
but not in the vigilante model.

An equilibrium consisting of only defectors and enforcers is unstable in the vigilante model since
enforcers earn a weakly lower payoff than cooperators in that system. However, it can be stable
in the guard model if 2 M% This is a worst-case scenario, since the resource is being
used unsustainably and additional welfare is lost to enforcement that is ultimately ineffective;
whether or not Cooperate will be strictly dominated depends on three ratios: the cost of being
punished relative to the cost of punishing, the premium from defecting relative to the defector
payoff, and the share of revenue going to harvesters relative to the share for enforcers. This new
potential equalibria can be seen in the following figure, which has been parameterized to allow for
the existence of a defector-enforcer equilibrium.



Basins of Attraction in Guard and Vigilantee Models

Vector Field for Guard Model with Cooperative Equilibrium Vector Field for Vigilantee Model with Cooperative Equilibrium
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3 Discussion

3.1 Limitations

We assume that the number of enforcers could vary in response to the economic incentives at play.
However, in many of the case studies cited in this paper, guards and other types of rule enforcers
are hired and legitimized by a community authority that can potentially restrict the number of
enforcers. Replicator dynamics are, at best, a coarse representation of the deliberative processes
culminating in the choice of guards, setting of tax rates and fines.

Another stark assumption is that all individuals pay their taxes. In reality, there is a strategic
incentive to avoid paying taxes (or under-report income), while free-riding on the enforcement
efforts of the guards. While it is possible to imagine a simultaneous tax collection game in which
the guards enforce both resource use rules and tax collection rules, such a process is outside the
tractability of our simple model.

Lastly, in the guard model we assume that the cooperators and defectors ’take up the slack’
whenever the share of enforcers increases, implying that at a minimum, the socially optimal effort
will be contributed if S, < 1. This modelling assumption implies that the cooperator-enforcer
equilibrium will produce the same average payoff in both models. In reality, each person has
a maximum effort level reflecting their capacity constraints. Depending on the population, the
abundance of the resource stock, and the equilibrium ratio of cooperators to enforcers, the socially
optimal total effort may exceed the capacity constraints of the population. At this point, the
average-payoff of the vigilante model will be strictly greater than that of the guard model.

3.2 Conclusions

The results of this analysis highlight an important trade-off between formal and informal ap-
proaches to rule enforcement in CPRs - the use of formal guards can make cooperative outcomes
more stable but also make it possible to realize a scenario in which the resource is used unsus-
tainably and the community still bears the costs of rule enforcement. If a social planner found it
impossible or undesirable to create formal rules guiding the use of a common property resource
but was able to make certain methods of decentralized punishment possible (or salient), then these
results could be used to determine which methods (and under what conditions) to make available.
Given that most of the world’s physical resources face some pre-existing institutions and norms,
the most likely candidates for these designs would be online spaces and interactions or new off-grid
communities.
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5 Appendix I - Steady State Calculations

5.1 Steady State Calculations for The Guard Model

Definitions:

e = 2o(1 — a) (A(X) — w)

ma = 24(1 — a)(A(X) — w) — ndSe

(Scre + Saxa)(a) (A(X) — w)
Se

Te =

1=8.+5:+ 95

5.1.1 Cooperators only - S; =0, S. =0, 71=7n. = S.=1

5.1.2 Defectors only - S. =0, S. =0, 1=7m1g = S3=1

5.1.3 Enforcers only - S. =0, S=0,71=7n. = S.=1

5.1.4 No cooperators - S. =0, 1y =7, =7

za(1 — Q)(A(X) — w) — ndS, =

From the definitions of the profit functions and the condition that S. =0

(0zc + Sawa)() (A(X) — w)
Se

— nySy

Factoring out Sy
(za)(@)(AX) — w)

Isolating Sy

S, —ny)

Td

T G)(@AX) —w)
S,

—ny

Applying the fact that Sy + S. =1|S. =0

Td

(Sq+ Se)((xd)(a)(é‘i(X)*w) —n)
Applying the definition of enforcer profit

Td

o+ S, (@A) 0] 0y

Se

Applying the condition that 74 = 7,

Td

T Tat zqo(A(X) —w) — Seny
Since S; cannot exceed 1
xqo(A(X) —w) > Seny

- zqo(A(X) — w)

Applying the definition of w4

2q(l — a)(A(X) — w) — ndS,

" za(1— a)(A(
zq(l — a)(A(X) —w) — ndS,

X) —w) —ndS, + zqo(A(X) — w) — Seny

T 24(AX) —w) —nS.(0+7)



5.1.5 No defectors - S; =0, 7, =7m. =7

From the definitions of the profit functions and the condition that S; = 0

(Scxc + O(xd))(a)(A(X) — U}) _ O(TL’Y)

(1l — a)(AX) —w) = S

Cancelling common factors
S.a
Se

(1-—a)=

Simplifying
(1-=5.)(1-a)=S.«
1—-a—-5.=0
Se=1—-«

S, =«

5.1.6 No enforcers - S, =0, 7, =g =7
From the definitions of the profit functions and the condition that S, = 0
(1 — @) (AX) —w) =241 — @) (A(X) —w) — 0

Cancelling common factors

Te = T4

But, . < x4 by assumption, so no such equilibrium exists.



5.1.7 All payoffs equal - 7, =g =7n. =7

From the definitions of the profit functions and the condition that 7. = my
(1 —a)(A(X) —w) = 24(1 — a)(A(X) — w) —ndS,
Simplifying
(za — z)(1 — ) (A(X) — w)
nd
From the definitions of the profit functions and the condition that 7, = 7.

(Scxc + ded)(a)(A(X) — ’LU)

Se =

S —nySy = 7,
Apply the definition of S,
nd(Scxe + Saza)(a) (A(X) —w)
—nySy = 7,

(ra— 21— ) (AX) —w) 7
Cancel Common Factors
nd(Sexe + Sqza) ()

—nySy = 7.

(za—z)(l—a) 7

Isolate S, and Sy
nox o noT o B

R [ B (e [TEr R
Express S, in terms of Sy

_(O-a)(@a—=), nox g
Se = nozT.o (me = Sa (1—-a)(zqg—x.) +1v5%)
Simplify
s, = Te(l — a)(xg — x.) n nySq(l — a)(zqg — x.) s, (zq)

nox.Q noT.o T
s, — (1 —a)?(zqg — z)(AX) —w) N Sd(n’yS(l —a)(zg —x) (xd))
noa nox o T,
Solve for Sy
nox .o nox o

Sel ) + S : —ny) =7,

(1 —a)(zq — )

—n7) (@ (A(X) = w)(1 — @) = Se(

(1- a)(xd - xc)

5y - (e )

noOT
(1 —a)(zq —zc)

5.2 Steady State Populations for The Vigilantee Model

Definitions:



5.2.1
5.2.2
5.2.3
5.2.4

Cooperators only - S; =0, S. =0, 71 =n. = S.=1
Defectors only - S. =0, S. =0, 1 =7m3 = Sg=1
Enforcers only - S. =0, S4=0, 71 =n. = S. =1

No cooperators - S, =0, Ty =7, =7

From the definitions of the profit functions and the condition that 74 = m,

2g(A(X) —w) —ndSe = z.(A(X) — w) — nySy

Rearranging and simplifying

(zd — xc) (A(X) —w)
n

Apply the condition fact that S, =1 — S4|S. = 0 and simplify

(4 = xc)(A(X) — w)

= 05e —7S5q

- :(5(175(1)*’}/‘511
(Ta = z)(AX) —w) § = —84(6 + gamma)
Sd _ nd — (-Z'd - mc)<A(X) — ’U))
n(d+~)
Trivially
Se=1-254
i (g~ 2)(AKX) —w)
Se=1 n(d+7)

5.2.5 No defectors - S; =0, 7, =m. =7

From the definitions of the profit functions and the condition that w4y = 7,
ze(A(X) —w) = z(A(X) — w) — Sa(ny)

From the condition that S; = 0, a tautology follows

ze(AX) —w) = 2c(A(X) — w)

thus, Sg = 0 is sufficient for a steady state, regardless of S. and S,

5.2.6 No enforcers - S, =0, 7. =g =7

From the definitions of the profit functions and the condition that mq3 = 7,
2o(A(X) = w) = 2a(A(X) - w) — 0(n7)
Cancelling out common factors

2q(A(X) —w) =z,

Since cooperator and defector payoffs cannot be equal without enforcers, no such equilibrium exists.

5.2.7 All payoffs equal - n,. =71y =7 =7

From the definitions of the profit functions and the condition that m, = 7,
2o(A(X) = w) = T (A(X) —w) — Sa(n7)

Simplifying

Sa(ny) =0

Since v and n are assumed to be strictly positive

Sq=0

Thus, this equilibrium is satisfied only under the same conditions as iii



6 Appendix 11 - Steady State Stability Calculations

The general form of the Jacobian matrix is:

me — 7 + 5o ) Se()
O(mwg—7) — O(mqg—1) (104)
Sa(=557) ma — 7+ Sa(=55)

For any potential equilibrium, it must be the case that either S, = 0 or 7, — 7 = 0. Similarly, it
must be the case that either S; = 0 or 7y — 7 = 0. Thus, we can make the following simplification:

m.—m+0 0
[ 0 7rd7-r+o] (105)
Thus, the trace and the determinant for each matrix must be as follows:
TT(J)=J11+J22=7TC—|-7Td—27_T (106)
Det(J)=J11J22—O:(7Tc—77')(ﬂd—7?) (107)

An equilibrium has local asymptotic stability if and only if the Jacobian at that point has a positive
determinant and negative trace. We can use this information to calculate the stability conditions
for every potential equilibrium.

6.1 The Guard Model
6.1.1 Cooperators Only - S; =0, S, =0, T = 7,
Tr(J) =73 — 7 = (g — 2.)(A(X) —w)(1 —a) +nd(0) = Tr(J) >0 (108)

Thus, the equilibrium is always unstable.
6.1.2 Defectors Only - S, =0, S. =0, T =7y

Tr(J)=m.—mg = (xc — 2q)(A(X) —w)(1 —a) +ndé(0) = Tr(J) <0 (109)
Det(J) = (m. — T)(mg — 7a) =0 (110)

The trace is strictly negative, so the equilibrium is always stable.
6.1.3 Enforcers Only - S, =0, Sq =0, 7 =7,

Tr(J) =me+mg —2me = (xg + 2c)(A(X) —w)(1 —a) —nd —2(0 —0) (111)
Tr(J) <0—= (24 + z:)(AX) —w)(1 — o) < nd (112)
Det(J) = memg — 0(0) = wemy (113)
Since 7. > 0 by definition (114)
Det(J)>0—m3 >0 — 24(1 — a)(A(X) —w) >on— w5 >0 (115)

(116)

The determinant condition implies the trace condition. The determinant is indefinite, so the
equilibrium is conditionally stable.

6.1.4 No Cooperators - S, =0, 7g =7 =7

Tr(J)=m.—mgq (117)
Tr(J) <0 — nd(1 — Sg) > (zq — z)(1 — a)(A(X) —w) — Sy < 1 — (g —x)(1 _nf;)(A(X) —w)
(118)
Det(J) = (me —mqg+0)(mg — g +0) — 0= (7. — 74)(0) =0 (119)
(120)

The trace is indefinite, so the equilibrium is conditionally stable.
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6.1.5 No Defectors - S; =0, ., =7m. =7

Tr(J)=7g— e = (xqg — ) (AX) —w)(1la) —nd(1 — S,)
(4 — zc)(A(X) — w)(1a)
né
Det(J) = (m. — me + Sc(0)) (g — 7. +0) —0(0) =0

Tr(J)<0—8.<1-—

The trace is indefinite, so the equilibrium is conditionally stable.

6.1.6 No Enforcers- S. =0, m.=nmg=7

Tr(J)=mg — e = (xg — ) (A(X) —w)(la) — 0

The trace is strictly positive, so the equilibrium is always unstable.
All Payoffs equal - 7, =g = e = 7
Tr(J)=m.+mg—27=0
Det(J) = (r. —7)(mg—7) =0

Both the trace and determinant are zero, so the equilibrium is always unstable.

6.2 The Vigilante Model
6.2.1 Cooperators Only - S; =0, S. =0, T = 7
Tr(J)=mg — 7 = (xg — xc) (A(X) —w)(1 —a) —nd(0) = Tr(J) >0

The trace is strictly positive, so the equilibrium is always unstable.
6.2.2 Defectors Only - S, =0, S. =0, T =7y

Tr(J) =me — pig = (xc — 24)(A(X) —w) —nd(0) = Tr(J) <0
Det(J) = (me —7)(mg — mq) =0

The trace is strictly negative, so the equilibrium is always stable.

6.2.3 Enforcers Only - S, =0, S4=0, 71 =7,

(J)=mg — 7 = (kg — x)(A(X) —w) —nd
(J) < 0= (xqg —z)(AX) —w) <nd
Det(J) = (me — me)(mg — me) = ndSq(mg — me) =0

Tr
Tr

The trace is indefinite, so the equilibrium is conditionally stable.

6.2.4 No Cooperators - S. =0, 1g=7m. =7

Tr(J)=m.—7e =ndSq >0
Det(J) = (m. — 74)(0) =0

(121)

(122)
(123)

(124)

(125)
(126)
(127)

(128)

(129)
(130)

(135)
(136)
(137)

The trace is strictly positive, so the equilibrium is unstable unless there are also no defectors

(considered separately).
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6.2.5 No Defectors - S; =0, . =7m. =7

Tr(J)=7g—me = (xg — ) (A(X) —w) —nd(1 — S.) (138)
— 2 )(A(X) —

TrJ) <0 S, < 1— &d ”“")25( ) —w) (139)
Det(J) = (m. — me + Sc(0))(mqg — 7. +0) —0(0) =0 (140)

The trace is indefinite, so the equilibrium is conditionally stable.

6.2.6 No Enforcers- S. =0, m.=nm3=7

ze(A(X) —w) < 2d(A(X) —w) = 7. < mg|Se =0 (141)
(142)

Since cooperator and defector payoffs cannot be equal without enforcers, no such equilibrium exists.

6.2.7 All Payoffsequal - t. =nmg=n.=7

Tr(J)=me+mg—27=0 (143)
Det(J) = (me —T)(mg —7) =0 (144)
(145)

Both the trace and determinant are zero, so the equilibrium is always unstable.
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