4 Things Nobody tells you about Online News a Model with Social Networks and Competition

Melika Liporace

Bocconi University

May 2021

Introduction

How good can ad-funded online news outlets get?

- Why a model?
 - Social media changed news market:
 - ★ Advertisement revenues \rightarrow profits from social media attention
 - ★ Sharing content \rightarrow consumers play incentivizing role on spreading news
 - \Rightarrow "Old" market environment \rightarrow new effects?
- Why does it matter?
 - Insights into topical issues
 - ★ More than 50% of adults get news online [Pew Research Center]
 - ★ Fear of market segmentation: paywalled vs. free information
 - Need for policy recommendations
 - ★ Can we trust outlets relying on online shares?
 - ★ Should competition be encouraged?
 - ★ What kind of interventions work?

Overview

- This model does not deal with:
 - Psychological bias agents are Bayesian
 - Partisanship agents care about the truth(*)
 - Reputation initial viewership exogenous
- This model deals with a two-sided market:
 - Producers, paid-per-view \rightarrow ad revenue
 - Consumers, share news → networks
- Sketch of the model:
 - Underlying reality state of the world (SoW)
 - Consumers care about sharing true news; receive private information
 - Producers care about views through shares
 - $\rightarrow~$ invest if true article makes more views than false article

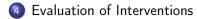
Results

- High news quality can be achieved only when topic already well-known
 - Consumers believe news more easily if corresponds to:
 - ★ their private information \Rightarrow news quality bounded
 - ★ their prior \Rightarrow news articles more valuable in likely SoW
 - \rightarrow Share buttons are not good enough incentives
- Competition does not necessarily help
 - More quality because followers harder to reach
 - Less quality because smaller potential readership
 - \rightarrow Particularly relevant with (almost) free entry for online outlets
- Welfare created through entertainment, hardly by better decisions
 → Ad-funded news outlets are barely *news* outlets
- Flagging can help; quality certification less
 - \rightarrow Timing of fact checking matters

Literature

- News market:
 - Two-sided news markets with producer competition.
 - ★ e.g. Allcott and Gentzkow (2017).
 - \rightarrow *Introduce*: networks
 - Two-sided news markets with networks.

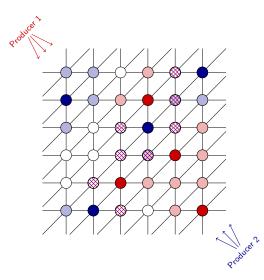
★ only Kranton and McAdams (2019) – KM hereafter.


- \rightarrow *Introduce*: competition (& welfare).
- Learning in Networks:
 - Dynamic learning communicating over beliefs/actions.
 - ★ e.g. see Golub and Sadler (2017) for a review.
 - ★ Hsu et al. (2019) deals with behavioral sharing casquade without competition

Outline

Model

Model

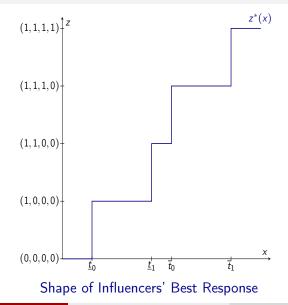

Environment

- Binary SoW, documented through news articles & private signals
- Producers publish one article each:
 - Reach exogenous number of influencers
 - Choose the quality of the outlet x := Pr(article reports true SoW)
 - Do not directly chose the article's content!
- Consumers receive private signal + at most one article
 - Consumers are arranged on lattice of degree d
 - Influencers come across articles \rightarrow decide whether to share z
 - Followers read article if a neighbor shared
 - ★ If different articles shared, only one appears to follower (random source)

(Timing: simultaneous / equilibrium concept: NE)

Model

Model



Objectives: Influencers

• Payoff from sharing =
$$\begin{cases} 1 & \text{if article true} \\ -1 & \text{otherwise} \end{cases}$$

- ⇒ share if probability that the article is true $\geq \frac{1}{2} \rightarrow$ depends on:
 - \star article content *n*
 - ★ private signal s
 - ★ outlet precision x
 - Note: strategy $z_{n,s}(x)$ = probability of sharing article
- Share content *n* if *x* high enough given $s \rightarrow$ thresholds.
 - Sharing is (weakly) monotone in x
 - Share anything if $x \ge$ private signal's precision

Objectives: Influencers

Bocconi University

a Model for Online News

Objectives: Producers

- Costs: C strictly convex; c(x) marginal cost
- Revenues: expected portion of views:
 - depends on the sharing behavior of influencers \rightarrow on z
 - depends on whether my article is true \rightarrow on x
 - depends on whether others' article is true \rightarrow on x_{others}

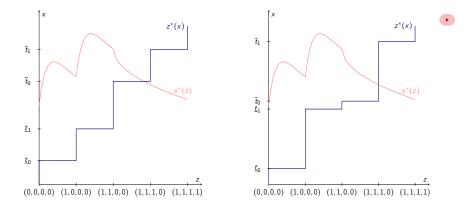
Note: $V_{w,n}(z)$ = expected revenue from content *n* when SoW is w \Rightarrow Revenues: $w_0[xV_{0,0} + (1-x)V_{0,1}] + (1-w_0)[xV_{1,1} + (1-x)V_{1,0}]$

• Best-response, i.e. *incentive to invest*:

$$x^{*}(z) = c^{-1} \Big(w_{0} [V_{0,0}(z) - V_{0,1}(z)] + (1 - w_{0}) [V_{1,1}(z) - V_{1,0}(z)] \Big)$$

extra value of true article when SoW is 0

extra value of true article when SoW is 1


Note:
$$V_{w,n}(z) = \frac{b}{|U|} + (1-b) \sum_{m} \Pr(m|w) \frac{P_{u|w,n}}{P_{u|w,n} + P_{-u|w,m}} \left(1 - (1 - P_{u|w,n} - P_{-u|w,m})^d\right)$$

Equilibrium

Without Competition

Proposition 1

Unique NE characterized by news' quality: $x^{M} = \max\{\min\{x^{*}(1,1,0,0), \overline{t}_{0}\}, \min\{x^{*}(1,1,1,0), \overline{t}_{1}\}\}$

Without Competition

Proposition 2

The incentive to invest is single peaked in d

Intuition: big $d \Rightarrow$ can rely on *few* nodes to share

Lemma 2

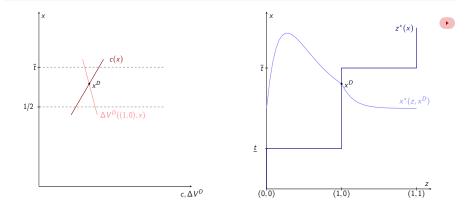
The incentive to invest is increasing with the certainty about the SoW

Intuition: articles more valuable in more likely SoW

With Competition

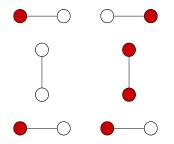
- Call producers a and b.
- Simplification: $w_0 = 1/2$
 - \rightarrow consider only subset of all possible undominated strategies:

$$z_{a|0,0} = z_{a|1,1} = z_{aT}$$
 and $z_{a|0,1} = z_{a|1,0} = z_{aF}$

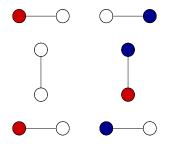

 \Rightarrow two relevant thresholds $\underline{t}, \overline{t}$

• Symmetric equilibria: $z_a^* = z_b^*$ and $x_a^* = x_b^*$

With Competition

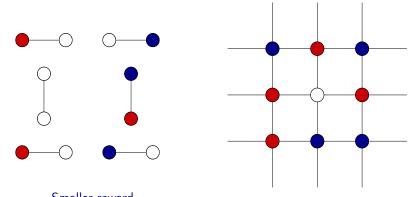

Proposition 3

Unique symmetric NE characterized by news precision $x^{D} = \arg \min_{x \in [1/2, \gamma]} |\Delta V^{D}((1, 0); x) - c(x)|.$


Theorem 1

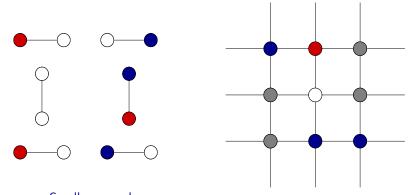
Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

Theorem 1


Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

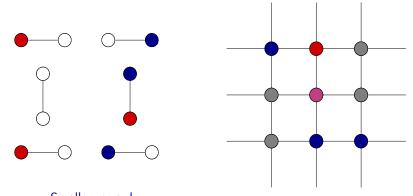
Smaller reward

Theorem 1


Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

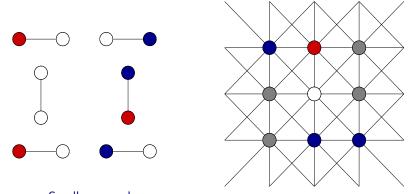
Smaller reward

Theorem 1


Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

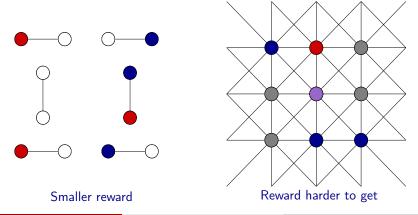
Smaller reward

Theorem 1


Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

Smaller reward

Theorem 1


Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

Smaller reward

Theorem 1

Monopoly leads to higher incentives to invest for $d < \bar{d}$, while duopoly leads to more investment for $d > \bar{d}$

Welfare

Framework

Proposition 5

Any equilibrium outcome on an ad-based news market is Pareto inefficient

Welfare evaluation? \rightarrow add *bet*:

• After articles spread, all consumers can take action a to match SoW

$$u_j(a_j|\omega = w) = egin{cases} 1 & ext{if } a_j = w \ -1 & ext{otherwise} \end{cases}$$

Three aspects of welfare :

- Entertainment: expected utility from sharing
- Guidance: expected utility from bet (no opting out)
- Driver: expected utility from costly bet

Welfare

Welfare Analysis

Disclaimer: Literal interpretation of one signal per agent.

- Sharing strategy \approx betting strategy
- News quality increases entertainment, not necessarily guidance

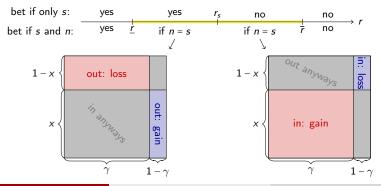
Lemma 5 (Preliminary)

With $w_0 = 1/2$, news outlets are not providing guidance to influencers

• Intuition: news quality bounded by private signal

Theorem 2 (Preliminary)

In terms of guidance, only followers can benefit from competition


- Influencers do not take better decisions
- Cost of production doubles
- Network filters bad articles out for followers

Welfare

Welfare Analysis

What about the *driver* aspects? \rightarrow price *r* to enter bet

- Receiving news article can:
 - Motivate agents to take the bet they would not have with s only
 - Discourage agents to take the bet because $n \neq s \rightarrow$ can backfire
 - \rightarrow ambiguous, depends on *r*

Evaluation of Interventions

Flagging

False articles are flagged (before sharing) with some probability Note: flagging is not noisy.

• Consumers care about truth \rightarrow flagged article worthless to producer

Remark 3

Flagging removes bound on news quality

● Intuition: flagging ≈ private signal

Proposition 6

With $w_0 = 1/2$, flagging has stronger effects in monopoly than duopoly

- Competition → strategic considerations: competitor could be flagged!
- Reward harder anyways; readership smaller with competition
 - \rightarrow if all false articles flagged, monopoly outperforms duopoly on quality

Quality Certification

Move to a sequential game

- Can help: internalize effect investment on sharing
- Depends on *total* cost function

Remark 4

Observable news' quality imposes the same bounds on outlets' informativeness.

Intuition: influencers *always sharing* = best producer can achieve

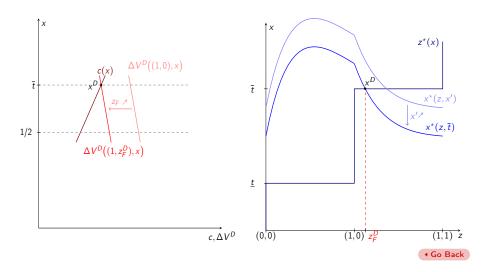
Subscription-Based Revenues

- Setup:
 - Each influencer pays a subscription t(x) in order to read news.
 - Producers' unique revenue: subscriptions.
- Comparing inefficiencies:
 - ▶ No possible welfare improvement marginal benefit = marginal cost.
 - No advertisement revenue loss of surplus.
- Feasibility (preliminary):
 - The ad-based monopoly outcome is reproducible with subscriptions.
- Open question: When can the gain in news quality compensate the loss of ad-revenues?

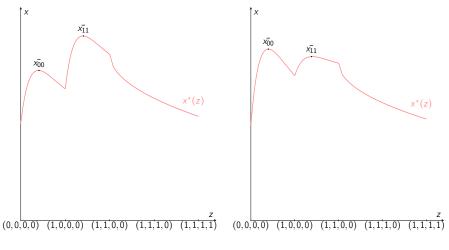
Conclusion

How good can online news outlets get?

 \rightarrow not so good... without intervention


- High news quality can be achieved only when topic already well-known
- Competition does not necessarily help
- Welfare created through entertainment, hardly by better decisions
- Flagging can help, quality certification not so much

Bibliography


- Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016 election. *Journal of Economic Perspectives*, 31(2):211–36, 2017.
- Benjamin Golub and Evan Sadler. Learning in social networks. *Available at SSRN 2919146*, 2017.
- Chin-Chia Hsu, Amir Ajorlou, and Ali Jadbabaie. A theory of misinformation spread on social networks. *Available at SSRN*, 2019.

Rachel Kranton and David McAdams. Social networks and the market for news. 2019.

Equilibrium: With Competition

Equilibrium: Monopolist Best-Response

Shape of Monopolist's Best Response

Bocconi University

a Model for Online News

23 / 23

◀ Go Back

Attention-Seeking Influencers Objective

- Effect of competition between influencers, who compete for likes
 - ▶ Realistic → robustness
 - Trade-off between visibility and veracity
- Assumptions about likes:
 - Only followers (denoted f) can like posts
 - f can like i post only if f saw i's post
 - f only sees the post of **one** of his sharing neighbors **at random**
 - f likes a post iff receive a positive private signal (prior irrelevant)
- Decision rule¹:

$$\mathbb{E}(\#\mathsf{likes}) \geq \tau$$

- Payoff depends on:
 - Whether news is true or false (\Rightarrow on *i*'s posterior)
 - How many other neighbors of f share (\Rightarrow on -i's sharing decision)

$${}^{1}\mathbb{E}(\# \text{likes}) = p_{\nu}(s_{i}; x_{\nu})\gamma \frac{1-b}{p_{\tau}} \left(1 - (1 - p_{\tau})^{d}\right) + (1 - p_{\nu}(s_{i}; x_{\nu}))(1 - \gamma) \frac{1-b}{p_{\tau}} \left(1 - (1 - p_{F})^{d}\right)$$

Bocconi University

a Model for Online News

23 / 23

Attention-Seeking Influencers Best-Response

Disclaimer: We focus only on symmetric strategies $z_i = z \quad \forall i$. We call "best-response" $(z_T^*(x), z_F^*(x))$, each maps $x \to [0, 1]$ s.t. $z^*(x, \mathbf{z}^*(\mathbf{x})) = z^*(x)$

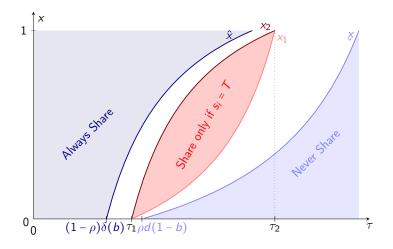
Theorem 3

(i) For any
$$\tau \leq \gamma \delta$$
, $z_T^*(x; \tau) = z_F^*(x; \tau) = 1$ if and only if $x \geq \hat{x}(\tau)$.

(ii) For any
$$\tau \ge (1 - \gamma)d(1 - b)$$
, $z_{\mathcal{T}}^*(x; \tau) = z_{\mathcal{F}}^*(x; \tau) = 0$ if and only if $x \le \mathfrak{x}(\tau)$.

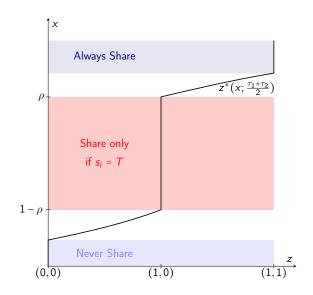
iii) For any
$$\tau \in [\tau_1, \tau_2]$$
, $z_T^*(x; \tau) = 1$, $z_F^*(x; \tau) = 0$ if only if $x \in [x_1(\tau), x_2(\tau)]$.

Where:


$$\delta(b) = \frac{1-b}{b} [1-(1-b)^d], \quad \tau_1(b) = \frac{1-b}{b} [1-(1-b(1-\gamma))^d], \quad \tau_2(b) = \frac{1-b}{b} [1-(1-b\gamma)^d]$$

And, given
$$T = \frac{\frac{b\tau}{1-b} - 1 + (1-b(1-\gamma))^d}{(1-b(1-\gamma))^d - (1-b\gamma)^d}$$
,
 $\hat{x}(\tau) = \frac{\gamma}{2\gamma - 1} \frac{\tau - (1-\gamma)\delta}{\tau}, \quad \dot{x}(\tau) = \frac{1-\gamma}{2\gamma - 1} \frac{\tau - (1-\gamma)d(1-b)}{d(1-b) - \tau}, \quad x_1(\tau) = \frac{(1-\gamma)T}{(1-\gamma)T + \gamma(1-T)}, \quad x_2(\tau) = \frac{\gamma T}{\gamma T + (1-\gamma)(1-T)}$

23 / 23


Go Back

Appendix

Pure strategy symmetric best-response

Go Back

Influencers' best-response for $\tau = \frac{\tau_1 + \tau_2}{2}$

Bocconi University

a Model for Online News

23 / 23

Go Back